Mostrar el registro sencillo del ítem

dc.rights.licensehttps://creativecommons.org/licenses/by-sa/2.5/ar/es_AR
dc.contributor.authorF Richard Guoes_AR
dc.contributor.authorEmilija Perkovićes_AR
dc.contributor.authorAndrea Rotnitzkyes_AR
dc.date.accessioned2023-09-04T22:29:23Z
dc.date.available2023-09-04T22:29:23Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.utdt.edu/handle/20.500.13098/12020
dc.identifier.urihttps://doi.org/10.1093/biomet/asac062
dc.description.abstractWe study efficient estimation of an interventional mean associated with a point exposure treatment under a causal graphical model represented by a directed acyclic graph without hidden variables. Under such a model, a subset of the variables may be uninformative, in that failure to measure them neither precludes identification of the interventional mean nor changes the semiparametric variance bound for regular estimators of it. We develop a set of graphical criteria that are sound and complete for eliminating all the uninformative variables, so that the cost of measuring them can be saved without sacrificing estimation efficiency, which could be useful when designing a planned observational or randomized study. Further, we construct a reduced directed acyclic graph on the set of informative variables only. We show that the interventional mean is identified from the marginal law by the g-formula (Robins, 1986) associated with the reduced graph, and the semiparametric variance bounds for estimating the interventional mean under the original and the reduced graphical model agree. The g-formula is an irreducible, efficient identifying formula in the sense that the nonparametric estimator of the formula, under regularity conditions, is asymptotically efficient under the original causal graphical model, and no formula with this property exists that depends only on a strict subset of the variables.es_AR
dc.description.sponsorshipEste artículo se encuentra publicado en Biometrika, Volume 110, Issue 3, September 2023, Pages 739–761,
dc.format.extentPp.739–761es_AR
dc.format.mediumapplication/pdfes_AR
dc.languageenges_AR
dc.publisherBiometrikaes_AR
dc.publisherOxford University Presses_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.subjectAverage treatment effectes_AR
dc.subjectBayesian networkes_AR
dc.subjectConditional independencees_AR
dc.subjectDirected acyclic graphes_AR
dc.subjectGraphical modeles_AR
dc.subjectLatent projectiones_AR
dc.subjectMarginalizationes_AR
dc.subjectSemiparametric efficiencyes_AR
dc.titleVariable elimination, graph reduction and the efficient g-formulaes_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_AR


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem