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Abstract 
 

 This paper analyzes the benefits of high frequency data obtained from smart meters 

readings, specifically from individual smart meter household’s energy consumption. The 

purpose is to learn the consumer’s behavior as leverage to improve the business strategy, the 

consumer’s experience and work towards a more efficient market. To tackle this, we performed 

exploratory data analysis techniques where we not only learned more about the customers, but 

we cleaned the data to perform load forecasting. For this last point we employed both statistical 

and machine learning techniques in order to help reach a consensus on the best option for this 

type of data. Results showed that customer characterization can be key for analyzing 

consumption behavior as well as a great strategy to improve forecasting. Also, the industry’s 

standard for forecasting performed very poorly compared to other techniques. From an industry 

standpoint this study shows how the use of data form smart meters can greatly benefit both the 

industry and the consumer. Energy consumption and, therefore, generation is a key player for 

the world economy whilst also being a scarce resource that we should learn to better manage; 

big data together with the right analytics tools can be a great place to start. 
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PREDICCIÓN DEL CONSUMO DE ENERGÍA DE 

MEDIDORES INTELIGENTES INDIVIDUALES PARA LA 

TOMA DE DECISIONES ESTRATÉGICAS 

 

Resumen 
 

 Este trabajo busca analizar los beneficios de los datos masivos que podemos obtener 

del uso de medidores inteligentes, en nuestro caso especifico, de medidores de electricidad en 

viviendas personales. El propósito es aprender el comportamiento del consumidor como partida 

para mejorar la estrategia de las empresas de energía, la experiencia del consumidor y 

finalmente, trabajar hacia un mercado de energía más eficiente. Para lograr esto, empleamos 

técnicas de exploración de datos donde no solo aprendimos más sobre los consumidores, sino 

que también limpiamos los mismos para predecir el consumo. Para esto último, empleamos 

técnicas tanto estadísticas como de aprendizaje automático con el fin de ayudar a alcanzar un 

consenso sobre el mejor modelo para este tipo de datos. Los resultados muestran que la 

caracterización de los consumidores puede ser clave para analizar el comportamiento a la hora 

de consumir, como así también para mejorar la estrategia de predicción. Asimismo, la 

estrategia estándar de la industria no estuvo a la altura de lo esperado en comparación con otras 

técnicas. Desde el punto de vista de la industria, este estudio muestra como el uso de los datos 

de medidores inteligentes puede beneficiar tanto a la industria misma como el consumidor. El 

consumo de energía, y por lo tanto la producción, es un jugador clave para la economía mundial 

y a la vez un recurso escaso que deberíamos aprender como administrar mejor; el manejo 

adecuado de los datos masivos puede ser un gran primer paso. 
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1 Introduction 

 

As defined in (Koponen & Rochas, 2008), meters have been called smart since the 

introduction of static meters that included one or more microprocessors. Also, a meter is called 

smart to imply that it includes significant data processing and storage for various purposes such 

as monitoring that the meter is installed correctly and working properly, or for data 

communication with the meter using secure and open standard protocols, and providing real 

time consumption data to various actors (distributor, retailer, end user). For the past decade 

smart meters have come to impact the energy industry in a notable way. For example, (EU, 

2019) states that “The regular provision of accurate billing information based on actual 

electricity consumption, facilitated by smart metering, is important for helping customers to 

control their electricity consumption and costs”, that “Member States should encourage the 

modernisation of distribution networks, such as through the introduction of smart grids, which 

should be built in a way that encourages decentralised generation and energy efficiency”, and, 

finally, that “Smart metering systems also enable distribution system operators to have better 

visibility of their networks, and as a consequence, to reduce their operation and maintenance 

costs and to pass those savings on to the consumers in the form of lower distribution tariffs”.  

Smart meters are now part of the advanced metering infrastructure (AMI) and the idea 

behind them is that billing is no longer the main function for energy consumption recordings. 

This is because smart meters record energy on a high frequency, allowing for an immense 

amount of fine-grained electricity consumption data to be collected and things like consumer 

behaviour or lifestyles can be explored. Perhaps the most obvious employment of this 

technology is to enhance the efficiency and sustainability of the power grid and therefore 

improve the company’s strategies on decision making. From the point of view of consumers, 

this technology allows for a more conscious consumption. Consumers can manage their 
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consumptions aiming to become smart consumers like idealized in the European Green Deal 

(Ursula et al., 2020). Moreover, they are perhaps one of the most adopted Internet of Things 

(IoT) technology on households (Li et al., 2011).  

There is a general commitment from governments to transfer outdated electricity meters 

to smart meters as a goal for updating the energy systems and work towards smart cities.  As 

an illustrative example, a study from December 2019 (Tounquet & Alaton, 2019) on the 

deployment of smart meters in the EU found that: 

• Close to 225 million smart meters for electricity and 51 million for gas will be rolled 

out in the EU by 2024. This represents a potential investment of €47 billion. 

• By 2024, it is expected that almost 77% of European consumers will have a smart 

meter for electricity. About 44% will have one for gas. 

• The cost of installing a smart meter in the EU is on average between €180 and €200. 

• On average, smart meters provide savings of €230 for gas and €270 for electricity per 

metering point (distributed amongst consumers, suppliers, distribution system 

operators, etc.) as well as an average energy saving of at least 2% and as high as 10% 

based on data coming from pilot projects. 

 Furthermore, the implementation of such technologies opens the door to data analytics 

and, therefore, the possibility to make decisions in an analytical way like presented on (Wang 

et al., 2019). Given the energy consumption data for a sample of a population, all stages of 

analytics can be explored:  

1. For descriptive analytics we have Load Analysis. Here, applications such as bad data 

detection, non-technical loss detection and load profiling can be done like seen on (Luo 

et al., 2018). 
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2. For predictive analysis, we have Load Forecasting. Here we can perform forecasting 

with or without individual meters as well as probabilistic forecasting. As performed in 

(Edwards et al., 2012). 

3. For prescriptive analysis, we have Load Management. The applications for this last 

stage can be customer characterization, demand response program marketing and 

demand response implementation as shown in (Zhong & Tam, 2015).  

One of the main challenges when it comes to energy is that it cannot be stored in large 

amounts. Therefore, it is of utmost importance that both supply and demand must be matched 

by system operators, this is why, in this industry, forecasting is essential (Gajowniczek & 

Zabkowski, 2014). Long term forecasting is needed for resource management and investment 

development. Mid-term forecasting can be used for planning power production and tariffs. 

Short term forecasting is mostly used for scheduling and analysing the distribution network as 

well as implementing dynamic pricing.  

 Time series forecasting has become popular with the rise of big data. To tackle such 

problems there are both traditional and complex models. For traditional modelling, Auto 

Regressive Integrated Moving Average (ARIMA) or Seasonal Auto Regressive Integrated 

Moving Average (SARIMA) are the most popular ones. In Auto Regressive models the forecast 

will correspond to a linear combination of past values, whereas in Moving Average models, 

the forecast will correspond to a linear combination of past errors. SARIMA simply adds the 

possibility for linear combination for past seasonal errors and values. For more complex 

models, machine learning has popularized methods such as Artificial Neural Networks and 

Support Vector Machines for time series analysis. They provide the possibility to easily include 

data beyond the variable we want to forecast in a very natural way, perhaps what makes them 

so interesting for the community. 
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The aim of this work is to evaluate alternative strategies for short term load forecasting. 

Concretely, in our analysis, we will test both traditional and modern machine learning methods. 

For traditional models we will use ARIMA since, as we mentioned above, is the industry 

standard for time series forecasting. For more complex methods, we will test Long Short-Term 

Memory Artificial Neural Networks (LSTM). We believe that LSTM models have the potential 

to perform very well while still being approachable from a business standpoint. In order to 

evaluate the aforementioned models, we will propose two benchmark models. The first one is 

the widely adopted averaging model and the second one is an average model fitted to our 

context where we take into account the timestamp information. 

The rest of the draft is structured as follows: In Section 2 (Materials and Methods) we 

will analyse the raw data in the hopes of pinpointing any pattern or best alternatives for the 

future stages of analysis. Ultimately, predicting demand requires an understanding of consumer 

behaviour and this is the objective for this first stage. We will also present the models and 

methods that will be used for the predictive analysis. In Section 3 (Data Exploratory Analysis) 

we will further deepen our analysis of our data by joining the databases as well as clean the 

data. In Section 4 (Predictive analysis) we will tune the parameters and hyperparameters of our 

models and present the results.  In Section 5 we will propose strategic decisions that can be 

taken regarding the energy business. The purpose is to minimize costs for the companies when 

providing energy and understand the customers behaviour. We will also draw final conclusions 

by presenting a summary of our work, limitations and future work. Finally, in Section 7 we 

have all the annexed plots and results from Section 4 and in Section 6 we have the 

corresponding bibliography. 
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2 Materials and Methods 

 

2.1 Materials 

 
 In this Section we will present the data that will be used for this work. In Section 2.1.1 

we will present details on the origin of the data for the energy consumption as well as the 

customer’s characteristics. In Section 2.1.2 we will provide details on the origin of our 

proposed weather covariates for our analysis in Section 5. In Section 2.2.3 we will present the 

data used in a more detailed way. 

 

2.1.1 Energy Consumption Data 

 

 In this work, we will focus on analysing smart meter data provided by UK Power 

Networks.1 They have made some of their operational data open and available in the London 

Datastore.2 The data contains information of energy consumption readings for a sample of 5566 

London Households that took part in the UK Power Network led by Low Carbon London 

project between November 2011 and February 2014. The customers in the trial were recruited 

as a balanced sample representative of the Greater London population. In Section 2.2.3 we will 

deepen our analysis on the presented data. 

 Data on energy consumption is distributed across five datasets households, half hourly 

consumption, daily consumption, weather daily and weather half hourly. Below we provide 

details on each of them. 

 
1 (“Index @ www.ukpowernetworks.co.uk,”). 
2 (“Smartmeter-Energy-Use-Data-in-London-Households @ data.london.gov.uk,” )   
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• Households: This dataset contains all the information on the households: household ID, the 

type of tariff they were subject to,3 the socio-economic status they belong and the block 

file where their consumption information can be found. 

• Half hourly consumption: This dataset contains the block files with the half-hourly smart 

meter’s measurement: their household ID, timestamp and the recorded energy in kWh/hh 

(kilowatt-hour per half hour). 

• Daily consumption: This dataset has daily information on the energy consumption: 

household ID, date, median of the energy consumed that day as well as the mean, max, 

standard deviation, sum and minimum. It also has the amount of times the energy was 

recorded (if it was done every half hour, this row should be 48). 

 

2.1.2 Weather Data 

  

 Electricity consumption depends on various factors. However, one seems to stand out 

above the rest: weather. For this reason, we have decided to add weather information to further 

deepen the analysis. Data comes from the Dark Sky API.4  

The use of weather variables has two purposes, the first derives from the use of energy 

sources such as wind or solar, and the second comes from consumer behaviour itself. The 

increasing use of solar and wind power as a source of energy poses a challenge directly linked 

with weather since the output of such sources is dependent on weather. If there is no wind or 

no sun, there is no energy generated or stored, and these fluctuations in weather behaviour 

(increased by climate change factors) affect directly the energy supplied and therefore 

 
3 Approximately 1100 customers were subjected to Dynamic Time of Use (dToU) energy prices throughout the 2013 
calendar year period.  The tariff prices were given a day ahead via the Smart Meter IHD (In Home Display) or text message 
to mobile phone. Customers were issued High, Low or normal price signals and the times of day these applied.  
4 https://darksky.net/dev 
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consumed. Weather also affects the consumption/generation of energy since very cold or very 

hot weather shifts upwards the demand for energy. It is therefore very clear that weather has 

an impact con consumption and it would be interesting to enrich our models with such data.  In 

Section 2.2.3 we will deepen our analysis on choosing weather data as our covariates. 

Data on weather is distributed across two datasets, weather daily and weather half 

hourly. Below we provide details on each of them. 

• Weather daily: This dataset contains daily weather variables such as maximum/minimum 

temperature, timestamps for maximum/minimum temperature, wind speed, pressure, 

humidity and so on. 

• Weather half hourly: Same as Weather Daily but with a timestamp interval of 30 minutes. 

 

2.1.3  Basic Data Exploration 

 

In this Section we explore the data presented in Section 2.1.1 and 2.1.2 in detail. A more 

in detail analysis, where we will relate patterns observed across datasets, like merging datasets 

for a more complex and rounded analysis, will be presented in Section 3. 

 

2.1.3.1    Household information 

 

Table 1 shows how the dataset looks like if we print its first rows. As mentioned in the 

previous Section, it has the household ID: ‘LCLid’, the type of tariff that household was subject 

to: ‘stdorToU’, the socio-economic category, Acorn, sub-group it belongs to: ‘Acorn’, the 

Acorn group: ‘Acorn_grouped’, and finally the block file where we can find the energy 

consumption for that specific household. There are 5566 rows and, therefore, households. 
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Table 1: First rows of the Household information dataset 

LCLid stdorToU Acorn Acorn_grouped file 

MAC005492 ToU ACORN- ACORN- block_0 

MAC001074 ToU ACORN- ACORN- block_0 

MAC000002 Std ACORN-A Affluent block_0 

MAC003613 Std ACORN-A Affluent block_0 

MAC003597 Std ACORN-A Affluent block_0 

 

As for the Acorn information, this classification was developed by CACI Limited in 

London.(“Acorn-Consumer-Classification-Caci @ www.gov.uk” ) It is a segmentation tool 

which categorises the UK population into demographic types. There are 6 categories, 18 groups 

and 62 types.5 In our data set we have 5 present categories, ‘Acorn_grouped’, and 19 groups 

(there is an extra group present), ‘Acorn’. For example, the household ‘MAC000002’ belongs 

to the group ‘ACORN-A’ and the category ‘Affluent’. For CACI classification this falls into 

‘Exclusive enclaves, Metropolitan money and Large house luxury’. 

For this dataset in particular, we have the following number of households belonging 

to each group and category as shown on Table 2: 
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Table 2: Number of households belonging to each CACI category and group  

Group Category Count Percentage of Total 

ACORN- ACORN- 2 0.036% 

ACORN-B Affluent 25 0.449% 

ACORN-U ACORN-U 49 0.880% 

ACORN-I Comfortable 51 0.916% 

ACORN-O Adversity 103 1.851% 

ACORN-P Adversity 110 1.976% 

ACORN-J Comfortable 112 2.012% 

ACORN-M Adversity 113 2.030% 

ACORN-C Affluent 151 2.713% 

ACORN-N Adversity 152 2.731% 

ACORN-A Affluent 157 2.821% 

ACORN-K Adversity 165 2.964% 

ACORN-G Comfortable 205 3.683% 

ACORN-D Affluent 292 5.246% 

ACORN-L Adversity 342 6.144% 

ACORN-H Comfortable 455 8.175% 

ACORN-F Comfortable 684 12.289% 

ACORN-Q Adversity 831 14.930% 

ACORN-E Affluent 1567 28.153% 

 

 For the purpose of this analysis we will only be using the ‘Category’ classification. 

Henceforth, we have the following household distribution shown on Table 3: 

 



 15 

Table 3: Number of households belonging to each CACI category 

Category LCLid 

ACORN- 2 

ACORN-U 49 

Adversity 1816 

Affluent 2192 

Comfortable 1507 

 

As for the tariff information, presented in the data in the column ‘stdorToU’, as 

mentioned before, some households, during the period of 2013, were subject to dynamic 

pricing. Three types of tariffs were applied: high, low and normal. The remaining households 

who were not subject to dynamic pricing had a fixed tariff. Those who were subject to dynamic 

pricing are referenced as ‘ToU’ and those with fixed prices are referenced as ‘Std’. There are 

1123 households with ToU and 4443 with Std. 

 

2.1.3.2 Half Hourly Dataset 
 

Table 4 shows how the dataset looks like if we print the first rows. As mentioned in the 

previous Section, it has the household ID: ‘LCLid’, the timestamp ‘tstp’ showing the year, 

month, day, hour, minute and second of the reading and the consumption of energy for that 

timestamp ‘energy(kWh/hh)’ presented in Kilowatt-hour per half-hour. There are 167,817,021 

rows and, therefore, 167,817,021 energy measurements. 
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Table 4: First rows of the Half Hourly dataset 

LCLid Tstp energy(kWh/hh) 

MAC000027 2011-12-07 11:30:00.0000000 0.185 

MAC000027 2011-12-07 12:00:00.0000000 0.155 

MAC000027 2011-12-07 12:30:00.0000000 0.147 

MAC000027 2011-12-07 13:00:00.0000000 0.164 

MAC000027 2011-12-07 13:30:00.0000000 0.187 

 

2.1.3.3 Daily Dataset 
 

Table 5 shows how the dataset looks like if we print the first rows. As mentioned in the 

previous Section, it has the household ID: ‘LCLid’, the date: ‘day’, the median, mean, 

maximum, standard deviation, minimum and sum of the energy consumed on the 

corresponding day. It also has the number of times there was a consumption reading on the 

corresponding day for every household: ‘energy_count’. All energy measurements are in 

Kilowatt-hour per half-hour. 

Table 5: First rows of the Daily dataset 

 

 

 

LCLid day energy_median energy_mean energy_max energy_count energy_std energy_sum energy_min 

MAC000131 2011-12-15 0.485 0.432 0.868 22 0.239 9.505 0.072 

MAC000131 2011-12-16 0.142 0.296 1.116 48 0.281 14.216 0.031 

MAC000131 2011-12-17 0.102 0.190 0.685 48 0.188 9.111 0.064 

MAC000131 2011-12-18 0.114 0.219 0.676 48 0.203 10.511 0.065 
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Table 6 shows the basic statistical summary: 

Table 6: Basic statistical summary for each variable 

 

This data set, having the consumption on a daily basis, came very handy since trying to 

visualize the half hourly consumptions is extremely hard. So, if any clear pattern were to be 

identified, using the daily aggregated data was the best option. However, for our predictive 

work, we will not use it. 

 

Figure 1: Energy consumption for the period 2011-2014 

 
energy_median energy_mean energy_max energy_count energy_std energy_sum energy_min 

mean 0.159 0.212 0.835 47.804 0.173 10.124 0.060 

std 0.170 0.191 0.668 2.811 0.153 9.129 0.087 

min 0 0 0 0 0 0 0 

25% 0.067 0.098 0.346 48 0.069 4.682 0.020 

50% 0.115 0.163 0.688 48 0.133 7.815 0.039 

75% 0.191 0.262 1.128 48 0.229 12.569 0.071 

max 6.971 6.928 10.761 48 4.025 332.556 6.524 
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As expected, it is already possible to visualize a pattern on consumption. Figure 1 

shows how there is a clear cycle by plotting the mean energy consumption as well as the 

standard deviation. 

 

2.1.3.4 Weather Daily 
 

Table 7 shows how the dataset looks like if we print the first rows. For simplicity we will 

only keep the maximum temperature (‘temperatureMax’) in Fahrenheit and its associated 

timestamp (‘temperatureMaxTime’), the pressure (‘pressure’) in millibars and wind speed 

(‘windSpeed’) in miles per hour. The idea of using this daily information is the same as with 

the daily energy consumption data: pattern identification. 

Table 7: First rows of the Weather dataset 

temperatureMax temperatureMaxTime pressure windSpeed 

11.96 2011-11-11 23:00:00 1016.08 3.88 

8.59 2011-12-11 14:00:00 1007.71 3.94 

10.33 2011-12-27 02:00:00 1032.76 3.54 

8.07 2011-12-02 23:00:00 1012.12 3.00 

 



 19 

Figure 2: Pressure behaviour for the period 2011 - 2014 

 

 

Figure 3: Wind and Temperature behaviour for the period 2011 - 2014 

 

 



 20 

With Figure 2 and Figure 3 it is already possible to identify that energy consumption 

and weather variables have some correlation. The temperature and the wind speed seem to 

behave in an opposite way. Most importantly, they have a pattern that can be clearly related to 

the energy consumption. As for pressure, the behaviour is not clear and the year 2012 seems to 

be an outlier. 

