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Abstract
In this paper, we propose a novel approach to address the problem of functional outlier detection. Our method leverages a
low-dimensional and stable representation of functions using Reproducing Kernel Hilbert Spaces (RKHS). We define a depth
measure based on density kernels that satisfy desirable properties. We also address the challenges associated with estimating
the density kernel depth. Throughout a Monte Carlo simulation we assess the performance of our functional depth measure in
the outlier detection task under different scenarios. To illustrate the effectiveness of our method, we showcase the proposed
method in action studying outliers in mortality rate curves.

Keywords Functional data · Depth measures · Outlier detection · Mortality curves

1 Introduction

Advances in technology are providing data scientists with
an unprecedented amount of high-dimensional data. Elec-
trocardiogram signals, fMRI images or Mortality curves are
relevant examples of what is nowadays called Functional
Data [1]. In Functional Data Analysis (FDA), each obser-
vation is a function that constitutes an infinite dimensional
object. Analysing functional outliers is critical in several con-
texts, including functional regression [2], robust functional
principal component analysis [3], functional outlier visuali-
sation [4], robust functional data clustering [5]; and also in
several applied context where FD is involved [6].

Functional outliers are commonly classified into two cat-
egories: magnitude outliers and shape outliers [7, 8]. The
contribution of this paper, is to propose a novel depthmeasure
for functional data to handle both type of functional outliers
simultaneously. To achieve this goal, we introduce a density
kernel depth that relies on a finite dimensional and stable
representation of functions. The kernel depth measure satis-
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fies desirable properties, as we formally discuss in Sect. 3.1,
and induces a centre—outward ordering on functions. We
also propose suitable estimation methods that are based on a
One-Class-Neighbour-Machine, a non parametric estimator
of density level sets. Furthermore, we discuss a statistically
sound bootstrap approach to infer functional outliers in data.

The remainder of the paper is organised as follows: Sect. 2
propose a suitable representation model for functional data.
In Sect. 3 we introduce a density kernel depth measure, and
also discuss its properties and suitable estimationmethods. In
Sect. 4 we provide an algorithm for functional outlier detec-
tion based on bootstrap procedure. In Sect. 5, we present a
Monte Carlo simulation study and a real data application to
mortality curves. Finally, in Sect. 6 we conclude the paper.

2 An RKHS framework for functional data

In what follows we consider a square integrable stochastic
processesX (t) ∈ H in a separable Hilbert space of functions
H ⊂ L2(T ), where T ⊂ R is a compact and convex set. As
usual in practice, we also assume that curves are sampled
over a discrete grid of points t = {t1, . . . , tp}, being p � 0,
in a signal plus noise fashion as follows:

x = x(t) + e, (1)

where x = {x(t1)+e1, . . . , x(tp)+ep} is the vector with the
observed data and e = (e1, . . . , ep) is an independent and
zero-mean residual term.
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Most functional data analysis approaches for preprocess-
ing raw data as in Eq. (1) suggest to proceed as follows:
Choose an orthogonal basis of functions B = {φi }i≥1, where
each φi ∈ H, and then represent each functional datum by
means of a linear combination in the Span(B) [9, 10]. A
usual choice is to considerH as aReproducingKernelHilbert
Space (RKHS) of functions [11]. In this case, the elements
in the spanning set B are the eigenfunctions associated to the
positive-definite and symmetric kernel K : T × T → R that
spanH. In our setting, the functional representation problem
can be framed as follows: We observe each curve on p sam-
ple points and the corresponding functional data estimator is
obtained solving the following regularization problem:

x̂(t) := arg min
h∈H

p
∑

j=1

L(x(t j ), h(t j ))
2 + γ�(h), (2)

where L is a strictly convex functionalwith respect to the sec-
ond argument,γ > 0 is a regularizationparameter (chosenby
cross–validation), and �(h) is a regularization term. By the
Representer Theorem [[12], Th. 5.2,p. 91] [[13], Pr. 8,p. 51]
the solution of the problem stated in Eq. (2) exists, is unique,
and admits a representation of the form:

x̂(t) =
p

∑

j=1

α j K (t, t j ). (3)

