• Español
    • English
  • Español 
    • Español
    • English
  • Login
BIBLIOTECA
ColeccionesPolíticasContacto
Ver ítem 
  •   Repositorio Digital UTDT
  • Tesis
  • Universidad Torcuato Di Tella
  • Escuela de Negocios
  • Maestría en Finanzas
  • Ver ítem
  •   Repositorio Digital UTDT
  • Tesis
  • Universidad Torcuato Di Tella
  • Escuela de Negocios
  • Maestría en Finanzas
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Trading Algorítmico en el Mercado Argentino de Derivados

Thumbnail
Ver:
MFIN_ Zanuso_2020.pdf (866.5Kb)
Metadatos:
Mostrar el registro completo del ítem
Autor/es:
Zanuso, Franco
Tutor/es:
Iaccarino, Diego
Carrera de la tesis:
Maestría en Finanzas
Fecha:
2020
Resumen
El objetivo del presente trabajo es contestar la siguiente pregunta: ¿Es rentable implementar estrategias algorítmicas en el Mercado Argentino de derivados? Para poder responderla se deben analizar varios aspectos del Mercado Argentino y del funcionamiento del trading algorítmico. Al entender lo anterior, se pueden implementar ciertas estrategias que operen en el mercado y determinar su rendimiento histórico a través del proceso conocido como backtesting. La primera parte mostrará un marco teórico sobre el trading algorítmico. Se explica cómo fueron evolucionando los mercados en el mundo y cuáles son las formas de operar en la actualidad. Exponiendo las ventajas que tiene el trading algorítmico respecto a otro tipo de operatoria y mostrando algunos ejemplos de algoritmos utilizados por los operadores. En la segunda parte del trabajo se analiza la microestructura de los mercados en general, enfocándonos en el Mercado Argentino. Se muestran los distintos tipos de sistemas utilizados por los mercados, cómo funcionan y qué características tienen. Se analizan diferentes formas que permiten establecer una conexión entre un algoritmo y el mercado para consumir información y enviar órdenes. Después se procede a explicar cómo es posible desarrollar estrategias de trading exitosas. Dónde buscar ideas y cómo analizarlas desde distintos puntos de vista, para determinar cuáles son las mejores candidatas a ser implementadas. Se explica en qué consiste el backtesting de estrategias, analizando sus ventajas y errores más comunes. En la cuarta parte, se analizan y desarrollan dos estrategias de trading. La primera de tipo mean-reversion, donde se explica cómo es posible detectar este tipo de comportamientos en series de precios. Se presenta un modelo simple para valuar contratos de futuros y se explica cómo utilizarlo para encontrar oportunidades en el mercado. La segunda estrategia presentada es de tipo Momentum o Tendencia, en esta parte es expuesto cómo se puede detectar y capturar las correlaciones entre series de tiempo que permiten encontrar el momento en el cual se genera una tendencia en el precio y así poder aprovecharla. Por último, después de analizar ambas estrategias y entender su funcionamiento, se procede a implementarlas en un sistema de backtesting desarrollado en Python. Dicho sistema permite determinar los rendimientos históricos de las estrategias en el pasado. Finalmente, con los resultados se exponen las conclusiones y se contesta la pregunta inicial.
URI:
https://repositorio.utdt.edu/handle/20.500.13098/11556
Colecciones:
  • Maestría en Finanzas


Página de ayuda al investigador
Horarios de atención
Campus Alcorta
Av. Figueroa Alcorta 7350 (C1428BCW)
Sáenz Valiente 1010 (C1428BIJ)
Ciudad de Buenos Aires, Argentina
P: (54 11) 5169 7000

 

 



Página de ayuda al investigador
Horarios de atención
Campus Alcorta
Av. Figueroa Alcorta 7350 (C1428BCW)
Sáenz Valiente 1010 (C1428BIJ)
Ciudad de Buenos Aires, Argentina
P: (54 11) 5169 7000