 

2.1.3.5 Weather Hourly  
 

Table 8 shows what the dataset looks like if we print this dataset’s first rows. Because 

there was no available data for weather information in a 30-minute interval, we used this 

information and duplicated the information for every timestamp, creating a database with 

information every half hour. That dataset will be used for the predictive analysis. Visibility is 

in miles, wind bearing in degrees, temperature and dew point in Fahrenheit, and pressure in 

millibars. 

Table 8: First rows of the Weather Hourly dataset 

timestamp visibility windBearing temperature dewPoint pressure 

01/01/2012 00:00 12.99 229 12.12 10.97 1008.10 

01/01/2012 00:30 12.99 229 12.12 10.97 1008.10 

01/01/2012 01:00 12.89 238 12.59 11.02 1007.88 

01/01/2012 01:30 12.89 238 12.59 11.02 1007.88 

01/01/2012 02:00 11.54 229 12.45 11.04 1007.95 

 

2.2 Methods 

 
 In this Section we detail on the models, metrics and validation strategy used in our 

predictive analysis. The models are presented on Section 2.2.1 and the metrics on Section 2.2.2. 
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2.2.1 Models 

 

We will perform three different models in an attempt to predict the consumption for 

each individual household. The first model is an ARIMA model and the second and third ones 

are LSTM. The difference between the two LSTM models is that the second model involves 

covariates.  

 In this Section we present in total five models: The average consumption model is 

presented in 2.2.1.1, average consumption by timestamp on Section 2.2.1.2, ARIMA on Section 

2.2.1.3, LSTM Univariate on 2.2.1.4 and finally model LSTM Multivariate on 2.2.1.5. 

 

2.2.1.1 Model 1: Average consumption 

 

 This model has the intention to serve as a benchmark. It is an extremely simple model 

where, after splitting the data into train and test groups, we average the consumption for the 

train group and take that average as our prediction. This is done for each household. 

 To place it formally, 𝑦̂ is our prediction were s represents each individual household 

and the total amount of available timestamps in our dataset is given by t, …, |𝑇|. 

 

𝑦𝑠̂ =
∑ 𝑦𝑠𝑡

|𝑇|
𝑖=1

|𝑇| 
 

  

2.2.1.2 Model 2: Average consumption by timestamp 

 

 The previous model may be a good benchmark but in order to push the more advanced 

models (ARIMA/LSTM) even further, we can come up with a smarter averaging model. 
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 We will average the consumption on the train data for each day of the week and for 

each timestamp. For instance, we will group all the energy readings that were recorded on 

Mondays at each timestamp (48 each day) for the data contained on the train group and average 

them. For example, for Monday we calculate the average consumption at timestamp 00:00 AM 

(midnight), then for 00:30 AM (half past twelve) and so on. That will be repeated for each day 

of the week. 

 To place it formally, remembering that 𝑦̂ is our prediction and s represents each 

household, we can put as an example the data for all Mondays at timestamp 00:00. So, for each 

household, s, we sum the information for all available data for Mondays at 00:00 and divide 

by the count of Mondays at 00:00 given by t, …, |𝑇|:  

 

𝑦̂𝑠 =
∑ 𝑦𝑠𝑡

|𝑇|
𝑖=1

|𝑇| 
 

We will have for each unique timestamp (48 per day) and for each day of the week the 

average of energy consumption. 

 

2.2.1.3 Model 3: ARIMA(p,d,q) 

 

 ARIMA stands for Auto Regressive Integrated Moving Average (Seymour et al., 1997). 

The key aspects are: 

• AR: Autoregression. A model that uses the dependent relationship between an observation 

and a number of lagged observations. 

• I: Integrated. The use of differencing of raw observations in order to make the time series 

stationary. 
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• MA: Moving Average. A model that uses the dependency between an observation and a 

residual error from a moving average model applied to lagged observations. 

So, we have three hyper parameters to account for: p, d, q, where: 

1)  p accounts for the periods to lag and helps adjust the line that is being fitted to 

forecast the time series.  

2) d accounts for the number of differencing transformations required by the time 

series to be stationary. This is because it is easier to predict when the mean and 

variance are constant over time. 

3) q accounts for the lag of the error component, the error being a component of the 

time series that is not explained by trend or seasonality. 

 Being 𝑌𝑡 our variable of interest at the moment in time t, the proposed model has the 

following specification,  

𝑌𝑡 = 𝛼 + 𝛽1𝑌𝑡−1 + ⋯ + 𝛽𝑝𝑌𝑡−𝑝 + 𝜀𝑡 + 𝜑1𝜀𝑡−1 + ⋯ + 𝜑𝑞𝜀𝑡−𝑞 

where 𝛼, 𝛽1,  𝛽𝑝, 𝜑1, 𝜑𝑞 are parameters within the model and 𝜀𝑡 is the error at t which is 

assumed as random. 

Normally either the AR term or the MA term is used, both being used in rare occasions. 

In order to choose correctly between AR and MA, we use autocorrelation and partial 

autocorrelation plots. Autocorrelation refers to how correlated a time series is with its past 

values. The auto correlation function (ACF) plot shows the correlation between 𝑌𝑡 and 𝑌𝑡−𝑘 

for different values of k. The correlation coefficient is in the y-axis and the number of lags is 

shown in the x-axis. The partial autocorrelation function (PACF) plot measures the relation 

between 𝑌𝑡 and 𝑌𝑡−𝑘 after removing the lag 1,2, 3, …, k -1. This plot is particularly useful since 

the ACF plot may show a correlation between 𝑌𝑡 and 𝑌𝑡−2 simply by being connected to 𝑌𝑡−1. 

Therefore, by using ACF plot we can choose between MA and AR models as follows: 

• If there is a positive autocorrelation at lag 1, then we use AR model 
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• If there is a negative autocorrelation at lag 1, then we use the MA model. 

 There are two ways to determine if the time series is stationary: rolling statistics and 

the Augmented Dickey-Fuller Test. We will use the latter. 

 Taking all this into consideration, in this work, the steps that will be followed to 

construct an ARIMA model are: 

1) Make the series stationary, if necessary, by differencing. To determine this, we will use the 

Dickey-Fuller test. 

2) Study the pattern of autocorrelations and partial autocorrelations with the Autocorrelation 

function plot (ACF) and the Partial Autocorrelation Function plot (PACF) respectively. 

3) Fit the model. 

 

2.2.1.4 Model 4: Artificial Neural Network (LSTM) – Univariate Case 

 

 LSTM Neural Networks stands for Long Short-Term Memory, and so can act as long-

term or short-term memory cells (Jason, 2018). The output is modulated by the state of the 

cells and this is important since we need the prediction of the neural network to depend on the 

historical context of inputs. Their most common domain is in natural language processing, 

speech recognition and image recognitions amongst other applications. 

The idea behind LSTM is that its predictions are always tied by past inputs. However, 

as time passes, the next input will most probably not be tied to a very old input and LSTM 

manages this by learning when to remember and when to forget through their forget gate 

weights. The two hyper parameters that we will tune are the number of epochs and the number 

of neurons. One last important aspect for our LSTM model is that we will use the chosen metric 

to measure the model performance (RMSLE) as the loss function used to learn the model 

weights (more on this in Section 2.2.2). 



 25 

  

2.2.1.5 Model 5: Artificial Neural Networks (LSTM) – Multivariate Case 

 

 This model is identical to Model 4 with the sole difference of having covariates with 

the hopes of improving the predictions. The covariates are the weather variables discussed in 

the ‘Materials’ Section. Besides that, everything else is equal relative to the LSTM univariate 

model. 

 
 
2.2.2 Metrics 

 
 We use one metric to compare the different model performances, and that is RMSLE. 

RMSLE penalizes the underestimation of the actual value more severely than it does for 

overestimation. This last property is highly valuable for Load Forecasting as underestimation 

entails not being able to meet the demand of energy.  

𝑅𝑀𝑆𝐿𝐸 = √
1

𝑛
(∑(log(𝑝𝑖 + 1) − log (𝑎𝑖 + 1))2

𝑛

𝑖=1

) 

Following the formula stated above, 𝑝𝑖 is the prediction for a given period t and 𝑎𝑖 is 

the true value observed in period t. The sum is done for each value that is predicted and its 

true value given by i=1 up to n. In our case, these represent the timestamps. 

Moreover, we also included RMSE as a control metric to see if the results would hold 

against RMSLE or if they changed. RMSE formula follows the standard deviation of the 

residuals, so the metric measures how spread out the residuals are. 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑝𝑖 − 𝑜𝑖)2𝑛

𝑖=1

𝑛
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Following the formula stated above, 𝑝𝑖stands for the forecast – in our case for a given 

period t, and 𝑜𝑖 stands for the observed value – again, for a given period t. The sum is done 

for each value that is predicted and its true value given by i=1 up to n. In our case, these 

represent the timestamps. 

 

2.2.3 Validation 

 

 Neural nets have the complexity of hyperparameters that need to be calibrated. It is the 

most obvious distinction from statistical models such as ARIMA where parameters are decided 

with statistical tools. Machine learning models’ parameters are calibrated by testing a range of 

different values and once the best combination is decided, the model can be executed. The way 

we test different values for our parameters is by proposing a validation scheme.  

 Once we have our dataset, we will divide it in three groups called train, validation and 

test, roughly in an 80%-10%-10% proportion. After this, we will decide upon a range of values 

for our hyperparameters and with our train data we will run our model and validate our result 

with our validation data. This will be done for each combination of our hyperparameter’s 

candidate values by observing the lower RMLSE in the validation dataset. Once finished we 

will decide which is the best option and combine our train and validation data into a new train 

group. Once grouped, we will run our model with the optimum combination of parameters and 

test the results with our test data. 

 On Section 4.1.2 we will discuss our range of possible candidates for our LSTM 

models. 
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3 Data Exploratory Analysis 

 

 In this Section we will perform a deeper analysis of our data by joining the databases. 

In Section 3.1 we will join and explore the household data with daily consumption. In Section 

3.2 we will join and explore the household data with daily consumption and weather daily. In 

Section 3.3 we will join and explore the household data and daily consumption data again but 

this time for analysing consumption behaviour regarding the tariffs paid. In Section 3.4 we will 

clean the data for missing values and finally in Section 3.5 we will present a summary of any 

conclusions on our data. 

 

3.1 Household Information – Daily Consumption 
 

 Given the data presentation in Sections 2.1.3.1 – 2.1.3.5, we thought that as a first more 

fine-grained exploratory analysis it would be interesting to merge the household dataset with 

the daily consumption dataset. The idea behind this is the categorization of consumers into 

groups (acorn) and if this has any translation into their consumption behaviour. 

 The first step was to merge both databases using LCLid as the key. After that, we 

selected the columns: ‘LCLid’, ‘day’, ‘energy_mean’, ‘Acorn_grouped’ resulting in the 

following datasets (I’m only showing the first rows) as shown on Table 9: 

 

Table 9: First rows of the join between Household Information and Daily Consumption 

dataset 

LCLid day energy_mean Acorn_grouped 

MAC000131 2011-12-15 0.432 Affluent 

MAC000131 2011-12-16 0.296 Affluent 
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The first question that rose is how balanced the dataset regarding the Acorn 

categorization was. The result was an unbalanced dataset where the Affluent group dominates 

the rest of the groups as almost 40% of the total in contrast with ACORN- and ACORN-U who 

do not reach the 1% as shown on Table 10. 

 

Table 10: Number of households belonging to each ACORN  

Acorn_grouped Count % of total 

ACORN- 2 0.04% 

ACORN-U 49 0.88% 

Adversity 1816 32.63% 

Affluent 2192 39.38% 

Comfortable 1507 27.08% 

 

Next, the best way to see if there was a pattern in consumption between groups, was 

visually as shown on Figure 4: 

Figure 4: Mean Energy Consumption per Acorn during the period 2011 - 2014 



 29 

Effectively, there seems to be a difference in the mean consumption of energy per 

acorn. However, they all have the same consumption pattern. The only group that seems to be 

independent from the rest is ‘ACORN-’ but as of 2013 it seems to join the rest. After further 

analysis, we came to the realization that ‘ACORN-’ was missing the first three months of 2012 

as well as the available data from 2011. Moreover, this group is only 0.02% of the total dataset. 

For this reason, we decided to exclude this acorn group for any further analysis. Regarding 

ACORN-U, even though the data is available for all months, since we have a very small sample 

(0.84%) we also decided to exclude this group from any further analysis.  

To analyse if the consumption is statistically different between groups, we performed 

t-tests comparing each group’s average consumption. The null hypothesis is that there is no 

difference in the mean of consumption between any of the two acorn groups. In total we did 

three t-test: Affluent/Adversity, Affluent/Comfortable, Adversity/Comfortable. The p-value of 

each t-test is shown on Table 11:  

 

Table 11: Mean and p-value for each t-test 

 Mean for each group p-value 

Affluent/Adversity 0.2400123 = 0.178 0 

Affluent/Comfortable 0.2400123 = 0.209 0 

Adversity/Comfortable 0.1779077 = 0.209 0 

 

So, for every case, the null hypothesis is rejected at standard significance levels. For 

this reason, the groups will be analysed separately in any further analysis. 
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3.2 Consumption – Climate 
 

 Temperature is usually related to energy consumption levels, so as a next step, we 

wanted to compare the climate database with the dataset created for the ‘Household 

Information – Daily Consumption’ analysis. The idea here was to find evidence on the need of 

adding weather as covariates for the predictive analysis. 

The result is better seen graphically on Figure 5: when the temperature rises, the energy 

consumption decreases and vice-versa. So, during summer the demand for energy decreases 

and during wintertime it increases. 

 

Figure 5: Mean Energy Consumption per Acorn and Temperature for the period 2011 – 2014 

 

To further see any correlation between them, we present a correlation map on Table 12. 

With this map, should we add any weather as covariates in any predictive model, we can be 

sure it will be an asserted decision.  
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Table 12: Correlation Map between covariates and the mean energy consumption 

  visibility windBearing temperature dewPoint pressure Apparent 
Temperature WindSpeed humidity energy_mean 

visibility 1.000 0.206 0.736 0.653 -0.107 0.724 -0.021 -0.625 -0.703 
windBearing 0.206 1.000 0.087 0.183 0.104 0.108 -0.154 0.293 0.002 
temperature 0.736 0.087 1.000 0.970 0.018 0.998 -0.404 -0.564 -0.945 

dewPoint 0.653 0.183 0.970 1.000 -0.059 0.974 -0.384 -0.349 -0.894 
pressure -0.107 0.104 0.018 -0.059 1.000 0.018 -0.397 -0.275 0.149 
Apparent 

Temperature 0.724 0.108 0.998 0.974 0.018 1.000 -0.406 -0.548 -0.947 

windSpeed -0.021 -0.154 -0.404 -0.384 -0.397 -0.406 1.000 0.239 0.310 
humidity -0.625 0.293 -0.564 -0.349 -0.275 -0.548 0.239 1.000 0.616 

energy_mean -0.703 0.002 -0.945 -0.894 0.149 -0.947 0.310 0.616 1.000 

 
3.3 Tariff Analysis 
 

 Tariff discrimination seemed at first like a key component for the understating of 

consumer’s behaviour. As mentioned before, during the year 2013 an experiment on dynamic 

pricing was done in random households, so it felt natural to see if there was any statistical 

evidence on a change in the consumption behaviour. 

The first step was to graphically see if there was any obvious difference amongst the 

groups; there doesn’t seem to be big differences as shown on Figure 6. 

 

Figure 6: Mean Energy Consumption per Acorn during the year 2013 
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However, we performed a t-test to be sure that there is enough statistical evidence that 

the means between groups can be said to be equal for the year 2013 (year in which the 

difference in tariffs was made). So, we filtered the database for the year 2013 and then splitted 

between those with ‘Std’ tariff and those with ‘ToU’ tariff. To even further deepen the analysis, 

we splitted the result between Acorn groups. Consequently, we had the three Acorn groups for 

the ‘Std’ tariffs and three Acorn groups for the ‘ToU’ tariff.  

 We then performed the t-test where the null hypothesis was equal means between 

groups (i.e. Affluent (Std) and Affluent (ToU)), so in total we had three t-tests.  The p-value of 

each t-test is shown on Table 13:  

 

Table 13: Mean and p-value for each t-test 

Group Mean for each group p-value 

Adversity (Std) / Adversity (ToU) 0.133572 = 0.123 0 

Affluent (Std) / Affluent (ToU) 0.245382 = 0.205 0 

Comfortable (Std) / Comfortable (ToU) 0.171018 = 0.151 0 

 

 To conclude, with a confidence level of 1%, it is possible to say that there is enough 

statistical evidence to reject the null hypothesis. The difference in means between groups is 

statistically positive.  

 Same as for the difference in energy consumption, the groups will be analysed 

separately in any further analysis. 

 

3.4 Data Cleaning  

 
 Data cleaning was only performed on the half hourly dataset since it will be used for 

the predictive analysis. Before performing any predictive analysis, it was necessary to see if 
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the available data was clean. Most importantly, because the predictive analysis is done on an 

individual basis, it was important to know if every household had smart meter readings 

throughout the period of analysis.  

The first step on seeing how clean the data was, was looking for any Null values. To 

our surprise we found 5560 null values on 5566 houses (only one null value per household) on 

random timestamps like shown on the following sample on Table 14: 

 

Table 14: Sample of households presenting Null values for Energy consumption data 

LCLid TimeStamp energy(kWh/hh) 

MAC000027 2012-12-18 15:13:41 Null 

MAC000406 2012-12-18 15:15:33 Null 

MAC000492 2012-12-18 15:15:43 Null 

MAC000512 2012-12-18 15:15:45 Null 

MAC000726 2012-12-18 15:16:42 Null 

 

So, 99.99% of our available households have a random Null reading. These readings 

were deleted with no trouble at all since we are only interested in readings every 30’ (every 

hour and half hour). 

Next, Figure 7 shows the count of unique meters per day throughout the month of 

available data. Here we realized that if the household had smart meter readings in January 

2013, for instance, it does not imply they will have readings in February 2013 or any further 

month. This is because the household could ‘leave’ the smart meter program.  
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Figure 7: Count of meters for every timestamp available from November 2011 to February 

2014 

 

This brought a new question: how many households have complete data? The answer 

is none. Table 15 shows the count of unique timestamps for each household and, should we 

have no missing values, we should have 39792 rows (the data provided starts on 23/11/2011 

and finishes on 28/02/2014 and we have 48 reading per day). As shown on Table 15, no 

household has information for the whole period provided. 
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Table 15: First entries of the count of readings per household between 2011 and 2014 in 

descending order. 

LCLid Count 

MAC000145 39725 

MAC000147 39725 

MAC000150 39720 

MAC000152 39719 

MAC000149 39718 

 

If we consider 2012 and 2013 (the only complete years available), the result should be 

of 35088 unique values if complete and Table 16 shows us that effectively we do have 

households with complete data for that period. 

 

Table 16: First entries of the count of readings per household between 2012 and 2013 in 

descending order. 

LCLid Count 

MAC004463 35088 

MAC000019 35088 

MAC000049 35088 

MAC000131 35088 
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But, for how many households? Table 17 shows only 12 households are complete.  

Table 17: Number of houses with 35088 (or less) consumption readings between the years 

2012 – 2013  

Amount of data per household Count 

35088 12 

35087 33 

35086 57 

 

 This posed the challenge to decide if we were willing to fill in missing data. Reducing 

our data from 2011-2014 to 2012-2013 periods was not hard since only 5 houses were lost in 

that decision, but from the remaining 5561 reducing them to 12 households because of missing 

data was a huge leap. 

 Missing data is complicated to manage since we have to come up with the best solution 

to fill in those gaps without interfering with the true behaviour the consumer would have 

shown. It is important to highlight that this problem is not particular to our data, smart meters 

data is prone to missing values and both researchers and professionals are faced with this 

challenge. There are estimation methods based on statistics and machine learning, but we found 

that an estimation method that works very well for industrial wireless sensor networks is Last 

Observation Carried Forward (LOCF). (Zhou et al., 2018) show in their work how this method 

‘can acquire a high reconstruction accuracy for large time series data which changes stably’. 

So, for our case, we came to the conclusion that the best solution would be to follow LOCF, 

such that if the timestamp ‘1/1/2012 00:30’ data was missing it was filled with the value from 

the previous timestamp ‘1/1/2012 00:00’.  

 Moreover, this opens the possibility to data leakage. We know in advance that during 

the predictive analysis we will be dividing our data into train, validation and test groups 
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(Section 2.2.3) and if we happen to fill in a value from validation with train data or a value 

from test with validation data we would be effectively having data leakage problems. So, in 

order to avoid this, missing values from each group (train, validation, test) will only be filled 

with data from the same group. 

 The next decision towards missing data was how many values were we willing to fill. 

And for this, we thought that since we wanted to understand consumer’s behaviour on an 

individual scale and with high frequency data, adding in too much data would interfere with 

true behaviour. Hence, we did not want to add too many values that could prevent us from 

understanding individual household consumption beyond their aggregated behaviour. 

 Finally, we chose to keep those households with more than 35000 data points since 

over 99% of their original data is present. Again, we are interested in the consumer on an 

individual basis so having to keep fewer houses in order to have houses with as much real data 

as possible seems like the lesser evil. Having fewer houses was not going to affect the 

performance of the models but having more altered data might have.  

After dividing each household into each group, we have the following distribution 

shown on Table 18: 

 

Table 18: Number of households belonging to each group (ACORN – Tariff)  

Group Count Percentage 

Adversity - Std 116 31 % 

Adversity – Tou 22 

Affluent – Std 94 40 % 

Affluent – Tou 12 

Comfortable – Std 85 29 % 

Comfortable – Tou 14 
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If we would have kept all the households with missing values, Table 19 would look like 

Table 19: 

 

Table 19: Number of households belonging to each group (ACORN – Tariff)  

Acorn_grouped Count % of total 

Adversity 1816 32.93% 

Affluent 2192 39.75% 

Comfortable 1507 27.33% 

  

Taking this into consideration, our sample of 343 households (with over 35000 data 

points) resulted in an almost perfect proportionate subsample. In our sample Adversity 

represents 31% when it used to be 32.93%, Affluent 40% when it used to be 39.75% and 

Comfortable 29% when it used to be 27.33%.  

After cleaning the data, Figure 8 shows the daily consumption for January, February 

and March 2012 for a complete household, ID: ‘MAC004463’, but comparing the three 

months, we are not able to see any clear pattern between months.  

However, there seems to be a cyclical behaviour on smaller windows, such as daily, 

shown by the small peaks and valleys that repeat themselves.  

To further investigate this, we have a daily graph, Figure 9, for the month of January 

2012 for the same household. Again, no clear pattern is present. This entails that perhaps more 

complex models such as Artificial Neural Networks may prove to be better suited as they easily 

incorporate covariates that may help explain erratic behaviour. 
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Figure 8: Household MAC004463’s Energy Consumption in KWh/HH for January, February 

and March 2012 
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Figure 9: Household MAC004463’s Energy Consumption in KWh/HH for January 2012 
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3.5 Summary 

 

To sum up this Section and keeping in mind we will be analysing the individual 

consumption of households, after the descriptive analysis it seemed appropriate to only keep 

data for the year 2012 and 2013. These are the only complete years where we can appreciate 

the cyclic consumption of the households.  

 Moreover, we will only be analysing households belonging to the ACORN ‘Affluent’, 

‘Adversity’ and ‘Comfortable’ since ‘ACORN-’ and ‘ACORN-U’ only represent less than 1% 

of the data. Also, because of statistical evidence on a difference in consumption between them, 

we will analyse them separately. The same applies for the difference between households 

subject to dynamic or fixed tariffs (more on how this differentiation will be done on the next 

Section). 

 Furthermore, as seen on the correlation map of weather and energy, it is possible to use 

them as covariates in order to explain the consumption of energy. 

 Finally, we had to decide on the best strategy to deal with missing values we had across 

almost all households. We settled on keeping those with over 99% of their data and therefore 

kept 343 households.  
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4 Predictive Analysis 

 
In the previous section we had to decide on the best strategy to deal with missing values 

we had across almost all households. We settled on keeping those with over 99% of their data 

and therefore kept 343 households. Moving on to the predictive analysis, given that decision, 

we will have 343 results for each model.  

Let us recall that because of statistical evidence on the difference in consumption 

amongst the ACORN classifications and type of tariff, we will group the households by 

ACORN group and type of tariff applied. Moreover, we will tune, if necessary, each group 

independently. Therefore, we have six different groups of households: those belonging to the 

ACORN Affluent and had simple tariff, Affluent with dynamic tariff, Adversity with simple 

tariff, Adversity with dynamic tariff, Comfortable with simple tariff and Comfortable with 

dynamic tariff. For all cases, the length of each household data is 35088 observations: 366 days 

for the year 2012 with 48 readings per day and 365 days for the year 2013 with 48 readings per 

day. For all models the consumption data is simply the energy consumption in KWh/hh 

(Kilowatt-hour / half-hour) for every half hour and for the LSTM multivariate case, we include 

the weather variables. These weather variables are visibility, wind bearing, temperature, dew 

point, and pressure; the information frequency is the same as that of consumption so for every 

half hour there is a reading.   

The implementation for all models is in Python and the libraries used across all models 

are Pandas, NumPy, glob, matplotlib, and sklearn. Pandas and Numpy libraries were used to 

use and manipulate the data in the pandas dataframe format, and most specifically to take 

advantage of Panda’s support of datetime data. Every household consumption data was on a 

separate comma separated value (csv) file and in order to read them all together in an efficient 

way, the glob library was used.  Finally, matplotlib was used for all visualizations and sklearn 
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for the metrics. Specifically, for the ARIMA model implementation the statsmodel library was 

used and for LSTM model the keras and math library - both for univariate and multivariate 

models. 

 The input for the models varied from model to model, where for Model 1, 2 and 3 the 

input was simply the dataframe corresponding to each household divided in train-test 

accordingly. For model 4 and 5 (LSTM Univariate/Multivariate) even though the raw input 

was also in a dataframe format corresponding to each household - divided in train-validation-

test accordingly, the input was further reshaped to be in a 3D format corresponding to samples, 

timesteps, and features necessary for neural network models to work. 

 Finally, for the predictive analysis process we could have incorporated feature 

engineering transformation, more specifically, scaling. However, we decided to opt out 

because the values of our data are very small. For instance, if we recall section 2.1.3.3 (Daily 

Dataset), we show on table 6 the basic statistical summary for the daily energy consumption 

dataset. In that dataset we have the mean energy consumption and, given the statistical 

summary, the mean is equal to 0.21173. Because of this characteristic of our data, we did not 

see necessary to apply a scaling method. 

 

4.1 Setting Parameters and Hyperparameters 

 

 As mentioned in the Models Sections, ARIMA and LSTM have parameters and 

hyperparameters that need to be found and tuned. This Section is dedicated to that. We will 

present one case for each group and the rest can be found Annexed. 
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4.1.1 ARIMA 
 

Since we are forecasting each individual household’s time series, there is no clear 

strategy on how to construct the model since constructing an ARIMA for each household 

seemed very unpractical.  

Because of how we divided the households, one clear option was to construct an 

ARIMA for each group: Affluent-Std, Affluent-Tou, Adversity-Std and so on. However, we 

still have various houses in each group, so deciding on which model to use for each group was 

not trivial. The reached compromise was to randomly choose 5% of the households for each 

group and construct an ARIMA model for each one (following the mentioned steps). After that, 

decide, depending on the results, on which ARIMA to use for each group. We will therefore 

choose randomly 5% of the households and perform the Dickey Fuller test. Then, we will 

present the ACF and PACF plots. Based on the autocorrelation plots and the Dickey-Fuller 

test, we will decide on the best ARIMA model for each group. 

 
4.1.1.1  Conclusion for ARIMA parameters 

 

For the group Adversity-Std we had 94 households, and so the 5% to analyse were 5 

houses, for Adversity-Tou we had 12 households, and so the 5% to analyse was 1 house. For 

Affluent-Std we had 116 households, and so the 5% to analyse were 6 houses, for Affluent-

Tou we had 22 households, and so the 5% to analyse was 1 house. Finally, for Comfortable-

Std we had 85 households, and so the 5% to analyse were 4 houses and for Comfortable-Tou 

we had 12 households, and so the 5% to analyse was 1 house. 

All households analysed came out as stationary after the Dickey-Fuller Test. They also 

had positive autocorrelation at lag 1 and a slow decay on ACF. So, the hyper parameters chosen 

are d = 0 and q = 0.  
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For the hyper parameter p, 100% of households had two spikes on the PACF plot and 

therefore p will be equal to 2. Taking all this into account, we decided to choose an ARIMA 

(2,0,0) for all groups. 

As an example, we show the results for the first analysed household for Adversity-Std 

group, the rest can be found on the annex. 

 

1) Household MAC000019 

Dickey – Fuller Test 
• ADF Statistic: -8.740055 

• p-value: 0.000000 
• Critical Values: 1%: -3.431 | 5%: -2.862 | 10%: -2.567 

ACF PACF 
 

 
  

The Dickey-Fuller test has a p-value of zero, and therefore with a confidence level of 

1% we can say that the time series is stationary and so the hyperparameter d is equal to 0. 

 The ACF plot has a positive autocorrelation at lag 1 and a slow decay on ACF. We are 

therefore sure we need an AR model. PACF has two spikes and so we can conclude that this 

model is ARIMA(2,0,0). 
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4.1.2 LSTM 

 
 Just like for ARIMA, we chose 5% of households for each group. In order to tune the 

hyperparameters, we did cross validation on the amount of LSTM neurons. Recall Section 2.2.3 

for our validation scheme.  

 For the batch size, we decided upon 70 since it is a relatively small number yet not big 

enough that would harm the model’s performance. Batch size is the number of samples that 

are shown to the network before a weight update. 

For the number of neurons, we decided upon a range of 50, 100, 150 and 200 neurons 

since 100 is a standard number to start with and we felt that reducing all the way to 50 and 

increasing up to 200 was a good range for our model to validate. We trained each group with 

the different cases of neurons and saved the average RMSLE for each. The model with the 

lowest validation average RMSLE for each group will be the one used for the final results.  

For the number of epochs, the decision was not clear and so we implemented what is 

called an ‘early stopping’ to halt the training. This hyperparameter is very special because if 

you pass too many epochs it can lead to overfitting, whereas if you pass too few, it may result 

in an underfitted model. By applying early stopping we specified an arbitrarily large number 

of epochs (in our case it was 15, since more than 15 would entail a long running time) and it 

will automatically stop training once the model performance stops improving. This led to a 

positive secondary effect, where our models finish running faster since they do not train 

excessively unless necessary. This conclusion applies for both LSTM Multivariate and LSTM 

Univariate. The following extract (Extract 1) from our results, when running LSTM Univariate 

for the Adversity-Std group, shows how the epochs stopped at the seventh iteration, how each 

epoch took approximately 3 seconds to finish and finally a graph showing the loss value at 

each iteration for training and validation sets – we chose at random one household form each 
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group to see these results, besides the one shown below, the rest are on the annex section 

(Extract 2-12). 

 

Extract 1: Household MAC000127 from Adversity-Std group with LSTM Univariate Model 

Epoch 1/15 
32252/32252 [==============================] - 3s 101us/step - loss: 0.0617 - rmsle_loss: 0.0617 - 
val_loss: 0.0612 - val_rmsle_loss: 0.0608 
Epoch 2/15 
32252/32252 [==============================] - 3s 84us/step - loss: 0.0583 - rmsle_loss: 0.0584 - 
val_loss: 0.0592 - val_rmsle_loss: 0.0588 
Epoch 3/15 
32252/32252 [==============================] - 3s 98us/step - loss: 0.0576 - rmsle_loss: 0.0576 - 
val_loss: 0.0582 - val_rmsle_loss: 0.0579 
Epoch 4/15 
32252/32252 [==============================] - 3s 84us/step - loss: 0.0570 - rmsle_loss: 0.0570 - 
val_loss: 0.0576 - val_rmsle_loss: 0.0573 
Epoch 5/15 
32252/32252 [==============================] - 3s 82us/step - loss: 0.0566 - rmsle_loss: 0.0566 - 
val_loss: 0.0575 - val_rmsle_loss: 0.0572 
Epoch 6/15 
32252/32252 [==============================] - 3s 81us/step - loss: 0.0563 - rmsle_loss: 0.0563 - 
val_loss: 0.0575 - val_rmsle_loss: 0.0571 
Epoch 7/15 
32252/32252 [==============================] - 3s 81us/step - loss: 0.0561 - rmsle_loss: 0.0562 - 
val_loss: 0.0575 - val_rmsle_loss: 0.0571 
Epoch 00007: early stopping 
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The results are present on Table 20 for LSTM Univariate and on Table 21 for LSTM 

Multivariate. The minimum for each group is in bold. 

 

Table 20: Average RMSLE for each group for the Univariate model 

 Number of Neurons 

Group 50 100 150 200 

adv_std 0.09200 0.09040 0.09040 0.08900 

adv_tou 0.08900 0.08500 0.08300 0.08100 

aff_std 0.18933 0.18850 0.18833 0.18867 

aff_tou 0.06800 0.06700 0.06600 0.06600 

com_std 0.10200 0.10250 0.10225 0.10200 

com_tou 0.12600 0.12600 0.12400 0.12300 

 

Table 21: Average RMSLE for each group for the Multivariate model 

 Number of Neurons 

Group 50 100 150 200 

adv_std 0.10860 0.10800 0.10800 0.10860 

adv_tou 0.08400 0.08300 0.08400 0.08500 

aff_std 0.13333 0.13233 0.13267 0.13267 

aff_tou 0.07600 0.09200 0.09100 0.09000 

com_std 0.05800 0.05825 0.05900 0.06000 

com_tou 0.08700 0.08800 0.08800 0.08800 
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4.2 Results 

 
 In this Section, we present our results. As mentioned in the Materials and Methods 

Section, we used RSMLE as our metric for comparison.  

 Before presenting those results, we thought it would be interesting to see how the 

model’s predictions behaved from model to model and form group to group. For this, we 

constructed a graph showing the true value for the first 48 hours of our test group and compared 

these values with the predicted ones for each of the five models. We only did this for a lapse 

of 48 hours because it was the best time window to visualize clearly the difference without the 

graph getting too crowded. Because our predictions are also on individual household, we chose 

a random house per group to represent. For the Adversity-Std group we have household number 

22 (Figure 10), for Adversity-Tou we have household number 31 (Figure 11), for Affluent-Std 

we chose household number 18 (Figure 12), for Affluent-Tou household number 15 (Figure 

13), for Comfortable-Std household number 20 (Figure 14) and, finally, for Comfortable-Tou 

we have household number 44 (Figure 15). As our first peek into our results, we can see that 

our basic average model is flat compared to our true values and will probably perform poorly. 

ARIMA surprisingly does not perform much better than our basic model and this did come as 

a surprise. The fight will therefore be between LSTM models and we came to realise that our 

true benchmark will be our weekly average model. As for LSTM models, even though they are 

both very good, LSTM Univariate seems too good and therefore raises concern about 

overfitting; it also seems to underestimate the values together with the basic weekly average 

and, as we mentioned in our metric section (2.2.2), this is not desirable (the black line labelled 

‘Original’ is representative of our true values). 
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Figure 10: Actual values versus predicted values for household 22 from Adversity-Std 

 

Figure 11: Actual values versus predicted values for household 31 from Adversity-Tou 
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Figure 12: Actual values versus predicted values for household 18 from Affluent-Std 

 

Figure 13: Actual values versus predicted values for household 15 from Affluent-Tou 
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Figure 14: Actual values versus predicted values for household 20 from Comfortable-Std 

 

Figure 15: Actual values versus predicted values for household 44 from Comfortable-Tou 
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 Figure 16 shows in a clear way how the different models performed for each group 

ACORN-Tariff according to RMSLE outcomes. Each column represents the average RMSLE 

for each model and each group of columns stands for each ACORN-Tariff grouping. 

 

Figure 16: Average RMSLE result for each model and for each Acorn-Tariff group 

 

If we start by comparing our three models (no benchmarks), it is clear how LSTM, with 

the presence of covariates, outperforms the other two. Moreover, LSTM Univariate is still 

better than ARIMA for all cases. When comparing with our benchmark models, surprisingly, 

ARIMA performed on par with the benchmark Average Basic model for all cases as well. This 

came as a shock since ARIMA is the industry’s standard for time series forecasting. 

Furthermore, and even more surprisingly, the benchmark Average weekly outperformed 

ARIMA in all cases. LSTM univariate was also somewhat disappointing since its performance 

lies somewhere between ARIMA and Average Weekly model. 

To conclude, the best two models were both LSTM models and the Average Weekly 

model. However, LSTM Multivariate did the best performance throughout all groups. 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Adversity - Std Adversity - ToU Affluent - Std Affluent - ToU Comfortable - Std Comfortable - ToU

A
ve

ra
ge

 R
M

SL
E

avg basic avg weekly ARIMA LSTM Uni LSTM Multi



 54 

As mentioned in section 2.2.2, where we proposed RMSLE as a metric, we also 

proposed RMSE as a counterpart to see how results would hold. In Figure 17 we have Figure 

16’s analogue where we show for all groups and models the average RMSE results. 

Surprisingly enough, results held the same compared to RMSLE for ARIMA and the average 

basic model (model 1 and 3) as they were still the worst performers. Model 2, the weekly 

average, did perform worst, or viewed form another standpoint, LSTM models performed 

much better – specially LSTM Univariate. LSTM Multivariate model still remained the best 

model. Even though these results are more in line with what we would have expected, if we 

recall the presented figures in the results section 4.2, LSTM Univariate did tend to 

underestimate the values. This for our particular context is not good because that would mean 

potentially not meeting the supply of energy for our customers. RMSLE, by penalizing the 

underestimation of the actual value more severely than it does for overestimation, gives LSTM 

Multivariate the advantage, and this is what we seek as a good behaviour from our predictive 

model. More detailed results for RMSE can be found on the annex. 

 

Figure 17: Average RMSE result for each model and for each Acorn-Tariff group 
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5 Conclusion 

 

5.1  Prescriptive Analysis 

 

As we have seen throughout this work, data description can help energy companies 

better understand their customers. Customer segmentation like ACORN and the statistical 

evidence on their difference on consumption (and therefore behaviour) implies the possibility 

of differentiating their prices or even the services they are offered. As a direct consequence of 

this, revenues can increase, and the customer experience improved. 

 The advantages of predictive analysis like Load Forecasting is very clear. It enables the 

utility company to plan well by having an understanding of the future consumption, and the 

better the forecast, the better the planning. Planning may include decisions like investment on 

infrastructure or grid optimization. The obvious consequence of this is the possibility of better 

managing the risk involved in investments and the probability of shortage or surplus of energy. 

This last point entails the possibility of a better management of costs that are normally difficult 

to foresee. 

 From the standpoint of this work, where we treat the households on an individual scope, 

it may help improve the relationship with customers. For example, things like scheduling 

maintenance of the power systems can be done ensuring a minimum impact on the consumer 

by knowing when the energy consumption will be at its lowest. 

 The group that derives the greatest benefits from individual load forecasting is most 

probably the customers by offering them the possibility to access their information on 

consumption. They can plan ahead and manage their own consumption and therefore 

economics.   
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Furthermore, it was important to see that dynamic tariff does seem to statistically affect 

customer behaviour. This can have a great impact on consumption and planning for the 

companies. When companies visualize timestamps where consumption may lead to exceed 

their capacity of production, they can easily increase the energy prices. As soon as demand 

settles, prices can lower again.  

 

5.2 Summary of our work 

 

 To conclude, the proposal for this work was to give data obtained from individual smart 

meters a clear business application.  

The use of historical data on energy consumption in aggregated form has been used in 

the past and proved to be very beneficial. Decisions on strategy for investment and demand-

supply equilibrium can be greatly improved by this. However, with the introduction of smart 

meters and fine grain data, we open the possibility of finding useful insights tailored to 

individual customers or segments. 

 When analysing individual households, we found that no household is the same. This 

meant that trying to adjust one model to fit them all would be challenging. By analyzing 

characteristics that could be common to some households like the ACORN group or type of 

tariffs imposed, we found that, if we grouped them accordingly, the difference within groups 

was lower but between groups was still statistically significant. Doing this allowed us to 

propose a predictive analysis that was robust while the parameters and hyperparameters remain 

constant within groups.  

 We proposed five different approaches on Load Forecasting, four models without the 

use of covariates and one model that included weather information.  
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The first two models, Average Basic and Average Weekly were presented as 

benchmarks for the remaining three: ARIMA, LSTM Univariate and LSTM Multivariate. The 

expected result was a clear dominance of LSTM Multivariate over all the others. This entails a 

very important conclusion on the use of covariates. It made clear that the use of other variables 

other than consumption itself can greatly improve predictions and the understanding of 

customer behaviour as a whole. 

 We chose RMSLE as our metric for comparing the models because it penalizes the 

underestimation of the actual value more severely than it does for overestimation. This last 

property is highly valuable for the energy companies as it helps avoid shortages. 

 The results were both surprising and reassuring. On the one hand, LSTM Multivariate 

was a clear winner amongst all options. On the other hand, ARIMA, the industry standard, 

performed poorly, on par with LSTM Univariate compared with our benchmark Average 

Weekly. Overall LSTM Multivariate proved to be very good with an average RSMLE of 0.108. 

 Having seen that households are unique but can still be grouped using common 

characteristics without losing their differentiation can be of advantage for targeted strategies 

such as investments or dynamic pricing.  

Moreover, by visualizing their consumption behaviour, anomalies such as faulty smart 

meters (recall the Null entries we had to delete that were present on random timestamps) can 

be easily detected. 

Lastly, consumers can become ‘smart’ by making use of their consumption data and 

consume in a much more conscious way, reducing their energy consumption if it is not 

necessary or changing their consumption behaviour with the adoption of dynamic pricing. This 

last point can help flatten the curve of demand-supply and avoid peaks of consumption on 

specific timestamps that could lead to insufficient supply and, therefore, revenue loss. 
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All in all, smart meters and high frequency data correctly analysed can yield enormous 

benefits both for the consumer and the companies providing the energy. 

 

5.3 Limitations and Future work 
 
 
 For future work, given that we were expecting the ARIMA model to perform better, we 

would try and improve it. Here we tuned the ARIMA hyper parameters ourselves with PACF 

and ACF plots as well as the Dickey-Fuller test. However, it would be interesting to use an 

automated version that could be applied in a real business scenario. AutoARIMA was tried but 

the time it took to run seemed impractical for business applications. 

Moreover, given the outstanding results that yielded from adding covariates to our 

models, it would be interesting to pursue more models that can contemplate covariates in a 

natural and easy way like Long Short-Term Memory Artificial Neural Networks do. 
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7 Annex 

 

ARIMA model estimation for each group corresponding to Section Predictive Analysis / 

Setting Parameters and Hyperparameters. 

 

• Adversity – Std 

 

2) Household MAC000019 

Dickey – Fuller Test 
• ADF Statistic: -8.740055 

• p-value: 0.000000 
• Critical Values: 1%: -3.431 | 5%: -2.862 | 10%: -2.567 

ACF PACF 
 

 
  

The Dickey-Fuller test has a p-value of zero, and therefore with a confidence level of 

1% we can say that the time series is stationary and so the hyperparameter d is equal to 0. 

 The ACF plot has a positive autocorrelation at lag 1 and a slow decay on ACF. We are 

therefore sure we need an AR model. PACF has two spikes and so we can conclude that this 

model is ARIMA(2,0,0). 
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3) Household MAC000115 

Dickey-Fuller Test 
• ADF Statistic: -13.548696 

• p-value: 0.000000 
• Critical Values: 1%: -3.431 | 5%: -2.862 | 10%: -2.567 
ACF PACF 

  

 

The Dickey-Fuller test has a p-value of zero, and therefore with a confidence level of 

1% we can say that the time series is stationary and so the hyperparameter d is equal to 0. 

 The ACF plot has a positive autocorrelation at lag 1 and a slow decay on ACF. We are 

therefore sure we need an AR model. PACF has two spikes and so we can conclude that this 

model is ARIMA(2,0,0). 

 

4) Household MAC000268 

Dickey-Fuller Test 
• ADF Statistic: -17.782722 

• p-value: 0.000000 
• Critical Values: 1%: -3.431 | 5%: -2.862 | 10%: -2.567 
ACF PACF 
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The Dickey-Fuller test has a p-value of zero, and therefore with a confidence level of 

1% we can say that the time series is stationary and so the hyperparameter d is equal to 0. 

 The ACF plot has a positive autocorrelation at lag 1 and a slow decay on ACF. We are 

therefore sure we need an AR model. PACF has two spikes and so we can conclude that this 

model is ARIMA(2,0,0). 

 

5) Household MAC004533 

Dickey-Fuller Test 
• ADF Statistic: -11.269950 

• p-value: 0.000000 
• Critical Values: 1%: -3.431 | 5%: -2.862 | 10%: -2.567 

ACF PACF 

 
 

 

 

The Dickey-Fuller test has a p-value of zero, and therefore with a confidence level of 

1% we can say that the time series is stationary and so the hyperparameter d is equal to 0. 

 The ACF plot has a positive autocorrelation at lag 1 and a slow decay on ACF. We are 

therefore sure we need an AR model. PACF has two spikes and so we can conclude that this 

model is ARIMA(2,0,0). 
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6) Household MAC004866 

Dickey-Fuller Test 
• ADF Statistic: -4.965481 

• p-value: 0.000026 
• Critical Values: 1%: -3.431 | 5%: -2.862 | 10%: -2.567 
ACF PACF 

  

 

The Dickey-Fuller test has a p-value of zero, and therefore with a confidence level of 

1% we can say that the time series is stationary and so the hyperparameter d is equal to 0. 

 The ACF plot has a positive autocorrelation at lag 1 and a slow decay on ACF. We are 

therefore sure we need an AR model. PACF has two spikes and so we can conclude that this 

model is ARIMA(2,0,0). 
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• Adversity – Tou  
 
 

1) MAC000195 

Dickey-Fuller Test 
• ADF Statistic: -6.751407 

• p-value: 0.000000 
• Critical Values: 1%: -3.431 | 5%: -2.862 | 10%: -2.567 
ACF PACF 

 
 

 

 

The Dickey-Fuller test has a p-value of zero, and therefore with a confidence level of 

1% we can say that the time series is stationary and so the hyperparameter d is equal to 0. 

 The ACF plot has a positive autocorrelation at lag 1 and a slow decay on ACF. We are 

therefore sure we need an AR model. PACF has two spikes and so we can conclude that this 

model is ARIMA(2,0,0). 
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• Affluent – Std 
 

1) MAC000030 

Dickey-Fuller Test 
• ADF Statistic: -13.350816 

• p-value: 0.000000 
• Critical Values: 1%: -3.431 | 5%: -2.862 | 10%: -2.567 
ACF PACF 

 
  

 

The Dickey-Fuller test has a p-value of zero, and therefore with a confidence level of 

1% we can say that the time series is stationary and so the hyperparameter d is equal to 0. 

 The ACF plot has a positive autocorrelation at lag 1 and a slow decay on ACF. We are 

therefore sure we need an AR model. PACF has two spikes and so we can conclude that this 

model is ARIMA(2,0,0). 
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1) MAC000110 

Dickey-Fuller Test 
• ADF Statistic: -14.540008 

• p-value: 0.000000 
• Critical Values: 1%: -3.431 | 5%: -2.862 | 10%: -2.567 
ACF PACF 

 
  

 

The Dickey-Fuller test has a p-value of zero, and therefore with a confidence level of 

1% we can say that the time series is stationary and so the hyperparameter d is equal to 0. 

 The ACF plot has a positive autocorrelation at lag 1 and a slow decay on ACF. We are 

therefore sure we need an AR model. PACF has two spikes and so we can conclude that this 

model is ARIMA(2,0,0). 
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2) MAC000242 

Dickey-Fuller Test 
• ADF Statistic: -9.425087 

• p-value: 0.000000 
• Critical Values: 1%: -3.431 | 5%: -2.862 | 10%: -2.567 
ACF PACF 

 
  

 

The Dickey-Fuller test has a p-value of zero, and therefore with a confidence level of 

1% we can say that the time series is stationary and so the hyperparameter d is equal to 0. 

 The ACF plot has a positive autocorrelation at lag 1 and a slow decay on ACF. We are 

therefore sure we need an AR model. PACF has two spikes and so we can conclude that this 

model is ARIMA(2,0,0). 
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3) MAC004519 

Dickey-Fuller Test 
• ADF Statistic: -12.912283 

• p-value: 0.000000 
• Critical Values: 1%: -3.431 | 5%: -2.862 | 10%: -2.567 
ACF PACF 

 
 

 

 

The Dickey-Fuller test has a p-value of zero, and therefore with a confidence level of 

1% we can say that the time series is stationary and so the hyperparameter d is equal to 0. 

 The ACF plot has a positive autocorrelation at lag 1 and a slow decay on ACF. We are 

therefore sure we need an AR model. PACF has two spikes and so we can conclude that this 

model is ARIMA(2,0,0). 
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4) MAC004555 

Dickey-Fuller Test 
• ADF Statistic: -12.163935 

• p-value: 0.000000 
• Critical Values: 1%: -3.431 | 5%: -2.862 | 10%: -2.567 
ACF PACF 

 
 

 

 

The Dickey-Fuller test has a p-value of zero, and therefore with a confidence level of 

1% we can say that the time series is stationary and so the hyperparameter d is equal to 0. 

