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Abstract

The routing and spectrum allocation (RSA) problem arises in the context of flexible grid optical networks, and consists in routing
a set of demands through a network while simultaneously assigning a bandwidth to each demand, subject to non-overlapping
constraints. One of the most effective integer programming formulations for RSA is the DR-AOV formulation, presented in a
previous work. In this work we explore a relaxation of this formulation with a subset of variables from the original formulation,
in order to identify valid inequalities that could be useful within a cutting-plane environment for tackling RSA. We present basic
properties of this relaxed formulation, we identify several families of facet-inducing inequalities, and we show that they can be
separated in polynomial time.
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Given (i) a directed graphG = (V, E) representing an optical fiber network, (ii) a set of demands D = {(si, ti, vi)}ki=1,
sorted by vi in descending order, such that each demand (si, ti, vi) ∈ D has a source si ∈ V , a target ti ∈ V , and a
volume vi ∈ Z+, and (iii) a fixed number s̄ ∈ Z+ of available slots, the routing and spectrum allocation (RSA) problem
consists in determining a lightpath for each demand (si, ti, vi) ∈ D (i.e., a path in G from the source node si to the
target node ti together with an interval of vi consecutive slots in {1, . . . , s̄} that forms a channel) in such a way that the
channels of any two demands that share an arc do not overlap. For any i = (si, ti, vi) ∈ D, we define s(i) = si, t(i) = ti,
and v(i) = vi.

Various integer programming approaches have been studied in the literature in order to solve RSA (see, e.g.,
[1, 2, 3, 4, 5, 6]). In [7], several integer programming models for RSA have been presented and assessed by computa-
tional experiments. It turned out that the integer programming model called the DR-AOV formulation showed the best
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performance among all evaluated models. In this formulation, for each demand i ∈ D and each arc e ∈ E, the binary
variable yie represents whether the demand i is routed along the arc e or not, thus defining a path inG between s(i) and
t(i). For each pair of demands i, j ∈ D, i � j, the binary variable xi j takes value 1 if i and j share an edge and if the
channel assigned to i is located before the channel assigned to j. These x-variables define a partial linear ordering on
the channels. Finally, for each demand i ∈ D, the integer variable ℓi represents the slot number of the first slot assigned
to i, so i uses the channel [ℓi, ℓi + v(i)]. Since a polyhedral analysis of the DR-AOV formulation is not straightforward,
in this work we propose to study the following relaxed formulation focused on the spectrum assignment:

ℓi + v(i) ≤ ℓ j + (s̄ − v(i))(1 − xi j) ∀i, j ∈ D, i � j, (1)
xi j + x ji ≤ 1 ∀i, j ∈ D, i � j, (2)

0 ≤ ℓi ≤ s̄ − v(i) ∀i ∈ D. (3)

We define the polyhedron RP(D, s̄) as the convex hull of all solutions (ℓ, x) ∈ Z|D| × {0, 1}|D|2−|D| satisfying constraints
(1)-(3).

Theorem 1. The polyhedron RP(D, s̄) has full dimension |D|2 if and only if s̄ ≥ v(i) + v( j) for every i, j ∈ D, i � j.

Theorem 2. For every valid (resp. facet-defining) inequality aT (ℓ, x) ≤ b of RP(D, s̄), the inequality aT (ℓ̄, x̄) ≤ b,
obtained by replacing ℓi by s̄ − v(i) − ℓi and xi j by x ji, is also valid (resp. facet-defining) for RP(D, s̄).

Theorem 3. If s̄ ≥ v(i) + v( j) for every i, j ∈ D, i � j, then

1. the anti-parallelity constraints (1) define facets of RP(D, s̄),
2. the 2-cycle constraints (2) define facets of RP(D, s̄), and
3. the non-negativity constraint xi j ≥ 0 defines a facet of RP(D, s̄), for i, j ∈ D, i � j.

We are interested in finding families of valid inequalities for RP(D, s̄), motivated by the fact that any valid inequality
for this polytope will also be valid for the DR-AOV formulation for RSA. Facetness results do not translate directly
from one polytope to the other one, but still may provide hints on the strength of the identified inequalities, so in this
work we also tackle this issue.

Let i ∈ D and A = { j1, . . . , jt} ⊆ D\{i} with jl−1 < jl for l = 2, . . . , t. We define

ℓi ≥
∑
j∈A

α j x ji, (4)

where α jl = v( jl) if l = 1 and α jl = v( jl) − v( jl−1) otherwise for l = 2, . . . , t (recall that the demands are sorted in
decreasing order of their volumes, so α jl ≥ 0), to be the left telescopic inequality associated with i and A. The right
telescopic inequality is defined similarly by Theorem 2.

Theorem 4. The left/right telescopic inequalities are valid for RP(D, s̄), and can be separated in O(|D|3) time. For
i ∈ D and A ⊆ D\{i}, the inequality (4) defines a facet of of RP(D, s̄) if

• s̄ > v(i) + v(A),
• A � ∅,
• the volumes of all the demands j ∈ A are different, and
• either i is a demand with maximum volume (over all demands in D) and A contains a demand with maximum
volume over all demands in D \ {i}, or A contains a demand with maximum volume (over all demands in D).

Let i, j ∈ D, i � j, and A = { j1, . . . , jt} ⊆ D\{i, j} with jl−1 < jl for l = 2, . . . , t. We define

ℓ j − (ℓi + v(i)) ≥
∑
k∈A

αk(xik − xk j − 1) − (s̄ − v(i) − v(k))(1 − xi j) (5)

where α jl = v( jl) if l = 1 and α jl = v( jl) − v( jl−1) otherwise for l = 2, . . . , t, to be the middle telescopic inequality
associated with i, j, and A. This inequality captures the fact that if the demand i is allocated before the demand j (so
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the last term is null), then the difference between ℓi and ℓ j can be bounded by the volumes of the demands in A located
between i and j.

Theorem 5. The middle telescopic inequalities are valid for RP(D, s̄), and can be separated in O(|D|4) time. For
i, j ∈ D, i � j, and A ⊆ D\{i, j}, the inequality (5) defines a facet of RD(D, s̄) if

• s̄ > v(i) + v( j) + v(A),
• A � ∅,
• the volumes of all the demands j ∈ A are different, and
• A contains a demand with maximum volume.

Let i, j ∈ D, i � j and A = { j1, . . . , jt} ⊆ D\{i, j} with jl−1 < jl for l = 2, . . . , t. We define

ℓi ≥ (v( j) + v( j1))x ji +
∑
k∈A

αkxk j − v( j1) (6)

where α jl = v( jl) if l = 1 and α jl = v( jl)−v( jl−1) otherwise for l = 2, . . . , t, to be the left reinforced telescopic inequality
associated with i, j, and A. The right reinforced telescopic inequality (RRTI) is defined similarly by Theorem 2.

Theorem 6. The left/right reinforced telescopic inequalities are valid for RP(D, s̄), and can be separated in O(|D|4)
time. For i, j ∈ D, i � j, and A ⊆ D\{i, j}, the inequality (6) defines a facet of RD(D, s̄) if

• s̄ > v(i) + v( j) + v(A),
• A � ∅,
• the volumes of all the demands j ∈ A are different, and
• A contains a demand with maximum volume.

Let A = { j1, . . . , jt} ⊆ D. We define

x jt j1 +
t−1∑
l=1

x jl jl+1 ≤ t − 1 (7)

to be the k-cycle inequality associated with A.

Theorem 7. The k-cycle inequalities are valid for RP(D, s̄), and can be separated in polynomial time. Furthermore,
the inequality (7) defines a facet of RD(D, s̄) if s̄ ≥ ∑

i∈D v(i).

As a future work, it would be interesting to identify further families of facet-inducing inequalities and to explore
under which hypotheses the facetness results translate to the original formulation. On the practical side, it would be
relevant to assess the practical contribution of these inequalities within a cutting-plane environment for solving RSA.
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