Level Sets Semimetrics for Probability Measures with Applications in Hypothesis Testing
Metadatos:
Mostrar el registro completo del ítemAutor/es:
Martos Venturini, Gabriel
Muñoz, Alberto
González, Javier
Fecha:
2023Resumen
In this paper we introduce a novel family of level sets semimetrics for density functions and
address subtleties entailed in the estimation and computation of such semimetrics. Given data
drawn from f and q, two unknown density functions, we consider different level set semimetrics
so to test the null hypothesis H0 ∶ f = q. The performance of such testing procedure is show-
cased in a Monte Carlo simulation study. Using the methods developed in the paper, we assess
differences in gene expression profiles between two groups of patients with different respiratory
recovery patterns in a clinical study; and find significant differences between the 15 top–ranked
genes density profiles corresponding to the two groups
Este documento se encuentra publicado en Methodology and Computing in Applied Probability (2023) 25:21//Por motivos relacionados con los derechos de autor este documento solo puede ser consultado en la Biblioteca Di Tella. Para reservar una cita podés ponerte en contacto con repositorio@utdt.edu.
URI:
https://repositorio.utdt.edu/handle/20.500.13098/12152https://doi.org/10.1007/s11009-023-09990-5