dc.rights.license | http://rightsstatements.org/page/InC/1.0/?language=es | es_AR |
dc.contributor.author | Ernst, Erik | es_AR |
dc.contributor.author | Gálvez, Ramiro | es_AR |
dc.contributor.author | Gravano, Agustín | es_AR |
dc.date.accessioned | 2024-11-21T01:52:36Z | |
dc.date.available | 2024-11-21T01:52:36Z | |
dc.date.issued | 2024-11 | |
dc.identifier.uri | https://repositorio.utdt.edu/handle/20.500.13098/13150 | |
dc.identifier.uri | https://www.utdt.edu/ia/integrantes/agravano/entrainment-metrics.php?l=en | |
dc.description.abstract | Speech entrainment, particularly acoustic-prosodic (a/p) entrainment,
has gained significant interest in recent years for its implications
on social interaction and dialogue systems. However, measuring
a/p entrainment is challenging, mainly due to the scarce consensus on
its characterization, and the lack of software libraries readily available
to non-expert programmers. This paper presents Entrainment-Metrics,
an open-source Python toolkit for quantifying a/p entrainment in spoken
dialogue. It allows users to quantify different characterizations of
a/p entrainment, measure its occurrence along different a/p features,
and choose between different measurement strategies. The toolkit was
designed for researchers and practitioners from a wide range of fields,
with no need for a strong computational background, who are interested
in studying a/p entrainment and its relation to other phenomena. This
paper provides a concise introduction to using Entrainment-Metrics and
presents an illustrative empirical study that highlights its capabilities. | es_AR |
dc.description.sponsorship | Este documento fue presentado IBERAMIA 2024. 18th Ibero-American Conference on Artificial Intelligence, en los días 13 al 15 de noviembre del año 2024 /// | es_AR |
dc.description.sponsorship | Puede accederse a la Biblioteca Python en el segundo link en este registro | es_AR |
dc.format.extent | pp.421-432 | es_AR |
dc.format.medium | application/pdf | es_AR |
dc.language | eng | es_AR |
dc.publisher | IBERAMIA 2024. 18th Ibero-American Conference on Artificial Intelligence | es_AR |
dc.relation.ispartof | IBERAMIA 2024. 18th Ibero-American Conference on Artificial Intelligence | es_AR |
dc.rights | info:eu-repo/semantics/restrictedAccess | es_AR |
dc.subject | Discurso | es_AR |
dc.subject | Lingüística | es_AR |
dc.subject | Linguistics | es_AR |
dc.subject | Speeches | es_AR |
dc.subject | Lenguaje de programación | es_AR |
dc.subject | Computer language | es_AR |
dc.subject | Lingüística informática | es_AR |
dc.subject | Computational linguistics | es_AR |
dc.title | Entrainment-Metrics: An Open-Source Toolkit for Quantifying Acoustic-Prosodic Entrainment in Spoken Dialogue | es_AR |
dc.type | info:eu-repo/semantics/conferenceObject | es_AR |
dc.subject.keyword | Entrainment-Metrics | es_AR |
dc.subject.keyword | Prosodia | es_AR |
dc.subject.keyword | Prosody | es_AR |
dc.subject.keyword | Acoustics | es_AR |
dc.subject.keyword | Synchrony | es_AR |
dc.subject.keyword | Convergence | es_AR |
dc.subject.keyword | Convergencia | es_AR |
dc.subject.keyword | Proximity | es_AR |
dc.subject.keyword | Python library | es_AR |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_AR |