In the particular case of a squared loss function L(w, z) =
(w − z)2 and considering �(h) = ∫

T h2(t)dt , the coef-
ficients of the linear combination in Eq. (3) are obtained
solving the following linear system:

(γ pI + K)α = x, (4)

where α = (α1, . . . , αp)
T , I is the identity matrix of order p,

and K the is the p × p Gram matrix with the kernel evalua-
tions, [K]k,l = K (tk, tl), for k = 1, . . . , p and l = 1, . . . , p.
A main drawback on the estimation entitled in Eq. (3) is
the instability of α, which change substantially under small
perturbations in data. To avoid such problem, we resort on
Mercer theorem [11] and consider an alternative functional
estimator based on the projection of x̂(t) onto the functional
space generated by the first d � p eigenfunctions of K :

x̂(t) ≈ x̃(t) =
d

∑

j=1

λ jφ j (t) = λT�(t), (5)

where λ = (λ1, . . . , λd) are the projection coefficients onto
the functional space generated by the first d eigenfunctions
of K (i.e. λ j ≡ l j (αT v j )/

√
p, where (l j , v j ) is the j th eigen

pair of Gram matrixK), �(t) = (φ1(t), . . . , φd(t)) is a vec-
tor function with the first d eigenfunctions associated to K ,
and d � p is a resolution parameter such that for a small
εd it holds that supt∈T | x̂(t) − x̃(t) |≤ εd , see [14] for fur-
ther details. The proposed depthmeasures for functional data
relies on the computation of λ, as we discuss in next Section.

3 Depthmeasures for functional data

There are several notions of depth measures in Statistics, all
of them involve the computation of a quantity that represent
the centrality of a given point z ∈ R

d with respect to a prob-
ability distribution f . In this way, depth measures induce an
order in data, and are a natural tool to identify outliers.

Some remarkable examples of depth measures for func-
tional data are in order. In Fraiman and Muniz [15], the
authors propose the IntegratedDepth that resort on a trimmed
functional mean estimator to ranks the functions. The Ran-
dom Tuckey Depth [16] and the Random Projection Depth
[17], rely on randomprojections of the functional data and the
computation of the deepest function using univariate statis-
tics. Another well known example is the case of the h-Mode
Depth [17], that considers the expected kernel distances for
each curve using the L2 norm, see Example 1.

Example 1 h-Mode depth.

h-MD(x(t)) = E(Kh(‖x(t) − X (t)‖L2),

where K is a kernel function and h is the bandwidth param-
eter.

In FDA, the graphical analysis is always a complementary
approach in terms of visualisation and interpretation of out-
liers. In this sense, the Band Depth andModified Band depth
introduced in López-Pintado and Romo [18] are suitable
methods. An interesting review on topological functional
depth measures can be found in [19] and [20]. We introduce
next our depth measure that rely on density kernels.

3.1 Depth induced by density kernels

Let Z ∈ R
d be a random vector with density function f ,

the function g : R
d → R is f -monotone if satisfies the

following condition:

f (z) ≥ f (y) ⇒ g(z, f ) ≥ g(y, f ). (6)

As an example, consider the parametric model Z ∼
N (μ, σ 2); then g(x, (μ, σ 2)) = −(x − μ)2/σ 2 is f -
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monotone. A density kernel K f : Rd × R
d → R is defined

as the product of two f -monotone functions as follows:

K f (z, y) = g(z, f )g(y, f ). (7)

Notice that K f depends on the density function f that is
unknownor intractable in practice.We address the estimation
of K f using asymptotically f -monotone functions as dis-
cussed in next subsection. The density kernel depth measure
is then obtained by combining a density kernel with a deepest
(central) curve.Todefine the later, consider a statisticalmodel
f (a bounded density function) for the projection coefficients
(i.e. λ ∼ f ), the deepest curve x̃mo(t) = ∑d

j=1m jφ j (t) is
in correspondence to the parameter m ≡ (m1, . . . ,md) =
argmaxλ∈Rd f (λ) (i.e.m is the mode of f ). Finally, the den-
sity kernel depth (DKD) is defined as follows:

