Mostrar el registro sencillo del ítem

dc.rights.licensehttp://rightsstatements.org/page/InC/1.0/?language=eses_AR
dc.contributor.authorIarussi, Emmanueles_AR
dc.contributor.authorDeangeli, Duilioes_AR
dc.contributor.authorKülsgaard, Hernánes_AR
dc.contributor.authorIarussi, Franciscoes_AR
dc.contributor.authorBraggio, Delfinaes_AR
dc.contributor.authorPrincich, Juan Pabloes_AR
dc.contributor.authorBendersky, Marianaes_AR
dc.contributor.authorLarrabide, Ignacioes_AR
dc.contributor.authorOrlando, José Ignacioes_AR
dc.date.accessioned2023-08-02T10:43:56Z
dc.date.available2023-08-02T10:43:56Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.utdt.edu/handle/20.500.13098/11966
dc.identifier.urihttps://doi.org/10.1007/s10548-023-00985-6
dc.description.abstractRadiologists routinely analyze hippocampal asymmetries in magnetic resonance (MR) images as a biomarker for neurodegenerative conditions like epilepsy and Alzheimer’s Disease. However, current clinical tools rely on either subjective evaluations, basic volume measurements, or disease-specific models that fail to capture more complex differences in normal shape. In this paper, we overcome these limitations by introducing NORHA, a novel NORmal Hippocampal Asymmetry deviation index that uses machine learning novelty detection to objectively quantify it from MR scans. NORHA is based on a One-Class Support Vector Machine model learned from a set of morphological features extracted from automatically segmented hippocampi of healthy subjects. Hence, in test time, the model automatically measures how far a new unseen sample falls with respect to the feature space of normal individuals. This avoids biases produced by standard classification models, which require being trained using diseased cases and therefore learning to characterize changes produced only by the ones. We evaluated our new index in multiple clinical use cases using public and private MRI datasets comprising control individuals and subjects with different levels of dementia or epilepsy. The index reported high values for subjects with unilateral atrophies and remained low for controls or individuals with mild or severe symmetric bilateral changes. It also showed high AUC values for discriminating individuals with hippocampal sclerosis, further emphasizing its ability to characterize unilateral abnormalities. Finally, a positive correlation between NORHA and the functional cognitive test CDR-SB was observed, highlighting its promising application as a biomarker for dementia.es_AR
dc.description.sponsorshipLa versión final de este artículo fue publicada el 29 de junio de 2023 en Brain Topography (Springer). Se encuentra accesible desde Biblioteca Di Tella a través de Primoes_AR
dc.format.extent17 p.es_AR
dc.format.mediumapplication/pdfes_AR
dc.languageenges_AR
dc.publisherBrain Topographyes_AR
dc.publisherSpringeres_AR
dc.relation.ispartofEste artículo se encuentra publicado desde el 29 de junio de 2023 en Brain Topography (Springer)es_AR
dc.relation.isversionofNORHA: A NORmal Hippocampal Asymmetry Deviation Index Based on One-Class Novelty Detection and 3D Shape Features. Brain Topogr (2023). https://doi.org/10.1007/s10548-023-00985-6
dc.rightsinfo:eu-repo/semantics/restrictedAccesses_AR
dc.subjectAlzheimer Diseasees_AR
dc.subjectBraines_AR
dc.subjectdiagnostic imaginges_AR
dc.titleNORHA: A NORmal Hippocampal Asymmetry Deviation Index Based on One-Class Novelty Detection and 3D Shape Featureses_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.subject.keywordNovelty detectiones_AR
dc.subject.keywordMachine learninges_AR
dc.subject.keywordHippocampuses_AR
dc.subject.keywordNormal asymmetrieses_AR
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_AR


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem