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SUMMARY

We study efficient estimation of an interventional mean associated with a point exposure
treatment under a causal graphical model represented by a directed acyclic graph without
hidden variables. Under such a model, a subset of the variables may be uninformative, in
that failure to measure them neither precludes identification of the interventional mean
nor changes the semiparametric variance bound for regular estimators of it. We develop a
set of graphical criteria that are sound and complete for eliminating all the uninformative
variables, so that the cost of measuring them can be saved without sacrificing estimation effi-
ciency, which could be useful when designing a planned observational or randomized study.
Further, we construct a reduced directed acyclic graph on the set of informative variables
only. We show that the interventional mean is identified from the marginal law by the g-
formula (Robins, 1986) associated with the reduced graph, and the semiparametric variance
bounds for estimating the interventional mean under the original and the reduced graphical
model agree. The g-formula is an irreducible, efficient identifying formula in the sense that
the nonparametric estimator of the formula, under regularity conditions, is asymptotically
efficient under the original causal graphical model, and no formula with this property exists
that depends only on a strict subset of the variables.

Some key words: Average treatment effect; Bayesian network; Conditional independence; Directed acyclic graph;
Graphical model; Latent projection; Marginalization; Semiparametric efficiency.

1. Introduction

This paper contributes to a growing literature on efficient estimation of causal
effects under causal graphical models (Rotnitzky & Smucler, 2020; Witte et al., 2020;
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This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://
creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/110/3/739/6833014 by U
niversidad Torcuato D

i Tella user on 04 Septem
ber 2023

https://orcid.org/0000-0002-2081-7398


740 F. R. Guo, E. Perković AND A. Rotnitzky

Smucler et al., 2021; Bhattacharya et al., 2022; Guo & Perković, 2022; Henckel et al., 2022;
Kuipers & Moffa, 2022). We consider estimating the interventional mean of an outcome
associated with a point exposure treatment when a nonparametric causal graphical model,
represented by a directed acyclic graph, is assumed. Such a causal model induces a semi-
parametric model on the factual data law, known as a Bayesian network, which associates
each vertex of the graph with a random variable. Under the Bayesian network model, every
variable is conditionally independent of its non-descendants given its parents in the graph.
Further, under the causal graphical model, the interventional mean is identified by a smooth
functional of the factual data law given by the g-formula (Robins, 1986). This functional is
the mean of the outcome taken with respect to a truncated law which agrees with the fac-
tual law, except that the probability of treatment given its parents in the graph is replaced by
a point mass at the intervened level of the treatment. The semiparametric variance bound
for this functional under the induced Bayesian network model gives the lowest benchmark
for the asymptotic variance of any regular estimator of the functional, and thus it quan-
tifies the efficiency with which, under regularity conditions, one can hope to estimate the
interventional mean under the model without imposing additional assumptions.

Rotnitzky & Smucler (2020) identified a class of directed acyclic graphs under which the
semiparametric variance bound for the interventional mean is equal to the variance bound
under a simpler causal graphical model, which is a directed acyclic graph consisting of the
treatment, the outcome and a special set of covariates known as the optimal adjustment set
(Henckel et al., 2022). This implies that all the remaining variables in the original graph are
uninformative, in that failure to measure them has no impact on the efficiency with which
one can hope to estimate the interventional mean. However, Rotnitzky & Smucler (2020)
left unanswered the question of identifying uninformative variables in an arbitrary directed
acyclic graph that does not belong to their special class. We aim to answer this question in
the present paper.

We prove theoretical results that can guide practitioners in the design and analysis of
an observational or sequentially randomized study. First, at the stage of designing a study,
our work informs the designer which variables should be measured for optimally estimating
the effect of interest. Designers of a study often employ directed acyclic graphs to incor-
porate substantive causal assumptions, including hypotheses on potential confounders and
causal paths (Hernán & Robins, 2020, § 6). Our Theorem 1 provides a graphical criterion
that allows the designer to read off from the graph the set of informative variables, which is
the minimal set of variables to measure that permits estimation of the effect of interest with
maximumefficiency. This is useful because the cost associatedwithmeasuring uninformative
variables can be saved.

Second, for analysing a study, our Algorithm 1 produces a reduced graph that assists
the data analyst in constructing an efficient estimator of the effect of interest. The reduced
graph is a directed acyclic graph that contains only informative variables. As formalized in
Theorem 2, the reduced graph encodes all the modelling constraints required for optimally
estimating the effect. In fact, among all the possible ways of identifying the effect from data,
we show that the g-formula associatedwith the reduced graph is themost efficient. This leads
to the development of efficient estimators that involve the smallest number of variables and,
presumably, the fewest nuisance parameters. Even when such an estimator is considerably
simpler than an efficient estimator constructed using the full graph and full data, there is
no loss in performance; see the Supplementary Material for a simulation example. Finally,
the whole process of variable elimination, graph reduction and derivation of the associated
g-formula is automated by our R (R Development Core Team, 2023) package reduceDAG.
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Fig. 1. Causal graphs involved in the motivating example: (a) the original graph G, where variables {I1,W1,W4}
are uninformative, among which {I1,W1} are redundant; (b) the graph G ′ obtained by projecting out the redun-
dant variables {I1,W1} from G; (c) the reduced graph G∗ that projects out all the uninformative variables using
Algorithm 1; (d) the latent projection (Verma & Pearl, 1990) of G that marginalizes over {I1,W1,W4}, where a
bidirected edge between A and O is introduced due to confounder W4; (e) the graph Ǧ that is causal Markov

equivalent to G, from which {I1,W1} can be identified as redundant and hence uninformative.

2. Motivation

To motivate the development in this paper, consider the causal agnostic graphical model
(Spirtes et al., 2000; Robins & Richardson, 2010) represented by graph G in Fig. 1(a).
Suppose that Y is an outcome and A is a discrete treatment whose causal effect on Y we are
interested in estimating. The causal model implies the Bayesian network model on the fac-
tual data, denoted by M(G,V), for the law of V = {A,Y , I1,O1,W1,W2,W3,W4}, which
is defined by the sole restriction that the joint density of V with respect to some dominating
measure factorizes as

p(v) = p(y | a, o1) p(a | i1) p(i1 | w4) p(o1 | w4) p(w4 | w2,w3) p(w3) p(w2 | w1) p(w1).

Each factor is either a marginal density if Vj has no parent in G, or a conditional density
of the form p{vj | Pa(vj,G)}, where Pa(vj,G) denotes the set of parents of Vj in G. These
densities are unrestricted under model M(G,V) and they parameterize the model.

If p(a | i1) > 0 for all i1 in the range of I1, the causal graphical model also implies that
the joint density of the variables in the graph, when A is intervened and set to a, is

pa(v) = Ja(v) p(y | a, o1) p(i1 | w4) p(o1 | w4) p(w4 | w2,w3) p(w3) p(w2 | w1) p(w1),

where Ja(v) is the indicator function of the A component of V being equal to a when V
takes value v. In particular, the mean of the outcome when A is intervened and set to a,
which we refer to throughout as the interventional mean and denote by EY(a), is

�a(P;G) ≡
∑

y, o, i,w1,w2,w3,w4

y p(y | a, o1) p(i1 | w4) p(o1 | w4) p(w4 | w2,w3) p(w3)

× p(w2 | w1) p(w1) (1)

if all the components of V are discrete; otherwise �a(P;G) is defined with the summation
replaced by an integral with respect to the dominating measure. We call (1) the g-formula
associated with graph G (Robins, 1986).
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Our goal is to determine the variables in vector V that can be disposed of without affect-
ing the asymptotic efficiency with which we can hope to estimate �a(P;G). With this goal in
mind, we first observe that the term p(i1 | w4) can be summed out from the right-hand side
of (1), because i1 does not appear in the conditioning set of any other conditional densities.
Writing p(w2 | w1) p(w1) = p(w1,w2), observe that we can sum out w1 from (1) as well. We
then conclude that �a(P;G) is equal to

∑
y, o1,w2,w3,w4

y p(y | a, o1) p(o1 | w4) p(w4 | w2,w3) p(w2) p(w3). (2)

Next, we notice that because both p(w2 | w1) and p(w1) are unrestricted under model
M(G,V), so is p(w2). In fact, all the densities that remain in (2) are also unconstrained
under the model. Because the data on {I1,W1} do not help us estimate these densities, we
conclude that we can discard {I1,W1}without affecting the efficiency in estimating�a(P;G).
We recognize that expression (2) is precisely the g-formula �a(P′;G′), where G′ is the graph
in Fig. 1(b) and P′ is the marginal law of V ′ ≡ V \{I1,W1}. Moreover, under bothM(G,V)

andM(G′,V ′), the densities in (2) are unrestricted. Hence, as far as the efficient estimation
of �a(P;G) is concerned, we can ignore {I1,W1} and pretend that our problem is to esti-
mate the g-formula �a(P′;G′) based on a random sample of V ′, under the assumption that
P′ belongs to M(G′,V ′).

In § 3.3, we will review the notion of causal Markov equivalent graphs with respect to
the effect of A on Y . These are graphs that encode the same Bayesian network model and
whose associated g-formulae coincide under the model. For instance, graphs G and Ǧ in
Fig. 1 are causalMarkov equivalent.We will show that a variable for which there exists some
causal Markov equivalent graph in which all directed paths towards Y intersect A, such as
I1 in our example, is uninformative for estimating �a(P;G). Similarly, a variable that is non-
ancestral to Y in some causal Markov equivalent graph, such asW1 in our example, is also
uninformative. We refer to these two types of variables as redundant.

Further, by traversing graphs in the causal Markov equivalent class, one can see that
{I1,W1} are the only redundant variables. One might believe that all variables in V ′ are
needed to construct an asymptotically efficient estimator of �a(P;G). For instance, suppose
V is discrete. Consider the maximum likelihood estimator �a(P̂

′
n;G′) with

P̂
′
n(a, y, o1,w4,w3,w2) ≡ Pn(y | a, o1)Pn(a | w4)Pn(w4 | w2,w3)

× Pn(o1 | w4)Pn(w2)Pn(w3),

where Pn(· | ·) and Pn(·) denote, respectively, the empirical conditional and marginal prob-
ability operators. Law P̂

′
n is the maximum likelihood estimator for P′ under M(G′,V ′).

Clearly, one needs every variable in V ′ to compute this estimator.
Surprisingly, in § 5 we will show that even without using the data on W4, we can con-

struct an estimator with the same limiting distribution as themaximum likelihood estimator.
Specifically, let P∗ denote the marginal law of V∗ ≡ V ′ \ {W4} for V ′ ∼ P′, and let G∗ be
the graph over V∗ shown in Fig. 1(c). We will show that the maximum likelihood estimator
of the g-formula

�a(P∗;G∗) ≡
∑

y, o1,w2,w3

y p(y | a, o1) p(o1 | w2,w3) p(w2) p(w3) (3)
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with respect to the Bayesian network model represented by G∗ is asymptotically equivalent
to the aforementioned �a(P̂

′
n;G′) under every law P′ in model M(G′,V ′). The estimator

based on (3) does not require measuring W4. This result can be useful even when W4 is
already measured, but incorporating it into estimation is difficult, for example whenW4 is
continuous while all the other variables are discrete. In such cases, using the maximum like-
lihood estimate of (3) circumvents estimating p(w4 | w2,w3) and p(o | w4), which typically
requires smoothing.

More generally, we will show that (i) when Bayesian networks are defined on a sufficiently
large state space, graph G∗ represents the marginal model of the law P∗ over V∗ induced by
M(G′,V ′) or, equivalently, by the original M(G,V); (ii) �a(P∗;G∗) = �a(P;G) for every
P ∈ M(G;V) under a positivity condition introduced in § 3.3; (iii) the semiparametric vari-
ance bound for �a(P∗;G∗) with respect to M(G∗,V∗) and the bound for �a(P;G) with
respect to M(G,V) coincide. Therefore, for estimating the interventional mean, not only is
W4 asymptotically uninformative but, moreover, we can discard G and pretend that it is the
graph G∗ that we started with. The same can be said for estimating the average treatment
effect, e.g., EY(1)−EY(0) whenA is binary. Also, G∗ is different from the latent projection
(Verma & Pearl, 1990) of G onto V∗, which introduces bidirected edges when a confounder
is marginalized over; compare Fig. 1(c) and (d).

Conceptually, the preceding results can be interpreted as follows. It is well known that
the Bayesian network M(G,V) is the set of laws that obey the conditional independencies
implied by d-separations with respect to G. Our results imply that estimating�a(P;G) under
a supermodel M̄, which is specified by those conditional independencies in M(G,V) that
do not involve variables {I1,W1,W4}, is no more difficult than estimating it underM(G,V).
In other words, M(G,V) is a least favourable submodel of M̄ (van der Vaart, 2000, § 25.3)
in the sense that the extra constraints it encodes are uninformative for the target parameter.

Furthermore, in § 4 we show that no variable can be further eliminated from V∗ without
impairing efficiency at some law inM(G,V). It can then be argued that the g-formula asso-
ciated with G∗, such as (3), is an irreducible, efficient identifying formula for �a(P;G). In
particular, this implies that when all components of V are discrete, the plug-in estimator of
any other identifying formula either depends on a strict superset of V∗, as is the case with
(2), or has an asymptotic variance strictly greater than the Cramér–Rao bound under some
law in M(G,V). As an example of the latter, consider the class of adjustment formulae

�ADJ
a,L (P;G) ≡

∑
y, l

y p(y | a,L = l) p(l), (4)

which agrees with �a(P;G) in M(G,V), where L is any set of variables non-descendant
to A that blocks all the back-door paths between A and Y in G (Pearl, 1993), e.g., L =
{O1}, L = {I1}, L = {W4} or L = {I1,W4}. These formulae lead to inefficient estimators
�ADJ
a,L (Pn;G) when plugging in the empirical measure, as is confirmed by simulations in the

Supplementary Material.

3. Technical background

3.1. Relation to optimal adjustment

Our problem is different from optimal adjustment. Our efficiency bound is defined
relative to all regular, asymptotically linear estimators of �a(P;G) under the Bayesian
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network model M(G,V). In contrast, the literature on optimal adjustment (e.g., Kuroki
& Miyakawa, 2003; Hahn, 2004; Rotnitzky & Smucler, 2020; Henckel et al., 2022) restricts
the class of estimators to those that estimate the nonparametric target (4) without impos-
ing any conditional independence restrictions, and seeks one with the maximum efficiency
within the class, which is called the optimal adjustment estimator. By definition, the asymp-
totic variance bound we consider is less than or equal to the asymptotic variance of the
optimal adjustment estimator. For cases where the optimal adjustment estimator does not
achieve the asymptotic variance bound we consider, see our motivating example in Fig. 1
and Examples 3 to 5 in § 6

As mentioned in the introduction, under a Bayesian network model there are certain
graphs, characterized by Rotnitzky & Smucler (2020, Theorem 19), where the optimal
adjustment estimator achieves the asymptotic variance bound considered here. In this paper
we study general graphs beyond these cases.

3.2. Bayesian network, directed acyclic graph and vertex sets

For technical reasons that will be explained shortly, we define a Bayesian network model
on a larger state space than typically required. For every random variable Vj ∈ V , let its
state space be

Xj = R
dj ∪̇W, dj � 1, W = {ω1,ω2, . . . }, (5)

where ∪̇ denotes a disjoint union and the setW is a collection of symbols isomorphic to the
natural numbers. That is, the state spaceXj allowsVj to be potentially Euclidean or discrete,
or a mixed type of both, prior to observing the data on Vj. In the Supplementary Material,
measure μj and σ -algebra Fj for every Vj are defined accordingly. The Bayesian network
model is the set of probability measures on (X ≡ ×j:Vj∈VXj, F ≡ ×j:Vj∈VFj) that factorize
according to the graph, i.e.,

M(G,V) ≡
{
P :

dP
dμ

(v) ≡ p(v) =
∏

j:Vj∈V
p{vj | Pa(vj,G)}

}
, (6)

where the density p is taken with respect to the dominating measure μ ≡ ×j:Vj∈Vμj. The
symbol Pa(vj,G) denotes the value taken by the set of parents of Vj with respect to G
when V = v. By the equivalence between factorization and the global Markov property,
M(G,V) coincides with the set of laws that obey the conditional independences implied
by d-separations with respect to G; in addition, M(G,V) is the set of laws that satisfy the
local Markov property, namely that a variable is independent of its non-descendants given
its parents; see, e.g., Lauritzen (1996, Theorem 3.27). We also refer toM(G,V) as the model
represented by G.

Remark 1. We introduce (5) to ensure that the state space of every variable is sufficiently
large so that it is essentially no different from an unconstrained state space. Consequently,
the notion of an induced marginal model in the rest of the paper aligns with the notion of
a marginal model typically used in the literature, where the state space of the marginalized
variables is unspecified or unrestricted; see, e.g., Evans (2016, Definition 6). Following the
discussion in Cencov (1982, § 2.11), a sufficiently large state space can be ensured if each
Xj contains at least an interval of the real line. We impose this technical requirement on the
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state space to rule out undesired, e.g., reduced-rank, constraints on the induced model when
marginalizing out a variable with a finite or small state space (Mond et al., 2003).

Remark 2. The definition above by no means precludes discrete distributions that only
put mass on vectors consisting of symbols in W. In fact, when the data are discrete, the
maximum likelihood estimate is well-defined and coincides with the maximum likelihood
estimate under the commonly used model with Xj = W for every Vj ∈ V . For techni-
cal reasons, model M(G,V) considered here is larger than the commonly used Bayesian
network model, but the difference is inconsequential in terms of data analysis.

Throughout, we use upper-case letters to denote the vertices of a graph or the random
variables they represent. Lower-case letters are reserved for indices or values taken by
random variables. We use standard notation for graphical models, summarized in the Sup-
plementary Material. Among others we say that path p from V1 to Vk is causal if it is of the
form V1 → · · · → Vk. The notation Vi 	→ Vj is shorthand for Vi ∈ An(Vj).

For disjoint sets A, B and C, we use A⊥⊥B | C to denote conditional independence
between A and B given C under a given law, and we use A⊥⊥G B | C to denote d-separation
between A and B given C in graph G. For d-separation, we allow A∩C |= ∅ and B∩C |= ∅,
in which case A⊥⊥G B | C is interpreted as A \C⊥⊥G B \C | C. We also use the convention
that ∅ ⊥⊥G B | C for any sets B and C. Conditional independence and d-separation share
similar properties: the former satisfies semi-graphoid axioms, while the latter satisfies the
stronger compositional graphoid axioms; see Pearl (1988, Theorems 1 and 11).

Two directed acyclic graphs G and G′ on the same vertex set V are said to be Markov
equivalent if M(G,V) = M(G′,V). It is well known that two graphs areMarkov equivalent
if and only if they share the same adjacencies and unshielded colliders (Verma&Pearl, 1990;
Andersson et al., 1997). Further, a Markov equivalence class can be graphically represented
by a completed partially directed acyclic graph, also known as an essential graph (Meek,
1995; Andersson et al., 1997).

Assumption 1. In the directed acyclic graph G, A 	→ Y .

We make this assumption throughout; otherwise the model already assumes that A has
no effect on Y . As we will see, the information carried by a variable depends crucially on its
ancestral relations with respect to the treatment A and outcome Y . To ease the exposition,
we introduce the following taxonomy of vertices, which is illustrated in Fig. 2(a).

(i) Non-ancestors of Y : N(G) ≡ V \ An(Y ,G).
(ii) Indirect ancestors of Y : I(G) ≡ {Vj ∈ V : Vj |= A, Vj 	→ Y only through A}. These

are also conditional instruments given Pa(I ,G) \ I (Didelez & Sheehan, 2007).
(iii) Baseline covariates: non-descendants of A, but ancestors of Y not only through A,

i.e.,

W(G) ≡ {Vj ∈ V : A 
 	→ Vj, Vj 	→ Y , Vj /∈ I(G)}. (7)

In contrast to I(G), for eachWj ∈ W(G) there is a causal path fromWj to Y that does
not contain A.

(iv) Mediators: M(G) ≡ {Vj ∈ V : Vj |= A, A 	→ Vj 	→ Y}. These are the variables that
lie on the causal paths between A and Y . With a slight abuse of the term mediators,
the setM(G) also contains Y .

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/110/3/739/6833014 by U
niversidad Torcuato D

i Tella user on 04 Septem
ber 2023

https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asac062#supplementary-data
https://academic.oup.com/biomet/article-lookup/doi/10.1093/biomet/asac062#supplementary-data


746 F. R. Guo, E. Perković AND A. Rotnitzky

A M 1 M 2 YI 2

O1 N 1

I 1 O3 M 3

O4

W 1 O2

(a)

A M Y

O

(b)

Fig. 2. (a) An illustration of the taxonomy of vertices: A is the treatment and Y is the outcome; the vertex
N = {N1} is non-ancestral to Y ; the set I = {I1, I2} consists of indirect ancestors of Y , which are conditional
instruments given {W1,O1}. We have W = {W1,O1,O2,O3,O4}, of which the subset O = {O1,O2,O3,O4} is
the optimal adjustment set; further, Omin = {O1,O2,O3}. Finally,M = {M1,M2,M3,Y} is the set of mediators.
(b) An example with multiple identifying formulae: the g-formula (11), the back-door formula (12) and the

front-door formula (13).

It follows that the set of variables is partitioned asV = {A} ∪̇N(G) ∪̇ I(G) ∪̇W(G) ∪̇M(G).
The following subset of W is also important: the optimal adjustment set (Henckel et al.,
2022)

O(G) ≡ Pa{M(G),G} \ {M(G) ∪ {A}}. (8)

The set O(G) consists of the parents of mediators that are not themselves mediators or the
treatment; see Witte et al. (2020) for other characterizations. By definition it can be empty.
The set of baseline covariates W(G) is related to its subset O(G) by the following lemma;
further properties of O(G) can be found in the next subsection.

LEMMA 1. Under Assumption 1, W(G) = An{O(G),G}.
We also define the following subset of O(G) that will be useful later:

Omin(G) ≡ the inclusion minimal O′ ⊆ O(G) such that A⊥⊥G O(G) \O′ | O′.

The intersection property of d-separation ensures that Omin(G) is uniquely defined; see
Rotnitzky & Smucler (2020, Lemma 7, Appendix).

3.3. Causal graphical model and the g-formula

Throughout, we assume a causal agnostic graphical model (Spirtes et al., 2000; Robins &
Richardson, 2010) represented by a directed acyclic graph G on a vertex set V , where A ∈ V
is a discrete treatment and Y ∈ V is the outcome of interest. We also impose Assumption 1
on G. The causal model implies that the law P of the factual variables V belongs to the
Bayesian network model M(G,V) defined in (6).

Under Assumption 2 introduced below, the causal graphical model further posits that
when A is intervened and set to level a, the density of the variables in the graph is

pa (v) ≡ Ja(v)
∏

Vj∈V\{A}
p{vj | Pa(vj,G)}, (9)

where Ja(v) is the indicator of theA component of V being equal to awhenV = v. The right-
hand side of (9) is known as the g-formula (Robins, 1986), the manipulated distribution
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formula (Spirtes et al., 2000) or the truncated factorization formula (Pearl, 2000). Our target
of inference, the interventional mean, which we denote by EY(a), is therefore

�a(P;G) ≡
∑

y, vj :Vj∈V\{A,Y}
y

∏
j:Vj∈V\{A}

p{vj | Pa(vj,G)|A=a} (10)

if all components of V are discrete; otherwise, �a(P;G) is defined with the summation
replaced by an integral with respect to the dominating measure μ; see also (6). The sym-
bol Pa(vj,G)|A=a indicates that if A ∈ Pa(Vj,G), then the value taken by A when Vj = vj is
set to a. We refer to �a(· ;G) : M(G,V) → R as the g-functional.

Assumption 2 (Positivity). There exists ε > 0, which can depend on P, such that the
conditional probability P{A = a | Pa(A,G)} > ε P-almost surely.

By the local Markov property, this assumption implies P(A = a | L) > ε P-almost surely
for every L ⊂ V that is non-descendant to A.

For the rest of this paper,M0(V) denotes the set of all laws over V restricted only by the
inequality in Assumption 2. Accordingly, a Bayesian network M(G;V) should be under-
stood as the intersection of the original definition (6) with such an M0(V). We impose
Assumption 2 because otherwise the semiparametric variance bound for the g-functional is
undefined.

DEFINITION 1 (Identifying formula). Fix a model M(V) ⊆ M0(V) and a functional
γ (P) : M(V) → R. The functional χ(P) : M0(V) → R is an identifying formula for γ (P) if
χ(P) = γ (P) for every P ∈ M(V).

By the definition above, the natural extension �a(P;G) : M0(V) → R according to (10),
called the g-formula associated with graph G, is an identifying formula for the g-functional.
However, because of conditional independences in a Bayesian network, one can typically
derive more than one identifying formula. As mentioned in § 2, the adjustment �ADJ

a,L (P;G)

given in (4) based on a valid choice of L is also an identifying formula for �a(P;G). In
particular, with discrete data, choosing L = O(G) for estimator �ADJ

a,L (Pn) leads to the opti-
mal adjustment, which achieves the smallest asymptotic variance among all valid choices
of L (Rotnitzky & Smucler, 2020); further, this choice is also optimal under the subclass of
linear causal graphical models (Henckel et al., 2022). Here is another example of multiple
identifying formulae.

Example 1. Consider graph G in Fig. 2(b). The g-functional associated with G is

�a(P;G) =
∑
y,m, o

y p(y | m, o) p(m | a) p(o). (11)

Under M(G,V), it agrees with the adjustment or back-door formula �ADJ
a,O (· ;G) :

M0(V) → R,

�ADJ
a,O (P;G) =

∑
y, o

y p(y | a, o) p(o), (12)
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and with the front-door formula (Pearl, 1995a) �FRONT
a (· ;G) : M0(V) → R,

�FRONT
a (P;G) =

∑
y,m

y p(m | a)
∑
a′
p(y | a′,m) p(a′). (13)

The notion of Markov equivalence is not directly applicable to our problem, as two
Markov equivalent graphs may not admit the same identifying formula for the g-functional.
This issue is fixed by the following refinement of Markov equivalence.

DEFINITION 2 (Causal Markov equivalence). Two graphs G and G′ are causal Markov
equivalent with respect to the effect of A on Y, denoted by G c∼G′, if G and G′ are Markov
equivalent and �a(P;G) = �a(P;G′) for all P ∈ M(G,V).

Guo&Perković (2021) showed that a causalMarkov equivalence class can be represented
by a maximally oriented partially directed acyclic graph and provided a polynomial-time
algorithm to find the representation. In our context, where |A| = |Y | = 1, the following is
an alternative characterization.

PROPOSITION 1. Let G and G′ be two directed acyclic graphs on a vertex set V, which con-
tains the treatment A and outcome Y. Suppose G and G′ satisfy Assumption 1. Graphs G and
G′ are causal Markov equivalent with respect to the effect of A on Y if and only if they are
Markov equivalent and share the same optimal adjustment set defined in (8).

For example, graphs G and Ǧ in Fig. 1 are causal Markov equivalent.

3.4. Efficient influence function, uninformative variables and efficient identifying formulae

Wenow review the elements of semiparametric theory that are relevant to our derivations.
An estimator γ̂ of a functional γ (P) based on n independent observations V (1), . . . ,V (n)

drawn fromP is said to be asymptotically linear atP if there exists a random variable γ 1
P(V),

called the influence function of γ̂ at P, such that EP γ 1
P(V) = 0, varP γ 1

P(V) < ∞ and
n1/2{γ̂ − γ (P)} = n−1/2 ∑n

i=1 γ 1
P(V (i)) + op(1) as n → ∞. For each asymptotically linear

estimator γ̂ , there exists a unique such γ 1
P(V). It follows that n1/2{γ̂ − γ (P)} converges in

distribution to a zero-mean normal distribution with variance varP γ 1
P(V).

Given a collection of probability lawsM(V) over V , an estimator γ̂ of γ (P) is said to be
regular at P if its convergence to γ (P) is locally uniform at P inM(V). It is known that for
a regular, i.e., pathwise-differentiable, functional γ , there exists a random variable, denoted
by γ 1

P, eff(V) and called the efficient influence function of γ at P with respect to M(V),
such that given any regular asymptotically linear estimator γ̂ of γ with influence function
γ 1
P(V), we have varP γ 1

P(V) � varP γ 1
P, eff(V). If equality holds, then the estimator γ̂ is said

to be locally semiparametric efficient at P with respect to model M(V). Further, it is said
to be globally efficient if the equality holds for all P in M(V). When M(V) is taken to
be the nonparametric model M0(V), all regular asymptotically linear estimators have the
same influence function, which therefore coincides with the efficient influence function with
respect toM0(V). For ease of reference, we call it the nonparametric influence function and
denote it by γ 1

P, NP(V). For more details, see van der Vaart (2000, Ch. 25).
To define what it means for a variable to be uninformative, we need the next result. For a

law P over V and V ′ ⊆ V , let P(V ′) denote the marginal law over V ′. Similarly, for model
M(V) orM(G,V), we useM(V ′) orM(G,V ′) to denote the induced marginal model over
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V ′, i.e., M(V ′) ≡ {P(V ′) : P ∈ M(V)} or M(G,V ′) ≡ {P(V ′) : P ∈ M(G,V)}; see also
Remark 1.

LEMMA 2 (Rotnitzky & Smucler, 2020, Proposition 17). Let M(V) be a semipara-
metric model for the law of a random vector V. Suppose that V ′ is a subvector of V. Let
M(V ′) be the induced marginal model over V ′.
Suppose that γ : M(V) → R is a regular functional with efficient influence function at

P equal to γ 1
P, eff(V). Suppose there exists a regular functional χ : M(V ′) → R such that

γ (P) = χ(P′) for every P ∈ M(V) and P′ ≡ P(V ′). Suppose, furthermore, that γ 1
P, eff(V)

depends on V only through V ′. Let χ1
P′,eff(V

′) be the efficient influence function of χ(P′) in
model M(V ′) at P′. Then, for every law P ∈ M(V) over V and its corresponding marginal
law P′ ∈ M(V ′) over V ′, γ 1

P, eff(V) and χ1
P′, eff(V

′), as functions of V and V ′, respectively,
are identical P-almost everywhere.

This result tells us that to efficiently estimate γ (P) under model M(V), we can discard
the data on V \ V ′ and recast the problem as one of efficiently estimating the functional
χ(P′) under model M(V ′). This leads us to make the following two definitions.

DEFINITION 3 (Uninformative variables). Given a model M(V) for law P over V, we
say that a subset of variables U ⊆ V is uninformative for estimating a regular functional γ (P)

underM(V) if V ′ = V \U satisfies the assumptions of Lemma 2.

DEFINITION 4 (Irreducible informative variables). Let M(V) be a model for law P
over variables V. The set V∗ ⊆ V is said to be irreducible informative for estimating a regular
functional γ (P) underM(V) if (i)V \V∗ is uninformative and (ii) no proper superset of V \V∗
is uninformative.

LEMMA 3. Suppose thatM(V) is a model for law P over variables V, and let γ : M(V) →
R be a regular functional. Let γ 1

P, eff(V) be the corresponding efficient influence function.
Suppose that V∗ ⊆ V satisfies the following:

(i) γ 1
P, eff(V) depends on V only through V∗ for every P ∈ M(V);

(ii) there exists a functional χ : M(V∗) → R such that χ(P∗) = γ (P) for every P ∈ M(V)

and P∗ ≡ P(V∗);
(iii) for each Vj ∈ V∗, there exists a nondegenerate law Pj ∈ M(V) such that γ 1

Pj , eff
(V) is

not a constant function of Vj with probability 1.

Then V∗ is the unique irreducible informative set.

From § 3.3, in the context of causal graphs, we see that typically there is more than
one identifying formula for the g-functional. Our next two definitions, based on consider-
ations of efficiency and informativeness, help us to compare and choose between different
identifying formulae.

Let us first look at efficiency. As before, let M0(V) be the nonparametric model over V
and let M(V) be a semiparametric submodel. Suppose γ (P) and χ(P) are two identifying
formulae, i.e., regular real-valued functionals defined on M0(V), such that they agree on
M(V). As such, they must have the same efficient influence function with respect toM(V),
i.e., γ 1

P, eff(V) = χ1
P, eff(V) for every P ∈ M(V). Suppose that V is discrete and consider

the plug-in estimators γ (Pn) and χ(Pn), where Pn is the empirical measure. Then γ (Pn)
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and χ(Pn) are regular asymptotically linear with influence functions equal to the nonpara-
metric influence functions γ 1

P, NP(V) and χ1
P, NP(V) for every P ∈ M0(V). Suppose that

γ 1
P, NP(V) = γ 1

P, eff(V) for every P ∈ M(V) but that, in contrast, χ1
P′, NP(V) |= χ1

P′, eff(V)

for some P′ ∈ M(V). Then, in view of the concepts introduced at the beginning of this
subsection, with respect to the semiparametric model M(V), the estimator γ (Pn) is glob-
ally efficient, but χ(Pn) is not. Then, for estimating the functional γ (P) = χ(P) defined on
modelM(V), we say that γ (P) is an efficient identifying formula, but χ(P) is an inefficient
identifying formula. This gives us a concrete way of defining whether an identifying formula
is efficient. Below, we provide a definition for the general case where V need not be discrete.

DEFINITION 5 (Efficient identifying formula). Consider a semiparametric model
M(V) ⊆ M0(V) and a regular functional γ : M(V) → R. Let γ 1

P, eff(V) be its efficient
influence function with respect to M(V). An identifying formula χ : M0(V) → R for the
functional γ is said to be efficient if χ1

P, NP(V) = γ 1
P, eff(V) P-almost everywhere for every

P ∈ M(V).

From (6) and (10), when V is discrete, it is clear that the maximum likelihood estimator
of �a(P;G) is simply the plug-in estimator �a(Pn;G). More generally, we have the following
result for an arbitrary vector V .

LEMMA 4. For graph G satisfying Assumption 1, the g-formula �a(· ;G) : M0(V) → R in
(10) is an efficient identifying formula for the g-functional �a(· ;G) : M(G,V) → R.

As mentioned in § 2, more than one efficient identifying formula may exist for the same
functional, such as the g-formulae associated with G∗ and G in Fig. 1 for our motivating
example. In this case, we argue that the g-formula associated with G∗ should be preferred
over that associated with G, as the former requires measuring fewer variables than the latter.
This motivates our next definition concerning informativeness.

DEFINITION 6 (Irreducible identifying formula). An identifying formula χ :
M0(V) → R for a regular functional γ : M(V) → R is said to be irreducible if there
exists V∗ ⊆ V, which is irreducible informative for estimating γ (P) under M(V), such that
P(V∗) = P′(V∗) implies χ(P) = χ(P′) for every P,P′ ∈ M0(V), i.e., χ(P) depends on P
only through P(V∗).

In what follows, we will first characterize the irreducible informative set V∗ and then
construct the reduced graph G∗ to represent the marginal model over V∗. In particular, our
general result would imply that the g-formula associated with G∗ in Fig. 1 is an identifying
formula that is both efficient and irreducible.

4. Characterizing the uninformative variables

4.1. Efficient influence function

We now specialize the concepts and results from the preceding section to show that for
estimating the g-functional �a(P;G) under the Bayesian network model M(G,V), there
exists a unique set of irreducible informative variables, which we denote by V∗ ≡ V∗(G)

throughout. By Lemma 3, this can be established if we can find V∗ ⊆ V such that
(i) the efficient influence function �1

a,P, eff(V) depends on V only through V∗ for every
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P ∈ M(G,V); (ii)�a(P;G) depends on P ∈ M(G,V) only through theV∗ margin of P; and
(iii) for every Vj ∈ V∗, there exists a nondegenerate law P ∈ M(G,V) such that �1

a,P, eff(V)

depends nontrivially on Vj.
Without loss of generality, here we focus on finding the informative variables for the

g-functional, as opposed to the average treatment effects, which are contrasts or, more
generally, linear combinations of g-functionals that correspond to different treatment levels.
Indeed, as shown in the SupplementaryMaterial, the set of irreducible informative variables
for these effects is identical to V∗(G).

We will perform these tasks by invoking an expression for�1
a,P, eff(V ;G), which is derived

in Rotnitzky & Smucler (2020) and stated in the next lemma. Let Ia(A) be the indicator of A
being equal to a. DefineTa,P ≡ Ia(A)Y/P(A = a | Omin) and ba,P(O) ≡ EP(Y | A = a, O),
where O ≡ O(G) and Omin ≡ Omin(G).

LEMMA 5 (Rotnitzky & Smucler, 2020, Theorem 7). Let G be a directed acyclic graph
on a vertex set V satisfying Assumption 1. Suppose P ∈ M(G,V) and that W(G) =
{W1, . . . ,WJ} and M(G) = {M1, . . . ,MK−1,MK ≡ Y} are as defined in § 3.2. Then the
efficient influence function for estimating �a(P;G) with respect to modelM(G,V) is

�1
a,P, eff(V ;G) =

J∑
j=1

[
E{ba,P(O) | Wj, Pa(Wj,G)} − E{ba,P(O) | Pa(Wj,G)}]

+
K∑
k=1

[
E{Ta,P | Mk, Pa(Mk,G)} − E{Ta,P | Pa(Mk,G)}].

In the rest of this section, we classify the uninformative variables into two types: redun-
dant and nonredundant. The redundant variables are those that can be identified from
causal Markov equivalent graphs. In contrast, identifying the nonredundant, uninforma-
tive variables is less straightforward and sometimes counterintuitive. Nevertheless, we will
develop a set of graphical criteria to characterize them both. The proofs for this section are
given in the Supplementary Material.

4.2. Redundant variables

We start with the following result, which is immediate in view of (10) and Lemma 5.

LEMMA 6. Given G satisfying Assumption 1, N(G) ∪̇ I(G) is uninformative for estimating
�a(P;G) underM(G,V).

By Definition 3, informativeness is a property defined with respect to a model and
a functional. The notion of causal Markov equivalence then leads us to the following
definition.

DEFINITION 7 (Redundant variables). Given a graph G satisfying Assumption 1, the set
of redundant variables in G for estimating �a(P;G) underM(G,V) is

⋃
G′ c∼G

N(G′) ∪ I(G′).
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PROPOSITION 2. GivenG satisfyingAssumption 1, the redundant variables are uninformative
for estimating �a(P;G) underM(G,V).

Revisiting our motivating example on graph G in Fig. 1(a), the redundant variables are
{I1,W1}, which can be summed out from the g-formula; see (2). They can also be identified
from the causal Markov equivalent graph Ǧ shown in Fig. 1(e).

A surprising phenomenon in this example, as indicated earlier in § 2, is thatW4, despite
being nonredundant, is actually uninformative for estimating �a(P;G) under the Bayesian
network model represented by G. To see this, by Lemma 5, observe that �1

a,P,eff(V ;G) could
depend onW4 only through the sum

E{ba,P(O1) | W4, Pa(W4)} + E{ba,P(O1) | O1, Pa(O1)} − E{ba,P(O1) | Pa(O1)}
= E{ba,P(O1) | W4,W2,W3} + ba,P(O1) − E{ba,P(O1) | W4}.

However,modelM(G,V) impliesO1 ⊥⊥W2,W3 | W4, so the sum reduces to ba,P(O1), which
does not depend onW4. In addition, under the model, �a(P;G) coincides with �ADJ

a,O1
(P;G),

which depends on P only through the marginal law P(A,Y ,O1). In view of Definition 3
andLemma 2, {I1,W1,W4} are uninformative. Those variables that vanish likeW4 are called
nonredundant, uninformative variables. They are more subtle as they cannot be deduced
from simple ancestral relations or causal Markov equivalence. Next, we develop graphical
results towards a complete characterization.

4.3. Graphical criteria

In this subsection we will often omit G from the vertex sets introduced in § 3.2 to reduce
clutter. First, we show that our search for uninformative variables can be limited to (W \
O) ∪ (M \ {Y}).

LEMMA 7. Suppose that G is a directed acyclic graph on V satisfying Assumption 1. For any
U ⊆ V that is uninformative for estimating �a(P;G) underM(G,V), we have U ∩ {{A,Y} ∪
O(G)} = ∅.

To proceed with our search for uninformative variables, it suffices to identify variables
fromW \O orM \ {Y} that vanish from the efficient influence function at every law in the
model. This follows from Definition 3 and Lemma 2 given that (i) �a(P;G) = �ADJ

a,O (P;G)

onM(G,V) and (ii)�ADJ
a,O (P;G) depends on P only through the marginal law of O∪{A,Y}.

Let us now identify uninformative variables inW\O. EveryWj ∈ W\O satisfiesWj 	→ O,
so Ch(Wj) ∩W |= ∅. Let us write Ch(Wj) ∩W = {Wj1 , . . . ,Wjr}, indexed topologically for
j1 � · · · � jr and r � 1, and define Wj0 ≡ Wj. We observe that �1

a,P,eff(V ;G) in Lemma 5
depends onWj only through

�(Wj) ≡ E{ba(O) | Wj, Pa(Wj)}+
r∑

t=1

[
E{ba(O) | Wjt , Pa(Wjt)}−E{ba(O) | Pa(Wjt)}

]
. (14)

To analyse �(Wj), define E
+
j as the smallest subset of Pa(Wj) ∪ {Wj} such that

Pa(Wj) ∪ {Wj} \ E+
j ⊥⊥G O | E+

j
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and E−
j as the smallest subset of Pa(Wj) such that

Pa(Wj) \ E−
j ⊥⊥G O | E−

j .

The sets E+
j and E−

j are uniquely defined by the graphoid properties of d-separations. With
these definitions and the corresponding conditional independences, (14) becomes

�(Wj) = E{ba(O) | E+
j } + E{ba(O) | E+

j1
} + · · · + E{ba(O) | E+

jr−1
} + E{ba(O) | E+

jr }
− E{ba(O) | E−

j1
} − · · · − E{ba(O) | E−

jr−1
} − E{ba(O) | E−

jr }. (15)

The following lemma gives important properties of the sets E+
j and E−

j .

LEMMA 8. The following properties hold:

(i) Wj ∈ E+
j ;

(ii) if r > 1, then Wj ∈ E+
jt for t = 1, . . . , r− 1;

(iii) E−
j = Pa(Wj).

The variable Wj is uninformative if �(Wj) does not depend on Wj; for this to happen,
plausibly, in (15) each E− term from the second line should cancel exactly with one E+
term from the first line, and the remaining term in the first line should not depend on Wj.
By Lemma 8(ii), the remaining term must be the last term in the first line, which should
satisfy Wj /∈ E+

jr . Now suppose that E+
jr−1

cancels with E−
jt from the second line. Then, by

Lemma 8(i) and (ii), this impliesWjr−1 → Wjt , which requires t = r to be compatible with
the topological ordering. Continuing this argument, we see that E+

jr−2
cancels with E−

jr−1
, and

so forth. This is summarized as follows.

LEMMA 9. Under Assumption 1, variableWj is uninformative if (i)Wj /∈ E+
jr and (ii)E

+
jt−1

=
E−
jt for t = 1, . . . , r.

These conditions are further equivalent to the following graphical criterion.

LEMMA 10 (W -criterion). Suppose G satisfies Assumption 1 and that Wj ∈ W \ O and
Ch(Wj) ∩ W = {Wj1 , . . . ,Wjr}, indexed topologically for r � 1; define Wj0 ≡ Wj. Then the
variable Wj is uninformative if the following conditions are satisfied:

(i) Wj ⊥⊥G O | {Wjr} ∪ Pa(Wjr) \ {Wj};
(ii) for t = 1, . . . , r one has

(a) Wjt−1 → Wjt;
(b) Pa(Wjt) ⊆ Pa(Wjt−1) ∪ {Wjt−1};
(c) Pa(Wjt−1) \ Pa(Wjt) ⊥⊥G O | Pa(Wjt).

As an example, let us check that W4 in Fig. 1(a) satisfies the W -criterion. Observe that
r = 1 and Wjr = O1. Condition (i) is trivial: recall that W4 ⊥⊥G O1 | O1 is parsed
as W4 ⊥⊥G ∅ | O1, which is true by our convention. For condition (ii), we check that
(a) W4 → O1, (b) W4 ⊂ {W2,W3,W4} and (c) W2,W3 ⊥⊥G O1 | W4. In contrast, we see
thatW2 andW3 fail theW -criterion, in particular condition (ii)(b).
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By a similar line of reasoning, we derive the corresponding criterion for the set of
mediators.

LEMMA 11 (M-criterion). Suppose G satisfies Assumption 1 and that Mi ∈ M \ {Y} and
Ch(Mi) ∩M = {Mi1 , . . . ,Mik}, indexed topologically for k � 1; define Mi0 ≡ Mi. Then the
variable Mi is uninformative if the following conditions are satisfied:

(i) Mi ⊥⊥G {A,Y} ∪Omin | {Mik} ∪ Pa(Mik) \ {Mi};
(ii) for t = 1, . . . , k one has

(a) Mit−1 → Mit;
(b) Pa(Mit) ⊆ Pa(Mit−1) ∪ {Mit−1};
(c) Pa(Mit−1) \ Pa(Mit) ⊥⊥G {A,Y} ∪Omin | Pa(Mit).

We show the soundness of the W - and M-criteria in the Supplementary Material. Our
first main result shows that our graphical characterization is also complete.

THEOREM 1 (Graphical criteria for irreducible, informative variables). Let G be a
directed acyclic graph on a vertex set V that satisfies Assumption 1. Suppose that A ∈ V is
a discrete treatment and Y ∈ V is the outcome of interest. Then there exists a unique set of
irreducible informative variables for estimating �a(P;G) underM(G,V),

V∗(G) ≡ {A,Y} ∪O ∪ {Wj ∈ W \O : Wj fails the W-criterion}
∪ {Mi ∈ M \ {Y} : Mi fails the M-criterion},

where O ≡ O(G), W ≡ W(G) and M ≡ M(G) are defined in § 3.2.

To prove Theorem 1, for each variable inW \O andM \ {Y} that fails the corresponding
criterion, we show in the Supplementary Material that there exists a nondegenerate law
P ∈ M(G,V) such that �1

a,P,eff(V ;G) depends nontrivially on the variable.

5. Graph reduction and the efficient irreducible g-formula

5.1. Marginal model

The results of the preceding section imply that we do not lose information by discarding
the variables excluded from the setV∗ ≡ V∗(G) in Theorem 1. In what follows, we will write
P∗ for the marginal law P(V∗). Also, recall from § 3.4 thatM(G;V∗) refers to the marginal
model over P∗ induced by P ∈ M(G,V). In this section, we will characterize the marginal
model M(G;V∗) and then re-express the g-functional as a functional of P∗ in M(G;V∗).

Characterizing the marginal model is nontrivial, even when the state space of the vari-
ables that aremarginalized over is unrestricted. In general, themargin of a Bayesian network
can be a complicated statistical model subject to both equality and inequality constraints.
The equalities consist of conditional independences and their generalizations known as the
nested Markov properties; see Shpitser et al. (2014) and Evans (2018). The inequalities are
related to Bell’s inequalities (Gill, 2014) and are often hard to characterize (Pearl, 1995b;
Bonet, 2001). Fortunately, we can avoid these complications because, as will be shown later,
under our definition of Bayesian networks in § 3.2 where the state space of each variable
is sufficiently large, the marginal model M(G;V∗) is exactly a Bayesian network model
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represented by a certain directed acyclic graph G∗ over vertices V∗. Further, the g-formula
associatedwithG∗ immediately identifies the g-functional of P as a functional of P∗. Finally,
this formula is irreducible and efficient.

The construction of G∗ can be viewed as iteratively projecting out all the uninformative
variables, such that each time a variable or a set of variables is projected out, the resulting
graph represents themarginalmodel over the remaining variables.Wewill start by projecting
out variables in N(G) and I(G) altogether.

5.2. Projecting out N(G) and I(G)

LEMMA 12 (Marginalizing over N(G) and I(G)). Let G be a directed acyclic graph on a
vertex set V satisfying Assumption 1. Let N(G) and I(G) be defined as in § 3.2 and let V0 ≡
V \{N(G)∪I(G)}. Let the graph G0 be constructed from G as follows. First, for all Vi,Vj ∈ V0

such that Vi 	→ Vj through a causal path on which every non-endpoint vertex is in I(G), add
an edge Vi → Vj if the edge is not present. Next, remove vertices in N(G) ∪ I(G) and their
associated edges. Call the resulting graph G0. Then G0 is a directed acyclic graph over V0 and
M(G,V0) = M(G0,V0).

See the SupplementaryMaterial for a proof. The graph G0 is a reformulation of the graph
produced by Rotnitzky & Smucler (2020, Algorithm 1). As an example, in Fig. 1, projecting
out N(Ǧ) ∪ I(Ǧ) = {W1, I1} from graph Ǧ leads to graph G′.

5.3. Projecting out the remaining uninformative variables

By exploiting the graphical structures in theW - andM-criteria, and using the results on
graphs for representing margins of Bayesian networks due to Evans (2018), we show in the
Supplementary Material that the remaining uninformative variables in W(G) ∪ M(G) can
be projected out as well, one at a time. The projection is defined as follows.

DEFINITION 8. Let G be a directed acyclic graph on a vertex set V. For Vi ∈ V, suppose
that Ch(Vi,G) is topologically ordered as π = (Vi1 , . . . ,Vil ) for l � 1, and let Vi0 ≡ Vi. Let
G−Vi,π be a graph a the vertices V \ {Vi}, formed by adding an edge Vk → Vij to G if the edge
is not already present, for every Vk ∈ Pa(Vi,G) ∪ {Vi0 , . . . ,Vij−1} and every j = 1, . . . , l, and
then removing Vi and its associated edges.

In other words, all edges from Pa(Vi,G) to Ch(Vi,G) and all edges among Ch(Vi,G)

that are compatible with the topological ordering π are saturated before Vi is removed.
In contrast to the latent projection of Verma & Pearl (1990), the projection defined above
results in a directed acyclic graph; compare Fig. 1(c) and (d).

LEMMA 13. Let G be a directed acyclic graph on the vertices V. Let Vi ∈ V, whose children
are topologically sorted as π = (Vi1 , . . . ,Vil ) for l � 1. Consider a

Pa(Vij ,G) ⊆ {Vij−1} ∪ Pa(Vij−1 ,G) (j = 1, . . . , l − 1), (16)

where Vi0 ≡ Vi. Then G−Vi,π is a directed acyclic graph on V \ {Vi} and M(G,V \ {Vi}) =
M(G−Vi,π ,V \ {Vi}).

Lemma 13 can be specialized to any uninformative vertex inW orM as follows.
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LEMMA 14. Let G be a directed acyclic graph on the vertex set V. Suppose that G satisfies
Assumption 1 and N(G) = I(G) = ∅. Suppose that the vertex Vi ∈ V \V∗(G). If Vi ∈ W(G),
suppose Vi ≡ Wi and let

π =
{

(Wi1 , . . . ,Wil ), A /∈ Ch(Wi,G),
(Wi1 , . . . ,Wil ,A), A ∈ Ch(Wi,G),

(17)

where Ch(Wi,G) ∩W(G) = {Wi1 , . . . ,Wil } is uniquely topologically sorted. Otherwise, Vi ≡
Mi for some Mi ∈ M(G) and let

π = (Mi1 , . . . ,Mil ) = Ch(Mi,G), (18)

which is uniquely topologically sorted. Then

M(G,V \ {Vi}) = M(G−Vi,π ,V \ {Vi}), V∗(G−Vi,π) = V∗(G).

In other words, by projecting out an uninformative variable Vi ∈ W ∪M from a graph G
whose N(G) and I(G) are empty, the resulting graph G−Vi,π represents the marginal model
over the remaining variables, and preserves the same set of irreducible informative variables
given in Theorem 1.

5.4. Graph reduction algorithm and properties of the reduced graph

The graph reduction procedure is presented in Algorithm 1. In the algorithm each
vertex is visited once. As checking any d-separation takes a polynomial time of |V |,
the algorithm also finishes in a polynomial time of |V |. The algorithm is imple-
mented in the R (R Development Core Team, 2023) package reduceDAG, available from
https://github.com/richardkwo/reduceDAG.

Algorithm 1. Graph reduction algorithm.

Input: Graph G on vertex set V satisfying Assumption 1
Output: Reduced graph G∗ that represents M(G,V∗)
V∗ ← {A} ∪W(G) ∪M(G)

G∗ ← G0 defined in Lemma 12
for Vi ∈ V∗ \ {{A,Y} ∪O(G)} do

if Vi ∈ W and Vi satisfies the W-criterion in Lemma 10 then
V∗ ← V∗ \ {Vi}
G∗ ← G∗−Vi,π with π defined in (17)

else if Vi ∈ M and Vi satisfies the M-criterion in Lemma 11 then
V∗ ← V∗ \ {Vi}
G∗ ← G∗−Vi,π with π defined in (18)

return G∗

The properties of the reduced graph are summarized by our next main result; see the
Supplementary Material for its proof.
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THEOREM 2. Let G be a directed acyclic graph on a vertex set V that satisfies Assumption 1.
Suppose that A ∈ V is a discrete treatment and Y ∈ V is the outcome of interest. Let G∗ be the
output of Algorithm 1 resulting from input G. Let V∗ ≡ V∗(G) be the set of irreducible infor-
mative variables given in Theorem 1. Also, let P∗ ≡ P(V∗) and define�a(P;G∗) ≡ �a(P∗;G∗).
The graph G∗ satisfies the following properties:

(i) G∗ is a directed acyclic graph on vertices V∗;
(ii) G∗ does not depend on the order in which vertices are visited in the for-loop of Algorithm 1;
(iii) M(G,V∗) = M(G∗,V∗);
(iv) �a(P;G) = �a(P;G∗) for every P ∈ M(G;V);
(v) for every P ∈ M(G,V), the efficient influence functions �1

a,P,eff(V ;G) and

�1
a,P∗,eff(V

∗;G∗), as functions of V and V∗, respectively, are identical P-almost every-
where;

(vi) the g-formula �a(· ;G∗) : M0(V) → R is an irreducible, efficient identifying formula
for the g-functional defined onM(G,V).

COROLLARY 1. Suppose the conditions in Theorem 2 are satisfied and that variables in V
are discrete. Then under every P ∈ M(G,V),

n1/2{�a(P
∗
n;G∗) − �a(Pn;G)} = op(1)

as n → ∞,where Pn and P
∗
n are respectively the empirical measures based on n independent

copies of V and V∗.

In light of Corollary 1, in the Supplementary Material we compare the two estimators
for the example in Fig. 1 with simulations based on discrete data; their performances seem
extremely close even for finite samples.

6. Examples

To ease the notation, we omit the graph from vertex sets when the choice of graph is clear
from the context.

Example 1 (continued). By Theorem 1, V∗ = V for Fig. 2(b). Hence, the graph cannot
be further reduced; the g-formula (11) is efficient, while (12) and (13) are not.

Example 2. Consider graph G1 in Fig. 3. Note that Omin = ∅. The variable M is unin-
formative by checking against the M-criterion: (i) M⊥⊥G A,Y | A,Y ,O; (ii)(a) M → Y ,
(b) Pa(Y) ⊂ {A,O,M} and (c) O⊥⊥G A,Y | A,M. The graph G1 is reduced to G∗

1 , which
prescribes an irreducible, efficient g-formula

�a(P;G∗
1 ) =

∑
o

E(Y | A = a, o) p(o). (19)

This result also follows from Rotnitzky & Smucler (2020, Theorem 19).
On the other hand, suppose we add edge O → A as in G2. Now we have Omin(G2) = {O}

andM fails theM-criterion. Hence, if A is randomized conditionally onO, then (19) is still
an identifying formula for the g-functional, but is no longer efficient. Since G2 = G∗

2 , the
g-formula �a(P;G2) is irreducible and efficient.
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A M Y

O

(a)

G1

A Y

O⇒
(b)

G∗
1

A M Y

O

(c)

G 2 = G∗
2

A M Y

M ′

(d)

G3

A M Y

M ′

(e)

G ′
3

c∼
A Y

(f)

G ∗
3

⇒

Fig. 3. Reduction of graphs G1, G2 and G3 in Example 2.

A Y

O1 O2

(a)

G1 = G∗
1

A Y

O1 O2

W
(b)

G2 = G ∗
2

A Y

O1 O2

W
(c)

G3

A Y

O1 O2

(d)

G∗
3

⇒

Fig. 4. Reduction of graphs G1, G2 and G3 in Example 3. The optimal adjustment estimator is inefficient for G1
even though V∗(G1) = O(G1) ∪ {A,Y}.

Furthermore, suppose the edge between A and O is added in the reverse direction, as
shown in G3, whereO is relabelled asM ′. The variables {M,M ′} are uninformative by check-
ing against the M-criterion or, alternatively, by recognizing that they are non-ancestors of
Y in a causal Markov equivalent graph G′

3. In this case, an irreducible, efficient identifying
formula is simply

�a(P;G∗
3 ) = E(Y | A = a).

Example 3 (Optimal adjustment). Consider the graphs in Fig. 4. Recall that the opti-
mal adjustment estimator is the sample version of (4) when L = O. When the optimal
adjustment estimator is efficient, such as under G3, then V∗ consists only of the optimal
adjustment set,A andY . However, the reverse need not be true. Consider the graph G1 where
V∗(G1) = O(G1)∪{A,Y}, but the optimal adjustment estimator is inefficient because it does
not exploit the independence between O1 and O2; compare with the g-formula associated
with G1.

Example 4. Consider graph G in Fig. 5. By Theorem 1, A,Y ,O1 and O2 are included in
V∗. Note that Omin = {O1}. By projecting out I1, an indirect ancestor of Y , G is reduced to
G0. Now let us check the M-criterion for M1, M2 and M3. First, M1 fails the M-criterion
because M1 
⊥⊥G A,Y ,O1 | Y ,M3. Second, M2 satisfies the criterion as it can be checked
that (i) M2 ⊥⊥G A,Y ,O1 | M1,M3; (ii)(a) M2 → M3, (b) Pa(M3) ⊆ Pa(M2) ∪ {M2} and
(c) Pa(M2) \ Pa(M3) = ∅ so the corresponding d-separation trivially holds. Third,M3 also
satisfies the criterion: (i)M3 ⊥⊥G A,Y ,O1 | Y ,M1; (ii)(a)M3 → Y , (b) Pa(Y) ⊂ Pa(M3) ∪
{M3} and (c)M2 ⊥⊥G A,Y ,O1 | M1,M3. By further projecting outM2 andM3, we get G∗.
Consequently, an irreducible, efficient g-formula is

�a(P;G∗) =
∑
m1

E(Y | m1)
∑
o1,o2

P(m1 | A = a, o1, o2) p(o1) p(o2).
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A M 1 M 2 M 3 Y

I 1 O1 O2

(a)

G

A M 1 M 2 M 3 Y

O1 O2⇒
(b)

G 0

A M 1 M 3 Y

O1 O2⇒
(c)

G1

A M 1 Y

O1 O2⇒
(d)

G∗

Fig. 5. Graph reduction for Example 4, where V \ V∗ = {I1,M2,M3}.
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(d)

G2

⇒

A YO3

O1
W 3

W 4

O2

W 5

(e)

G ∗

⇒

Fig. 6. Graph reduction for Example 5, where V \ V∗ = {I1,W1,W2,W6}.

Example 5. Let G be the graph drawn as Fig. 6(a), for which O = {O1,O2,O3}. Again,
variable I1 is an indirect ancestor of Y and hence uninformative. It can be checked that
variablesW3,W4 andW5 fail theW -criterion, in particular its condition (i). It can also be
checked that variablesW1,W2 andW6 satisfy theW -criterion. For example, forW2 observe
that: (i) W2 ⊥⊥G O1,O2,O3 | O1,W5; (ii)(a) W2 → O1, (b) Pa(O1) ⊂ Pa(W2) ∪ {W2} and
(c) W3,W4 ⊥⊥G O1,O2,O3 | W2,W5. By iteratively projecting out I ,W1,W2 and W6, the
graph G is reduced to G∗, from which we can derive an irreducible, efficient g-formula

�a(P;G∗) =
∑

o1,o2,o3

E(Y | A = a, o1, o2, o3) p(o3)

×
∑
w3,w4

p(w3) p(w4)
∑
w5

p(o1 | w3,w4,w5) p(o2 | w5) p(w5).

7. Concluding remarks

When all variables in the graph are discrete, an asymptotically efficient estimator
based on the set of irreducible informative variables is readily available as �a(P

∗
n;G∗).
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Unfortunately, when not all components of V∗ are discrete, the plug-in estimator�a(P̂∗;G∗)
for P̂∗ ∈ M(G∗,V∗) based on smooth nonparametric estimators of the conditional densi-
ties {p{vj|Pa(vj,G∗)} : Vj ∈ V∗} will generally fail to even be root-n consistent. This is
because�a(P̂∗;G∗)will typically inherit the bias and thus the rate of convergence of the non-
parametric density estimators. The one-step estimator �̂a = �a(P̂∗,G∗) + Pn{�1

a,P̂∗,eff(V)}
corrects the bias, and under smoothness or complexity assumptions on the conditional den-
sities it converges at the root-n rate and is asymptotically efficient. However, the calculation
of �1

a,P̂∗,eff(V) will typically require evaluating complicated integrals involved in the com-

putation of each EP̂∗{ba,P̂∗(O) | Wj, Pa(Wj,G∗)} and each EP̂∗{Ta,P̂∗ | Mk, Pa(Mk,G∗)}; see
Lemma 5. Further work exploring methods that facilitate these calculations is warranted.

In this article we have considered estimating the mean of an outcome under an interven-
tion that sets a point exposure to a fixed value in the entire population. This is just one out
of the many functionals of interest in causal inference. We hope this work sparks interest
in the characterization of informative irreducible variables for other functionals. In particu-
lar, we are currently studying the extension of the present work to interventions that set the
treatment to a value that depends on covariates, i.e., so-called dynamic treatment regimes.
Extension to time-dependent interventions in graphs with time-dependent confounding is
also of interest, but appears to be more difficult because an optimal time-dependent adjust-
ment set does not exist (Rotnitzky & Smucler, 2020). Other functionals of interest include
the pure direct effect and the treatment effect on the treated.
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