Definition 1 Density Kernel Depth. Let f be the den-
sity of the projection coefficients λ, and let x̃mo(t) =
∑d

j=1m jφ j (t)be thedeepest curvewherem ≡ (m1, . . . ,md)

represent the mode of f , the DKD of the curve x̃(t) =
λT�(t) is defined as follows:

DKD(x̃(t), f , K f ) ≡ g(λ, f )g(m, f ), (8)

Proposition 1 The DKD satisfies the following desirable
properties [21] for depth measures:

P1. Maximality at center: The DKD take the largest value
evaluatedat the deepest curve, i.e. supx(t)∈H DKD(x(t),
f , K f ) = DKD(x̃mo(t), f , K f ).

P2. Monotonicity relative to the deepest function: For
two curves x̃1(t) and x̃2(t) such that f (λ1) ≤ f (λ2)

(i.e. x̃1(t) is further apart from the central curve
x̃mo(t) than x̃2(t)), it holds that DKD(x̃1(t), f , K f ) ≤
DKD(x̃2(t), f , K f ).

P3. Vanishes at infinity: DKD(x̃(t), f , K f ) → 0 as
‖λ‖ → ∞.

P4. Invariant under affine transformations: Let T be the
class of affine transformations in H and let τ ∈ T be
an affine map, then DKD(x̃(t), f , K f ) = DKD(τ ◦
x̃(t), f , K f ).

In addition to properties P1–P4, the order induced by the
DKD is also invariant under changes in the basis function
B = {φ1(t), . . . , φd(t)} that span the linear subspace in H
where we project the curves. We give more details and a
formal proof in the supplementary material. In the following

subsection we address the details involved in the estimation
of DKD from data.

3.2 Estimating the density kernel depth

Notice that g(·, f ) depends on the density function f that
is unknown or intractable in practice; this leads to the
following related concept: Given a random sample Sn =
{Z1, . . . , Zn} i id∼ f , then g(z, Sn) is asymptotically f -
monotone if the following relation holds: f (z) ≥ f (y) ⇒
lim
n→∞ P(g(z, Sn) ≥ g(y, Sn)) = 1. As an example of asymp-

totic monotone function consider g(z, Sn) = 1/dk(z, Sn);
where dk(z, Sn) is the distance from z to its (random) k–
nearest neighbour in Sn (for 1 ≤ k < n). Therefore, a suitable
estimator for K f is given by the product of two asymptoti-
cally f -monotone functions.

The estimation of the DKD is based on an asymptoti-
cally f -monotone function g(·, Sn) which is proportional
to a non–parametric consistent estimator of f –the den-
sity function that corresponds to the projection coefficients.
Our density estimation method is based on the One–Class
Neighbor Machine (OCNM), a well known nonparametric
density level set estimator [22, 23]. The ν-level set of f is
defined as Vν( f ) = {λ ∈ R

d : f (λ) ≥ αν}, such that
P(Vν( f )) = 1 − ν for 0 < ν < 1. Some comments about
the density estimation method are in order. The OCNM is a
consistent estimator of ν-level sets under mild conditions on
f . In addition, theOCNMrelies on a linear–convex optimiza-
tion problem, entailing important computational advantages
in comparison to other standard nonparametric density esti-
mation approaches such as kernel method. For more details
about the OCNM we refer to [23].

The estimation of DKD via the OCNM is straightfor-
ward. Given a sample of n discretised curves as in Eq. (1),
Dn = {x1, . . . , xn} and its corresponding projection coeffi-
cients {λ1, . . . ,λn} according to Eq. (5); we use the OCNM
to estimate density contour clusters ̂Vν around the estimated
mode m̂ for an increasing sequence ν ≡ {ν1, . . . , νm}, such
that 0 ≤ ν1 < · · · < νm ≤ 1. Notice that m̂ ∈ {λ1, . . . ,λn}
corresponds to the sample curve which belongs to the highest
ν–density level set.We consider the following asymptotic f –
monotone function: g(λ,Dn) = ∑m

i=1 iÎVi (λ), where I
̂Vi (λ)

is the indicator function that take value 1 if λ ∈ ̂Vνi and 0 oth-
erwise. In this sense, the estimated DKD(x̃(t),Dn, K f ) ≡
g(λ,Dn)g(m̂,Dn) order the sampled curves around the esti-
mated center x̂mo(t) = m̂T�(t); i.e. high values of DKD
corresponds to estimated central curves and vice-verse.
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4 Functional outlier detection

Depth measures induces a centre-outward ordering, and
constitute a natural tool to assess the presence of outly-
ing curves in the sample. From an statistical perspective,
the analysis of atypical curves relies on the distribution of
DKD(˜X(t), f , K f ). Nevertheless, nither the exact nor the
asymptotic distribution of DKD is known. For this reason,
we employ bootstrap methods to approximate such distri-
bution and determine which curves in the sample are more
likely to be outliers. In Algorithm 1, we present our boot-
strap method that resembles the procedure given in [24]. For
the analysis of outlier functional data, a suitable threshold
q ∈ (0, 1) (q is intended to be the type I error on the iden-
tification method) needs to be specified in advance. In the
case of Australian mortality curves discussed in Sect. 5, we
choose q = 0.01; nevertheless in practice we recommend
to conduct a sensitivity analysis regarding the value given to
this sensible parameter.

Algorithm 1 Bootstrap based outlier identification method.
Given data Dn = {x1, . . . , xn} and the corresponding coefficients
{λ1, . . . ,λn}:
1. Compute DKD1 ≡DKD(x̃1(t),Dn, K f ), . . . ,DKDn ≡DKD

(x̃n(t),Dn, K f ) and the empirical quantile F−1
n (q) = DKDn(i)

whereDKDn(i) is the order i statistic such that (i−1)/n < q ≤ i/n.

2. Resampling: Generate B � 0 bootstrap samples {D(b)
n }Bb=1 where

on each sample D(b)
n the vector xl have a probability of being

sampled equal to DKDl/
∑n

i=1 DKDi for l = 1, . . . , n and
b = 1, . . . , B.

3. For eachD(b)
n , produce a small perturbations on the rawbootstraped

sample data as follows: x(b)
l �→x(b)

l + z(b)
l for l = 1, . . . , n; where

z is sampled from a multivariate normal distribution with mean
zero and covariance matrix Sε = ε

n

∑n
i=1(xi − x)(xi − x)T , being

ε > 0 is a smoothing parameter.

4. Bootstrap empirical percentile estimation:

for (b in 1 to B): Compute F−1,(b)
n (q) from D(b)

n as in Step 1.

Set DKDme(q) as the median of {F−1,(1)
n (q), . . . , F−1,(B)

n (q)} and
identify as outlying curves the elements in the sample such that
DKDi < DKDme(q).

5. Remove the curves identified as outliers in Step 4 and return to Step
1 until no more outliers are found in the remaining data.

Some comments on Algorithm 1 are in order. Step 1 and 2
entails standard statistical procedures. Step 3 involves some
parametric perturbation on data in order to produce a robust
estimation of the true DKD quantile.

5 Experiments

In this section we develop numerical experiments to assess
the performance of the proposed depth measure in the task
of functional outlier detection. The implementation of DKD
is available in the ‘bigdatadist’ R-package, and the R
code to reproduce the experiments are provided as supple-
mentary material.

Hereafter, for the functional data representation, we con-
sider aGaussiankernel function K (t, s) = exp(−σ‖t − s‖2).
The bandwidth parameter σ and the dimension of the basis
function system d given in Eq. (5) where cross-validated
through grid search. To compare our method we con-
sider several functional depth methods: the modified band
depth (MBD) [18] already implemented in the R-package
‘depthTools’ [25], the random Tukey depth (RTD) and
the h-mode depth (HMD), see [16, 17], implemented in theR-
package ‘fda-usc’ [26], and the functional spatial depth
(FSD), see [27].

5.1 Monte Carlo simulation study

Simulation setting We simulated a sample of n = 400
curves, where a small proportion q ∈ [0, 1], known a priori,
presents an atypical pattern. The remaining n(1 − q) curves
are considered the main data. We study the performance of
DKD over three data configurations (scenarios a, b and c)
and for three different values of the contamination parameter
q ∈ {1%, 5%, 10%}. Specifically, we consider the following
generating processes:

Xl(t) =
4

∑

j=1

ξ j sin( jπ t) + εl(t), for l = 1, . . . , (1 − q)n,

Yl(t) =
4

∑

j=1

ζ j sin( jπ t) + εl(t), for l = 1, . . . , qn/2,

Zl(t) =
4

∑

j=1

η j sin( jπ t) + εl(t), for l = 1, . . . , qn/2,

where t ∈ T ≡ [0, 1] and ε·(t) are independent and zero
mean random error functions.

(a) Symmetric scenario (ξ1, . . . , ξ4) follows a multivariate
normal distribution (MND) with mean μξ

= (4, 2, 4, 1) and diagonal co-variance matrix �ξ =
diag(5, 2, 2, 1). To generate magnitude outliers, we con-
sider (ζ1, ζ2, ζ3, ζ4) following a MND with parameters
μζ = 2.5μξ and �ζ = (2.5)2�ξ . To generate shape
outliers,we specify (η1, η2, η3, η4) asMNDwith param-
eters μη = (4,−2, 1, 3) and �η = �ξ .
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(b) Asymmetric scenario In this case, {ξ1, . . . , ξ4} are inde-
pendent Chi-square distributed random variables (ICrv)
with 16, 16, 12, 12 degrees of freedom respectively;
while {ζ1, ζ2, ζ3, ζ4} are ICrvwith 40, 40, 30, 30 degrees
of freedom respectively; and (η1, η2, η3, η4) follows a
MND with mean μη = (18, 16, 8,−10) and variance
�η = diag(15, 12, 12, 15).

(c) Bi-modal scenario: ξ follows a mixture of twoMND as
follows: (ξ1, . . . , ξ4) ∼ 0.5N4(μξ,1,�ξ )+0.5N4(μξ,2,

�ξ ), where μξ,1 = (1, 1, 1, 1), μξ,2 = (9, 9, 9, 9), and
�ξ = diag(5, 2, 2, 1) is a diagonal covariance matrix.
Outliers are generated as follows: (ζ1, ζ2, ζ3, ζ4) ∼
N4(μζ ,�ζ ), where μζ = (8, 4, 8, 2) and �ζ = 4�ξ ;
and (η1, η2, η3, η4) ∼ 0.5N4(μη,1,�η) + 0.5N4(μη,2,

�η) with parameters μη,1 = (−4, 4,−1,−3), μη,2 =
(5, 5, 5, 5) and �η = 0.5 diag(1, 1, 1, 1).

To illustrate the generating process, in Fig. 1, we show one
instance of the simulated curves in the scenarios (a) to (c) for
q = 10%.

Results
To evaluate the outlier detection performance of the DKDwe
develop aMonte Carlo simulation study. To this end, for each
scenario and contamination level, we generate M = 1000
data replications and report the following average metrics:
True Positive Rate TPR = TP

q×n (sensitivity); True Negative

Rate TNR = TN
(1−q)×n (specificity), and the area under the

ROC curve aROC.
The Monte Carlo simulation results are presented in

Table 1. The DKD resents a remarkable performance
among other functional depths measures in the three sce-
narios considered for different levels of contamination q ∈
{1%, 5%, 10%}. However in the case where q = 1% the
difference with respect to other depth measures is not statis-
tically significant. Among the three different scenarios the
performance of the DKD increases with respect to the rest
of the competitors in scenario (b) and (c), where me move
away from the Gaussian setting.

5.2 Detecting outlying curves in the Australian
mortality database

For this experiment we consider age-specific log-mortality
rates of Australian males. The data is publicly available in
the R-package ‘fds’1 [28]. The data set consists of 103
curves that are registered over a range of 0-100 age cohorts,
with each curve corresponding to one year between 1901
and 2003. As shown in Fig. 2, for low-age cohorts (until 12
years approximately), themortality rates present a decreasing

1 Sourced primary from the Australian Demographic Data Bank

trend and then start to grow until late ages, where all cohorts
achieve a 100% mortality rate.

Results Outlier detection is an unsupervised learning
problem. Therefore, we do not know a-priori if there are
any outlying curves (years) in this data set. Following the
procedure detailed in Algorithm 1, we estimate the cut-off
point q such that mislabelling of correct observations as out-
liers is about 1%. The results are presented in Table 2 and
Fig. 2. The outliers detected by the DKD are years: 1919,
1943-1945. The year 1919 corresponds to the influenza pan-
demic episode that caused around 15, 000 casualties, as the
virus spread through Australia. Given the pattern in the curve
corresponding to year 1919, this curve can be visually iden-
tified and labelled as a magnitude outlier. In a related study
that rely on the same data [29], the authors identified 1919
as an anomalous observation as well.

Moreover, these curves exhibit a distinctive shape com-
pared to the others, lacking any prominent points (age-
cohorts) that would indicate their dissimilarity. As a result,
visually detecting them is exceedingly difficult. Specifically,
for the age-cohorts between 15 to 40, one can observe a dis-
crepancy in the curve patterns, so they can be considered as
shape outliers. It is particularly relevant to identify outliers
in this dataset to achieve reliable predictions of mortality
curves.With the onset of theCOVID-19 pandemic, improved
predictions can aid governments in making better-informed
decisions.

The DKD handle both type of functional outliers, as fol-
lows from the simulations in the previous section. In Table
2 we compare our findings against other standard bench-
marks introduced in the Monte Carlo simulation study as
well as theOutliergram -particularly devised to capture shape
outliers- [7] and the Functional Boxplot [8] (see Supplemen-
tary Material). Both devices are already implemented in the
R-packages ’roahd’ and ’fda’ respectively. The Out-
liergram identifies the year ’1914’ as an outlier, while the
Functional Boxplot has not pinpointed any anomalous obser-
vation. These tools are based on the Modified Band Depth
measure. This approach is very efficient identifying magni-
tude outliers or shape outliers that present a sharp difference
with respect to the rest of the sample. In this case the shape
outliers are hidden within the rest of the data and this could
explain the poor performance of the method. Finally, is also
interesting to notice that the mortality curve corresponding
to year 2003 is identified as an outlier for all the competitors.
Since year 2003 is located on the outwards of the data with
respect to the deepest curve, we tend to see these find as a
type-II-error in the analysis.
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Fig. 1 Functional data: 400 curves corresponding to q = 10% In grey ( ), we represent instances of regular curves X(t), abnormal curves Y (t)
depicted in amber ( ), and Z(t) in light-blue ( ). (color figure online)

Fig. 2 Australian Mortality
data: regular curves in gray
( ), deepest curve
black-dashed ( ) and
outliers detected by the DKD in
red ( ) (color figure online)
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Table 1 Scenarios and
contamination percentages q in
columns

Method Metric Scenario A Scenario B Scenario C

10% 5% 1% 10% 5% 1% 10% 5% 1%

MBD TPR 67.96 58.57 36.12 81.20 74.38 52.20 30.54 27.58 24.425

(5.27) (7.97) (18.43) (4.27) (7.076) (21.28) (5.20) (7.41) (17.37)

TNR 96.44 97.82 99.35 97.91 98.65 99.52 92.28 96.18 99.23

(0.58) (0.42) (0.18) (0.47) (0.37) (0.21) (0.57) (0.39) (0.17)

aROC 95.31 95.40 95.50 98.44 98.49 98.54 58.49 58.84 57.96

(1.37) (1.84) (3.84) (0.57) (0.73) (1.44) (3.16) (4.38) (10.41)

