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Abstract

We present a theory of decision-making in the presence of multiple choices that departs

from traditional approaches by explicitly incorporating entropic barriers in a stochastic

search process. We analyze response time data from an on-line repository of 15 million blitz

chess games, and show that our model fits not just the mean and variance, but the entire

response time distribution (over several response-time orders of magnitude) at every

stage of the game. We apply the model to show that (a) higher cognitive expertise corre-

sponds to the exploration of more complex solution spaces, and (b) reaction times of users

at an on-line buying website can be similarly explained. Our model can be seen as a synergy

between diffusion models used to model simple two-choice decision-making and planning

agents in complex problem solving.

Author summary

Decision-making has been studied in great detail relying on binary choices, modeled as

the noisy accumulation of a decision variable to a threshold. We show that it breaks down

when used to describe real-life human decision involving multiple options. We show

instead that including obstacles in the diffusion model (a natural conceptual extension)

can describe the data with great degree of accuracy. We evaluate this new model by capi-

talizing on the advent of big data, analyzing a vast corpus of decision making obtained

from on-line chess servers. The present manuscript resolves a conflict between current

theories of decision-making and concrete data, it solves this data with a concrete theoreti-

cal proposal and analyzes specific predictions of the model.

Introduction

Decision-making has been studied in great detail relying on binary choices by the Two-Alter-

native Forced-Choice paradigm (2AFC). In 2AFC tasks, choices are made between two alter-

natives with limited information while speed and accuracy are registered. In addition, for

simplicity, in the vast majority of the experiments, the decision variable is a single scalar (for
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example the luminosity of patches, the number of dots in a comparison task or the pitch in an

auditory discrimination task).

This paradigm has a great benefit for computational and theoretical understanding of deci-

sion making. It can be fully expressed in a set of equations which have analytic solution [1].

Also, the functional dependence of behavioral observables such as response times, error rates

or confidence can be described in detail by low dimensional models (e.g. [1–5]). While models

differ, many of them rely on a stochastic search process, in which the accumulation of the evi-

dence is integrated over time, and whose crossing of a boundary represents the event of reach-
ing a conclusion or making a decision [6–8].

The Drift Diffusion Model (DDM) [2, 9, 10] has been shown to be, under some conditions,

an optimal model for 2AFC decision-making [7, 11]. The discrete analogue of DDM consists

of a random walk on an 1-D interval, with one extreme as origin and the other as the decision

boundary. Several variants of this model have been proposed depending on how the threshold

is set, whether the integrated signal decays in time, and whether the two choices are repre-

sented by two competing and possibly interacting signals. More recently, the Ising Decision

Maker has been presented as a new formal model for 2AFC, showing increased performance

compared to Ratcliff diffusion model [12].

Over many years, this research program has shown with exquisite detail how humans and

other animals reach decisions with a small number of options. However, most real-life deci-

sions are made of a large and often virtually infinite number of choices, relying on heuristics

and a relatively shallow search process in decision trees with complex geometries.

Beyond some simple scenarios where classic diffusion models can be extended to more

dimensions, this class of models can hardly adequately describe decision-making in multiple

choices [13, 14]. For instance, Usher and McClelland introduce the leaky, competing accumu-

lator model extending this framework to multiple-decision tasks [5]. This model proposes sev-

eral leaky integrators of signals—based on Ornstein-Uhlenbeck equations—which compete

and inhibit each other until a decision is made by reaching a threshold. This model has a

greater number of parameters (increasing the degrees of freedom) and show similar patterns

of RT curves as DDM, which lead to (small) systematic gains (in terms of quadratic error in fit-

ting) compared to DDM results.

Lee and colleagues have successfully used DDM in sequential 2AFC tasks where context

conditions are changed during time, and showed how diffusion models with non-homoge-

neous information focus on search for evidence and explain adaptation on search termination

[15]. Another example is the Multi-modal Processing Tree (MPT) model class, a framework

for developing and testing quantitative theories based on observations in categorical data [16].

It provides a data-analysis tool capable of disentangling and measuring separate contributions

of different cognitive processes, measuring latent processes that are confounded in observable

data. However, as MPT models are explanatory they require a detailed description of cognitive

processes behind the behaviour under study, which may be impossible to propose when inves-

tigating high-level phenomena.

In the artificial intelligence literature, techniques from operations research have been used

to attack problems of choosing actions by planning agents in partially observable stochastic

domains [17–19]. These methods build a policy tree—where actions are selected to optimize

reward—and resemble the Monte-Carlo search approach used to model the dynamics of deci-

sion-making (see Fig 1b).

The objective of the present work can be viewed as an effort to bring together diffusion

models in binary decisions and planning agents in complex problem solving, two very influen-

tial but largely disconnected literatures of decision-making. We theorize that the defining

characteristic of a generic decision process—in humans and computer algorithms—is the
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presence of entropic barriers [20], i.e. paths that are diffusively explored and usually lead to

dead ends or sub-optimal solutions.

We investigate here whether the distribution of reaction times (RT) in multiple-alternative

decision-making can be modeled by a diffusion process on a space with topological traps, as we

intend to capture the essence of a stochastic search process involving the exploration of “dead

ends” and the concomitant back-tracking. In other words, we hypothesize that a random walk

in a 2-D grid with obstacles may represent the decision-making process as trajectories of tree

search algorithms (see Fig 1b). Each position in the grid represents different board states, radius

of bound reflects search depth, obstacle density represents amount of pruning and time per step

represents processing speed (see Fig 1c). We emphasize that while the model aims to integrate

in its simplest form the notion of diffusion to a boundary with the idea of exploring branches in

a tree, it is not intended to be an exact correspondence, as the topology of all the decisions prob-

lems in the search tree cannot be embedded in a one to one fashion in the 2 dimensional grid.

A traditional limitation of behavioral and cognitive modeling has been the mismatch

between the complexity of the models and the availability of experimental data to validate

them. The advent of big data, however, has turned this difficulty on its head [21]. To examine

our hypothesis, therefore, we capitalized on a vast corpus of decision-making obtained from

on-line chess servers [22] (see Fig 1a). This database has several virtues: (1) in any given move,

players have to opt among a large number of options [23], (2) options grow exponentially

(three steps down on decision tree typically results in more than a billion alternatives) and

hence the search process becomes rapidly intractable without heuristics, (3) as in real-life, in

chess choices have to be made with a finite time budget (4) the quality of the decision-maker is

particularly easy to calibrate in chess (players have an ELO which indicates the quality of their

decisions), and (5) it contains detailed information about more than 1 billion decisions, a vol-

ume that would be unthinkable to reproduce in a classical laboratory setting.

Fig 1. a) Chess board example of the game between Gary Kasparov and Deep Blue on May 11th, 1997—the winning

game of machines against humans. b) Decision tree for current position and hypothetical walk through it until

decision is made. c) Particle moving in a 2-D mesh with obstacles resembling the tree search heuristic. d) RT

distribution with super-exponential tail.

https://doi.org/10.1371/journal.pcbi.1005961.g001
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We show that this simple theoretical construct, a natural extension of diffusion processes

with the inclusion of obstacles (or entropic barriers) provides a remarkably accurate descrip-

tion of the data that was not captured with previous models. We also show that this obstacles

model may characterize individual RT distributions and predict similarity with other players

based on their time-to-move distributions. Moreover, we test the model in a complete different

scenario of an online buying website where, suggesting that this model may describe a broad

class of decision-making processes ranging from simple binary decision-making to complex

decision in problem solving with heuristics not only in chess playing.

Methods

Drift-diffusion model

The Drift Diffusion Model (DDM) is the continuous analogue of a random walk with a direc-

tion bias, and is considered the optimal model for simple two-choice decision processes [11].

The model assumes that decision is made by the integration of evidence in a noisy process

over time. Our implementation consists of a particle in a 2-D mesh walking to a threshold.

Steps may be in any of four directions (up, down, left, right) equally distributed. Bias is inserted

by accepting the step following the conditions:

Z
� !

¼ ðx � x0; y � y0Þ

Zp
� !

¼ ðxp � x; yp � yÞ

C ¼

1 �
Z
� !

jZ
� !

j
�
Zp
� !

jZp
� !

j

2

pacceptance ¼ e� C=�

where Z
� !

is the current position, Zp
� !

is the intended next position, C is the cost of putative

move, p the probability of accepting the move and � the noise in the acceptance decision. Thus,

the parameters of the simulation are the radius of the boundary (in units of the grid step) R,

the decision noise � and the time step Δt.
Several alternatives to DDM model appear in the literature, both for 2AFC and multiple-

choices extensions (e.g. [5, 12]). These models show similar RT patterns and increase the num-

ber of free parameters, which permit small but systematic gains in fitting RT distributions.

However, in our complex chess scenario, patterns of RT distribution differ significantly from

these classic models. Thus, for sake of clarity we will compare our obstacles model to DDM.

Obstacles model

A one-dimensional random walk [24], representing a blind decision-making process, initiates

its exploration at a fixed position. The walker ends its exploration when it reaches a threshold

value, after which the process may be re-initiated. The time to reach this threshold is the first-

passage time (FPT), and characterizes stochastic models of RT.

In continuous time and space, the dynamics are expressed as:

_xðtÞ ¼ ZðtÞ

hZðtÞi ¼ 0

hZðtÞZðt þ tÞi ¼ dðtÞ

The transition probability P(x|x0, t) of finding the walker in x at time t given that it was in x0 at
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time 0 satisfies the Fokker-Planck equation

@tP þ @xJ ¼ 0

J ¼ � @xP
ð1Þ

on which the initial and boundary conditions are easily expressed: assuming the origin of the

walker at x0, the initial condition implies P(x|x0, 0) = δ(x − x0), a crossing threshold at xT is

equivalent to an absorbing boundary, P(xT|x0, t) = 0, whereas a reflecting boundary at xR corre-

sponds to J(xR|x0, t) = 0. The probability distribution for the FPT is

WðtÞ ¼ �
Z x2

x1

@tPðxT jx0; tÞdx ð2Þ

where x1 and x2 are the boundaries (one is the absorbing, the other may be absorbing, reflect-

ing or located at1), and x1 < x0 < x2. The analytic solution to this problem is known, and the

limiting cases of reflecting boundary at finite and at infinite distance result in exponential and

power-law tail distributions, respectively. The extension to higher-dimensional Euclidean

geometries of the analytic results demonstrate a similar behavior for the tail distributions [25]

(see Fig 1d and Suppl. Mat.).

These kind of models have been successfully used to model 2AFC and other tasks. However,

we show that these models fail to represent the full distribution in more complex scenarios

such as RT in chess and online buying. We propose that including entropic barriers in a 2D

space would add the neccesary complexity to the model so that it would replicate the full distri-

bution. Unfortunatley, at present there are not analytic solutions of the FPT problem for this

type of models. Thus, we simulate the model by a random walk, discretizing the 2D space into

a mesh where some of the nodes are considered reflecting entropic barriers.

In the obstacles model, we use a square grid with a circular absorbing boundary, and reflect-

ing nodes scattered randomly with a given density. We simulate trajectories in the 2-dimen-

sional plane, since this corresponds to the minimum number of dimensions in which obstacles

do not necessarily disconnect space. The process moves randomly and without bias in one of

the four possible grid directions at each step. The parameters of the simulation are the radius

of the boundary (in units of the grid step) R, the smoothness of the space ρ (i.e. the number of

obstacles in the grid), and the time step Δt. The update rule is then for position~x ¼ ðx1; x2Þ at

time t is:

~xðt þ DtÞ ¼~xðtÞ þ~Z ð3Þ

where the random drift~Z ¼ ðZ1; Z2Þ is defined formally by ηi = ±1, hηii = 0, hηiηji = δij.
The smoothness is related to the probability that a grid point is an obstacle,

pðo;~xÞ ¼ 1 � r, 0� ρ� 1, so that ρ = 1 is a pure Euclidean space. The obstacles are defined

by the constraint on the probability current,~JðoÞ ¼ 0. Fig 1 shows a walker that starts in the

center and wanders through the labyrinth with obstacles until it finds a passage point.

Fitting RT distributions

Simulations of models were implemented in Python. Each execution of a model with fixed

parameters returns a number of steps taken to reach the threshold which represents a response

time of a single decision.

