Mostrar el registro sencillo del ítem
An entropic barriers diffusion theory of decision-making in multiple alternative tasks
dc.rights.license | https://creativecommons.org/licenses/by/4.0/ | es_AR |
dc.contributor.author | Fernandez Slezak, Diego | es_AR |
dc.contributor.author | Sigman, Mariano | es_AR |
dc.contributor.author | Cecchi, Guillermo A. | es_AR |
dc.date.accessioned | 2018-07-20T13:53:41Z | |
dc.date.available | 2018-07-20T13:53:41Z | |
dc.date.issued | 2018-03-02 | |
dc.identifier.uri | https://doi.org/ 10.1371/journal.pcbi.1005961 | es_AR |
dc.identifier.uri | ||
dc.identifier.uri | ||
dc.identifier.uri | ||
dc.identifier.uri | https://repositorio.utdt.edu/handle/20.500.13098/11056 | |
dc.description.abstract | We present a theory of decision-making in the presence of multiple choices that departs from traditional approaches by explicitly incorporating entropic barriers in a stochastic search process. We analyze response time data from an on-line repository of 15 million blitz chess games, and show that our model fits not just the mean and variance, but the entire response time distribution (over several response-time orders of magnitude) at every stage of the game. We apply the model to show that (a) higher cognitive expertise corresponds to the exploration of more complex solution spaces, and (b) reaction times of users at an on-line buying website can be similarly explained. Our model can be seen as a synergy between diffusion models used to model simple two-choice decision-making and planning agents in complex problem solving. | es_AR |
dc.format.extent | 14 p. | es_AR |
dc.format.medium | application/pdf | es_AR |
dc.language | eng | es_AR |
dc.relation.ispartof | PLoS Comput Biol 14(3): e1005961. | es_AR |
dc.rights | info:eu-repo/semantics/openAccess | es_AR |
dc.subject | Teoría de la decisión | es_AR |
dc.subject | Teoría de los juegos | es_AR |
dc.subject | Toma de decisiones | es_AR |
dc.subject | Proceso aleatorio | es_AR |
dc.title | An entropic barriers diffusion theory of decision-making in multiple alternative tasks | es_AR |
dc.type | info:eu-repo/semantics/article | es_AR |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_AR |
dc.description.filiation | Fil: Fernandez Slezak, Diego. Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Computación. CONICET-Universidad de Buenos Aires, Instituto de Investigación en Ciencias de la Computación (ICC), Buenos Aires, Argentina | es_AR |
dc.description.filiation | Fil: Sigman, Mariano. Universidad Torcuato Di Tella, Escuela de Negocios, Laboratorio de Neurociencia, Buenos Aires, Argentina | es_AR |
dc.description.filiation | Fil: Cecchi, Guillermo A. Computational Biology Center, T.J. Watson Research Center, IBM, Yorktown Heights, NY, USA | es_AR |