HMD TPR 80.07 76.77 67.00 83.04 79.84 70.47 79.08 79.24 67.17

(4.41) (6.86) (18.30) (4.27) (6.14) (16.09) (5.75) (6.99) (18.66)

TNR 97.78 98.77 99.66 98.11 98.93 99.70 97.67 98.90 99.68

(0.58) (0.42) (0.18) (0.47) (0.37) (0.21) (0.57) (0.39) (0.17)

aROC 97.67 97.90 98.00 98.90 99.20 99.40 96.24 96.80 97.19

(1.08) (1.47) (3.29) (0.44) (0.47) (0.74) (1.83) (2.35) (5.49)

RTD TPR 72.07 64.87 49.87 83.79 78.02 63.70 28.27 26.22 26.67

(6.95) (9.45) (17.98) (5.55) (8.66) (15.97) (5.48) (7.67) (17.76)

TNR 96.89 98.15 99.49 98.19 98.84 99.63 92.02 96.11 99.25

(0.77) (0.49) (0.18) (0.61) (0.45) (0.16) (0.61) (0.40) (0.18)

aROC 96.13 96.30 96.46 98.84 98.96 99.10 62.85 63.50 62.83

(1.65) (1.98) (3.85) (0.73) (0.77) (1.01) (3.95) (5.54) (12.55)

FSD TPR 74.89 69.59 54.65 86.18 82.80 69.97 29.57 27.10 26.90

(4.47) (6.84) (17.21) (3.31) (5.19) (15.63) (5.45) (7.60) (17.76)

TNR 97.21 98.40 99.54 98.46 99.09 99.69 92.17 96.16 99.26

(0.49) (0.36) (0.17) (0.36) (0.27) (0.15) (0.60) (0.40) (0.17)

aROC 96.79 97.13 97.29 99.13 99.35 99.47 60.81 61.42 60.63

(1.15) (1.54) (3.43) (0.38) (0.41) (0.63) (3.56) (4.98) (12.05)

DKD TPR 88.39 86.37 79.35 90.86 87.51 74.85 86.26 82.83 67.52

(3.94) (6.10) (17.54) (3.37) (5.66) (18.01) (4.03) (6.11) (19.52)

TNR 98.71 99.28 99.79 98.98 99.34 99.746 98.47 99.09 99.67

(0.43) (0.32) (0.17) (0.37) (0.29) (0.18) (0.44) (0.32) (0.19)

aROC 98.18 98.58 98.80 98.95 99.28 99.58 96.57 96.84 97.14

(0.91) (1.21) (2.83) (0.41) (0.37) (0.47) (1.71) (2.23) (5.40)

In rows, different methods and average TPR, TNR and aROC (in a scale of 102). The corresponding standard-
error are reported in parenthesis. Largest value per column per metric (in bold)

Table 2 Outliers curves
detected by the different
methods (q = 1%).

MBD HMD RTD FSD DKD

1st iteration 2001-2003 1919; 2003 2003 1919; 2003 1919; 1944-1945

2nd iteration 2000 – – – 1943

6 Conclusions

In this work, we propose a density kernel depth (DKD)
measure as a tool for detecting outliers in functional data.
The DKD method relies on a stable low-dimensional rep-
resentation of curves in a linear subspace of a Reproducing
Kernel Hilbert Space.We discuss interesting properties asso-
ciated with the DKD and address the subtleties involved in
its estimation. We showcase the performance of our method

through aMonte Carlo simulation study using three different
scenarios: symmetric, asymmetric, and bi-modal models for
functional data. The DKD is able to identify the presence of
shape and magnitude outliers not only in simulated data but
also in the analysis of Australian male mortality rate curves.
Although the DKD has a remarkable performance in iden-
tifying outliers that are hidden within the rest of the curves
and are extremely difficult to spot visually, we suggest com-
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bining DKD analysis with the outliergram [7] and functional
boxplot methods [8] to achieve more robust results.
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