Parameters fitting of both models (DDM and obstacles model) was performed by exhaus-

tive search in discrete parameters (distance) and Nead-Melder method [26] for non-linear

optimization over the continuously parameter space (step size and number of obstacles). For
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each parameter combination, we executed 75,000 simulations, i.e. 75,000 simulated deci-

sions. In the case of the DDM, the parameter space range was: R 2 [1, 10] in grid-steps units,

� 2 [0, 0.25] and Δt 2 [10, 150] in milliseconds. On the other hand, the obstacles-model

parameter space range was: R 2 [1, 10] in grid-steps units, ρ 2 [0.2, 0.65] and Δt 2 [10, 150]

in milliseconds.

To fit the human RT distribution, for each parameter combination we calculated the Jen-

sen-Shannon divergence (JSD) [27] between the human (hRT) and the model (mRT) distribu-

tions. Thus, the optimization method consists on the parameters lookup in the simulated-

decisions distributions which minimizes:

ðR;r;DTÞ ¼ arg min
ðR;r;DTÞ

1

2
DðPjjMÞ þ

1

2
DðQjjMÞ

whereM = 1/2(P + Q),D(P||M) the Kullback-Leibler divergence [28], P and Q the distribu-

tions to compare.

To compare the relative goodness of fit between our model and DDM, we also use JSD

instead of the usual AIC, following [29].

Results

We compiled RT statistics of more than 15 million of chess games (i.e. more than 1 billion

decisions) played between 2006 and 2013 by human players with a total time budget of 300 sec-

onds. These games were obtained from the Free Internet Chess Server [30], a free ICS-compat-

ible server for playing chess games through Internet, with more than 300,000 registered users.

This massive dataset also includes the user rating at each game—a dynamic variable which is

updated after each game played according to the Glicko method [31]—that indicates the chess

skills strength of the player.

We computed 2-D histogram of players RTs as a function of the seconds of games played—

or similarly as a function of remaining time (see Fig 2a). As observed in our previous work

[22], decision times are shorter during the first and last stages of the game, caused by the stan-

dardized openings or time constraints of the endgame (see Fig 2a). Here, we consider only the

middle stage of the game, defined as all moves performed when fraction of remaining time is

between 0.1 and 0.9, i.e. total time remaining is between 270 seconds and 30 seconds. All the

RT distributions in this middle stage present a very similar shape: starting from a few almost

immediate moves (less than half-a-second RT), a rapid growth to the mode RT (mode value

depends on total time and remaining time), with a super-exponential decaying tail.

RT distribution models

We fitted parameters for both models (DDM and obstacles model) for the RT distribution

obtained at each instant of the game. That is, given a remaining time, we estimated the best

parameters which make the model fit more accurately the RT distribution at that instant of the

game. The remaining time was divided into 0.1 seconds bins, i.e. 3000 bins in 300 seconds of

total time available per game. Once this parameter fitting was performed for each instant of

the game, we calculated the estimated median of the RT distribution (Fig 2b). At every instant

of the game, both models—with obstacles (blue line) and classic DDM (red line)—show an

extremely precise median (KS Test, no significant difference between distributions at every

instant).

However, if we compare the goodness-of-fit of the complete distribution we find that

obstacles model fits significantly better than classic DDM. As an example of this, we show

the parameter fitting of RT distribution at 50% of game using a single DDM model with only
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3 free parameters: R the threshold distance, � noise in the acceptance decision, and ΔT the

time per step (see Methods section for fitting details). Standard diffusion models (in particu-

lar, DDM without obstacles) produce distributions of FPT with exponential decay or power-

law regardless of the dimensionality ([32], see also Suppl. Mat.). As expected, this fit is incon-

sistent with our observations of RT distributions which display a similar initial distribution

but a super-exponential tail. We observe the best fit for RT distribution at the middle of the

game using a single DDM (� = 0.2, R = 8 and ΔT = 60ms, see Fig 2c, red line) which is numer-

ically very distant to the data (Kolmogorov-Smirnoff statistics, Dn = 0.754, p< 10−6) and,

moreover, shows a qualitative different behavior with a tail that decays more rapidly. Instead,

fitting with the 2-D diffusion model with obstacles (see Fig 2c, blue line) results in a very

accurate description of the data (Kolmogorov-Smirnoff statistics Dn = 0.014, p> 0.95). For

this representative fit, ρ = 0.45 (45% of grid points are obstacles), with a radius of R = 4 and

ΔT = 90ms.
We repeated this procedure for each instant of the game and calculated the goodness of fit

of both models, estimated by the Jensen-Shannon divergence. We observe that model with

obstacles outperforms classic DDM (Fig 2d). Model without obstacles shows values of JS diver-

gence much higher than obstacles models in every instant of the game.

Fig 2. Response time statistics and fit for human players. a) 2-D histogram (in log scale) of RT of moves as a function of the

seconds of game played. Lines show median RT for human statistics (black line) and best fit with no entropic barriers (red line) and

obstacles model (blue line). No significant difference between distributions at every instant in both models, Kolmogorov-Smirnoff

Test, KSstatistic < 10−4, p> 0.99). b) RT distribution at 50% of the game (black trace). Model with obstacles (blue line) fits with

extremely high precision in both short and long time scales (Kolmogorov-Smirnoff statisticsDn = 0.014, p> 0.95). The red line is the

best fit for the DDM (Kolmogorov-Smirnoff statistics,Dn = 0.754, p< 10−6)). c) Goodness of fit indicated by Jensen-Shannon

divergence. Model without obstacles (red dots) shows significantly higher values than proposed obstacles model (blue dots) at every

instant of the game.

https://doi.org/10.1371/journal.pcbi.1005961.g002
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The model is reminiscent of “comb” geometries, consisting of a main backbone with the

origin and threshold in each extreme, and side branches where the diffusing particle may get

trapped. This configuration is more restrictive in the topology of search process, but a compar-

ative advantage is that analytic solutions for this problem have been developed. However, the

best comb solution does not fully capture the observed RT distributions (see Supp. Mat. for

details).

The results above show that diffusion with obstacles model provides an accurate description

of RT distributions obtained from a vast corpus of human decisions. However these distribu-

tions aggregated decisions from many different players. Hence a possible and alternative expla-

nation is that the non-exponential tails we observed in the data resulted from an addition of

different exponentials (assuming that players may have different characteristic decision times).

To test this hypothesis, we selected individual players with more than 20,000 games each (17

players in total) and performed the model fitting considering entropic barriers for each indi-

vidual player. The model could fit very accurately the distribution of RTs of each individual

player, reflected in small KS-statistics and p-values close to 1, which indicate that the model

and the data are not distinguishable (KS test, p> 0.99, Dstatistic < 10−8 in all cases; see fits in

Supp. Mat.). This shows that the inability to fit the distribution of all decisions was not a matter

of aggregating different individuals: instead the model with entropic barriers provides a very

accurate fit of the RT distribution of individual players.

Model performance and comparison

To compare models, we implemented a cross-validation scheme. For each player with high

number of games, we selected the RT distribution at 50% of the game and splited into 80%-

20% sets for training both models and testing the fits, respectively. Using the first set, we fitted

both models parameters and evaluated in the test set, obtaining 2 JSD measures, one for each

model. We repeated this procedure 1,000 times and calculated the average JSD values for each

model. Obstacles model showed better performance than DDM model in average JSD for all

players (see Supp. materials for details).

Then, we evaluated the prediction capabilities of the model. We proposed that players who

show similar RT distributions (in terms of JSD values), should obtain similar JSD values for

the fitted distributions of the model. Thus, given both RT distributions of a particular player

(the real data, and the fitted model), sorting other players based on similarity of their RT distri-

bution to the real and fitted ones must be correlated. We fitted each player individually and

calculated JSD values of real data and the fitted model to every other player. We found that

correlation between sortings is significantly better using the Obstacles model (Spearman rank-

correlation r> 0.99, p< 10−10 in all cases) than DDM (Spearman rank-correlation r� 0.6,

p< 10−2).

Our next aim is to test the Obstacles model, examining specificity, i.e. whether it can be used

to obtain useful discriminations and generality, i.e. whether the model is valid across different

contexts.

Specificity

To test specificity we investigated whether the Obstacles model can identify meaningful differ-

ences in the decision process between strong and weak players. A comparative advantage of

studying decision-making in chess is that the quality (i.e. rating) of players can be precisely

determined, representing the player’s strength in a very confident manner. The rating of a

player is determined based on their past results with other players, and updated after each

game played. Players receive rating points in proportion to the difference in their strength. A
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strong player would increase a very small amount of rating points when winning a game versus

a weak player. In contrast, a weak player would win rating points even in the case of a draw

playing to a stronger opponent [31].

Decision-time distributions of strong and weak players are comparable, although stronger

players make slightly slower moves during middle-game and faster during the opening and the

end-game [22]. We reasoned that this subtle difference in RT distributions between strong and

weak players may rely on different decision processes. Specifically, in line with notions of

expertise [33] we hypothesized that strong players (expert decision-makers) discard a larger

number of states which through heuristic which in our model accounts to having a larger

number of obstacles (i.e ρstrongplayers > ρweakplayers) [34] which is compensated by a faster navi-

gation of the decision-tree (i.e ΔTstrongplayers < ΔTweakplayers). As for the radius (the equivalent

to the depth of search), different chess theories differ on whether search depth increases with

quality or remains constant.

To examine these hypotheses we splited the population into quintiles groups (i.e. each

group has the same number of played games) and analyze distinctively the parameters of the

model. We performed the parameter fit to data corresponding to each one of the five groups.

The correlation between each parameter (obstacles rate (ρ), time per step (ΔT) and threshold

distance (R)) and player ratings are presented in Fig 3. With higher ratings, players show

higher obstacles ratio (Fig 3a, Pearson correlation r = 0.89, p< 0, 04) and shorter distances

(Fig 3c, Pearson correlation r = −0.97, p< 0, 006). Time per step showed no correlation with

player ratings.

Fig 3. Specificity. Correlation between parameters of the model and player ratings. a) Density of obstacles (a proxy for the

complexity of the space of solutions explored), b) time per iteration and c) distance to threshold as a function of time in the game.

Correlations show significant p-values for density of obstacles (p< 0.006) and distances (p< 0.04). Strongest players (first quintile)

explore a more complex decision space (more obstacles, KS Test p< 10−17)) compared to weakest players (fifth quintile), with

similar time per step (KS Test, p = 0.20), leading to shorter distances (KS Test, p< 10−7).

https://doi.org/10.1371/journal.pcbi.1005961.g003
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Obstacle density shows higher values for strongest players compared with weakest players

(KS Test, p< 10−17), showing more complex grids to transit during the random walk. On the

other hand, time per step shows similar patterns between both classes of players (KS Test,

p = 0.20), suggesting that this parameter may be representing a canonical aspect of decision

making which does not differ among player classes. As strong players show more complex sce-

narios with similar time per step, distances to threshold show smaller values in strong players

than in weak players (KS Test, p< 10−7). These results suggest that all players spend the same

time for checking each step, but strong players explore more difficult decision spaces (more

obstacles), with shorter distances to threshold.

Generality of the model

To test how the model generalizes, first we performed independent fits at each instant of the

game, which correspond to different fractions of time available, and exhibit different RT distri-

butions. Every distribution was fitted with the proposed model, obtaining R, ρ and ΔT parame-

ters, and compared by their median value and a two-sample Kolmogorov-Smirnoff test of the

complete distribution. In Fig 2b, we show the median value obtained both from players and

model data at each instant of the game. We observe an almost perfect match to the proposed

model with obstacles. To quantify this observation, at each instant of game, we verified the

goodness of fit comparing the distribution of human (black line) and simulated data (red line:

no obstacles model; blue line: obstacle model) by analyzing JS divergence between distribu-

tions (see Fig 2d). Results show that all RT distributions are indistinguishable from the best fit

of model with obstacles (Fig 2d, blue dots); a KS test between obstacles model and human data

is non-significant in every instant of the game.

In contrast, when testing the DDM versus human data with the KS test, the null hypothesis

is rejected (p< 10−3) indicating that the basic model without obstacles cannot reproduce

human RT behavior. In accordance to this result, JS divergence show much higher values than

obstacles model (Fig 2d). We conclude that our obstacle model is universal to the decision-

making process when playing on-line chess, regardless the instant of the game.

We further investigated whether this model extends to different cognitive domains. For

this, we analyzed navigation logs of users in MercadoLibre, the biggest on-line buying website

of Latin-America. Logs consist of response times of users after doing a product search, i.e. how

long users take to decide for (more information of) a product. Fig 4 shows the RT in this web-

site; again, with a super-exponential tail. The obstacle model is plotted in blue line showing an

almost perfect match (KS test, Dn = 0.018). This result suggests that the model may transfer to

very different domains (from chess to on-line buying), and that it is reflecting a intrinsic deci-

sion-making process.

Discussion

Different models of accumulation to a boundary have been the hallmark of two-choice deci-

sion-making [1, 35, 36]. A few studies have investigated experimentally (e.g [37, 38]) how they

extend to more than two alternatives. For instance, Churchland and colleagues studied a four-

choice paradigm [37]. Their results show that an urgency signal was more prominent on the

two-choice paradigm than four-choice, consistent with longer response times on the latter

experiment. Theoretical investigations have generalized competing integrators of higher num-

ber of alternatives [37, 39, 40]. Others have modeled by a competition between neural pools [5,

13]. These studies have succeeded in accounting for a range of behavioral data in conscious

multi-choise tasks [41].
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In chess, as in many other domains of human problem solving, it is well known that partici-

pants do not exhaustively search all alternatives [42]. Actually, studies show that board evalua-

tion is rather small, and only a few moves simulations are evaluated by players [43]. Chess

players search in a decision tree, but halting this process by evaluations or heuristics which

dictate that a given state is not desirable [44]. How decisions emerge without an exhaustive

exploration of move alternatives is still an open question. Current chess models suggest that

cognitive architecture should concentrate on relevant pieces or positions in the board, and

may search for the best move by analogy with previous studied/plausible positions [45].

Classic DDM models are unable to capture the RT distributions produced by chess plays.

Our model is designed to capture this process by presenting entropic barriers which can be

seen as stop points in a search path, i.e. a moment in which there is sufficient visibility to dis-

card the path based on an evaluation function. However, this interpretation must not be over-

stated. In a 2D grid the number of branches at each state is bound to 4 (all possible directions).

This limit if obviously not true in chess or other multiple-choice tasks, but resembles the idea

of having multiple trajectories available at each iteration in the decision process.

Using chess as a model of expertise in decision-making, Gobet and colleagues have demon-

strated that stronger players do not necessarily outperform the maximum search depth of deci-

sion trees than weaker ones [46]. Instead, they cover deeper searches in average, showing a

more exhaustive coverage of branches and a very efficient cutting threshold. In agreement

with this view, we show that fitting RT distributions with our three-parameter entropic model

achieves a remarkable precision. Our model refines this idea indicating that better players

explore solutions in a more punctuated space. We interpret the model’s entropic barriers as

stop points in a search process. The fact that stronger players show an increased number of

obstacles indicates a more efficient cut algorithm for discarding sub-optimal branches. Expert

players compensate the increase in time due to a navigation in a more punctuated space by a

smaller distance to the threshold.

Fig 4. Generality. Model extension to on-line buying decision-making. Dots show response times between clicks of

users doing a product search, i.e. how long users take to decide for (more information of) a products; blue line shows

best RT fit of model showing an almost perfect match (Kolmogorov-Smirnoff Test,Dn< 10−8, p> 0.99).

https://doi.org/10.1371/journal.pcbi.1005961.g004

An entropic barriers diffusion theory of decision-making in multiple alternative tasks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005961 March 2, 2018 11 / 14

https://doi.org/10.1371/journal.pcbi.1005961.g004
https://doi.org/10.1371/journal.pcbi.1005961


The model of decision-making we present here departs from traditional approaches by

explicitly incorporating the presence of such entropic barriers in a stochastic search process.

Using rapid chess big data as an unprecedented, high-throughput experimental laboratory,

we show that our model provides a remarkable fit to the response time statistics (i.e. the

distribution of times-to-move) at different stages of the game, not only first and second order

moments but for the entire probability distribution over several response-time orders of mag-

nitude. While at present we do not have the tools to investigate the potential mapping of the

formal solutions to mental processes, it is expected that traces of them, in particular the pres-

ence of entropic barriers, should be found in the evidence that is readily available in psycho-

physical measurements.
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