 The ACF plot has a positive autocorrelation at lag 1 and a slow decay on ACF. We are 

therefore sure we need an AR model. PACF has two spikes and so we can conclude that this 

model is ARIMA(2,0,0). 
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5) MAC004863 

Dickey-Fuller Test 
• ADF Statistic: -8.126708 

• p-value: 0.000000 
• Critical Values: 1%: -3.431 | 5%: -2.862 | 10%: -2.567 
ACF PACF 

  
 

The Dickey-Fuller test has a p-value of zero, and therefore with a confidence level of 

1% we can say that the time series is stationary and so the hyperparameter d is equal to 0. 

 The ACF plot has a positive autocorrelation at lag 1 and a slow decay on ACF. We are 

therefore sure we need an AR model. PACF has two spikes and so we can conclude that this 

model is ARIMA(2,0,0). 
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• Affluent – Tou  

 

1) MAC000109 

Dickey-Fuller Test 
• ADF Statistic: -15.162764 

• p-value: 0.000000 
• Critical Values: 1%: -3.431 | 5%: -2.862 | 10%: -2.567 
ACF PACF 

 
 

 

 

The Dickey-Fuller test has a p-value of zero, and therefore with a confidence level of 

1% we can say that the time series is stationary and so the hyperparameter d is equal to 0. 

 The ACF plot has a positive autocorrelation at lag 1 and a slow decay on ACF. We are 

therefore sure we need an AR model. PACF has two spikes and so we can conclude that this 

model is ARIMA(2,0,0). 
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• Comfortable - Std 
 

1) MAC000059 

Dickey-Fuller Test 
• ADF Statistic: -14.910114 

• p-value: 0.000000 
• Critical Values: 1%: -3.431 | 5%: -2.862 | 10%: -2.567 
ACF PACF 

 
 

 

 

The Dickey-Fuller test has a p-value of zero, and therefore with a confidence level of 

1% we can say that the time series is stationary and so the hyperparameter d is equal to 0. 

 The ACF plot has a positive autocorrelation at lag 1 and a slow decay on ACF. We are 

therefore sure we need an AR model. PACF has two spikes and so we can conclude that this 

model is ARIMA(2,0,0). 
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1) MAC000151 

Dickey-Fuller Test 
• ADF Statistic: -13.087662 

• p-value: 0.000000 
• Critical Values: 1%: -3.431 | 5%: -2.862 | 10%: -2.567 
ACF PACF 

  
 

The Dickey-Fuller test has a p-value of zero, and therefore with a confidence level of 

1% we can say that the time series is stationary and so the parameter d is equal to 0. 

 The ACF plot has a positive autocorrelation at lag 1 and a slow decay on ACF. We are 

therefore sure we need an AR model. PACF has two spikes and so we can conclude that this 

model is ARIMA(2,0,0). 
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2) MAC000217 

Dickey-Fuller Test 
• ADF Statistic: -9.618152 

• p-value: 0.000000 
• Critical Values: 1%: -3.431 | 5%: -2.862 | 10%: -2.567 

 
ACF PACF 

  
 

The Dickey-Fuller test has a p-value of zero, and therefore with a confidence level of 

1% we can say that the time series is stationary and so the hyperparameter d is equal to 0. 

 The ACF plot has a positive autocorrelation at lag 1 and a slow decay on ACF. We are 

therefore sure we need an AR model. PACF has two spikes and so we can conclude that this 

model is ARIMA(2,0,0). 
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3) MAC004545 

Dickey-Fuller Test 
• ADF Statistic: -18.522891 

• p-value: 0.000000 
• Critical Values: 1%: -3.431 | 5%: -2.862 | 10%: -2.567 
ACF PACF 

 
  

 

The Dickey-Fuller test has a p-value of zero, and therefore with a confidence level of 

1% we can say that the time series is stationary and so the hyperparameter d is equal to 0. 

 The ACF plot has a positive autocorrelation at lag 1 and a slow decay on ACF. We are 

therefore sure we need an AR model. PACF has two spikes and so we can conclude that this 

model is ARIMA(2,0,0). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 78 

 
• Comfortable – Tou 

 
Dickey-Fuller Test 

• ADF Statistic: -18.493115 
• p-value: 0.000000 

• Critical Values: 1%: -3.431 | 5%: -2.862 | 10%: -2.567 
ACF PACF 

  
 
 

The Dickey-Fuller test has a p-value of zero, and therefore with a confidence level of 

1% we can say that the time series is stationary and so the hyperparameter d is equal to 0. 

 The ACF plot has a positive autocorrelation at lag 1 and a slow decay on ACF. We are 

therefore sure we need an AR model. PACF has two spikes and so we can conclude that this 

model is ARIMA (2,0,0). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 79 

 Extractions from LSTM Univariate and LSTM Multivariate models. There are two 

from each group (Adversity-Std, Adversity-Tou, …) and therefore 12 in total – 6 for LSTM 

Univariate and 6 for LSTM Multivariate. 

 

Extract 2: Household MAC000107 from Adversity-Tou group with LSTM Univariate Model 

Epoch 1/15 

32252/32252 [==============================] - 4s 126us/step - loss: 0.0649 - rmsle_loss: 0.0649 - val_loss: 

0.0621 - val_rmsle_loss: 0.0606 

Epoch 2/15 

32252/32252 [==============================] - 3s 102us/step - loss: 0.0632 - rmsle_loss: 0.0632 - val_loss: 

0.0619 - val_rmsle_loss: 0.0603 

Epoch 3/15 

32252/32252 [==============================] - 3s 103us/step - loss: 0.0629 - rmsle_loss: 0.0629 - val_loss: 

0.0616 - val_rmsle_loss: 0.0601 

Epoch 4/15 

32252/32252 [==============================] - 3s 104us/step - loss: 0.0627 - rmsle_loss: 0.0627 - val_loss: 

0.0615 - val_rmsle_loss: 0.0599 

Epoch 5/15 

32252/32252 [==============================] - 3s 105us/step - loss: 0.0626 - rmsle_loss: 0.0626 - val_loss: 

0.0613 - val_rmsle_loss: 0.0598 

Epoch 6/15 

32252/32252 [==============================] - 3s 99us/step - loss: 0.0625 - rmsle_loss: 0.0625 - val_loss: 

0.0613 - val_rmsle_loss: 0.0597 

Epoch 7/15 

32252/32252 [==============================] - 3s 94us/step - loss: 0.0624 - rmsle_loss: 0.0624 - val_loss: 

0.0612 - val_rmsle_loss: 0.0596 

Epoch 8/15 

32252/32252 [==============================] - 3s 97us/step - loss: 0.0623 - rmsle_loss: 0.0623 - val_loss: 

0.0612 - val_rmsle_loss: 0.0596 

Epoch 9/15 

32252/32252 [==============================] - 3s 94us/step - loss: 0.0623 - rmsle_loss: 0.0623 - val_loss: 

0.0612 - val_rmsle_loss: 0.0596 
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Epoch 10/15 

32252/32252 [==============================] - 3s 96us/step - loss: 0.0623 - rmsle_loss: 0.0623 - val_loss: 

0.0611 - val_rmsle_loss: 0.0596 

Epoch 11/15 

32252/32252 [==============================] - 3s 94us/step - loss: 0.0623 - rmsle_loss: 0.0623 - val_loss: 

0.0611 - val_rmsle_loss: 0.0596 

Epoch 12/15 

32252/32252 [==============================] - 3s 92us/step - loss: 0.0622 - rmsle_loss: 0.0622 - val_loss: 

0.0611 - val_rmsle_loss: 0.0596 

Epoch 13/15 

32252/32252 [==============================] - 3s 93us/step - loss: 0.0622 - rmsle_loss: 0.0622 - val_loss: 

0.0611 - val_rmsle_loss: 0.0595 

Epoch 14/15 

32252/32252 [==============================] - 3s 94us/step - loss: 0.0622 - rmsle_loss: 0.0622 - val_loss: 

0.0611 - val_rmsle_loss: 0.0595 

Epoch 00014: early stopping 
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Extract 3: Household MAC000253 from Affluent-Std group with LSTM Univariate Model 

Epoch 1/15 

32252/32252 [==============================] - 3s 104us/step - loss: 0.0623 - rmsle_loss: 0.0624 - val_loss: 0.0569 

- val_rmsle_loss: 0.0562 

Epoch 2/15 

32252/32252 [==============================] - 2s 77us/step - loss: 0.0558 - rmsle_loss: 0.0558 - val_loss: 0.0557 - 

val_rmsle_loss: 0.0549 

Epoch 3/15 

32252/32252 [==============================] - 3s 84us/step - loss: 0.0549 - rmsle_loss: 0.0549 - val_loss: 0.0552 - 

val_rmsle_loss: 0.0544 

Epoch 4/15 

32252/32252 [==============================] - 3s 80us/step - loss: 0.0544 - rmsle_loss: 0.0545 - val_loss: 0.0550 - 

val_rmsle_loss: 0.0542 

Epoch 5/15 

32252/32252 [==============================] - 3s 79us/step - loss: 0.0543 - rmsle_loss: 0.0543 - val_loss: 0.0549 - 

val_rmsle_loss: 0.0542 

Epoch 6/15 

32252/32252 [==============================] - 3s 93us/step - loss: 0.0542 - rmsle_loss: 0.0542 - val_loss: 0.0549 - 

val_rmsle_loss: 0.0541 

Epoch 7/15 

32252/32252 [==============================] - 3s 79us/step - loss: 0.0541 - rmsle_loss: 0.0542 - val_loss: 0.0548 - 

val_rmsle_loss: 0.0541 

Epoch 8/15 

32252/32252 [==============================] - 3s 78us/step - loss: 0.0541 - rmsle_loss: 0.0541 - val_loss: 0.0548 - 

val_rmsle_loss: 0.0540 

Epoch 9/15 

32252/32252 [==============================] - 3s 79us/step - loss: 0.0541 - rmsle_loss: 0.0541 - val_loss: 0.0548 - 

val_rmsle_loss: 0.0540 

Epoch 10/15 

32252/32252 [==============================] - 3s 82us/step - loss: 0.0541 - rmsle_loss: 0.0541 - val_loss: 0.0548 - 

val_rmsle_loss: 0.0540 

Epoch 11/15 

32252/32252 [==============================] - 2s 76us/step - loss: 0.0541 - rmsle_loss: 0.0541 - val_loss: 0.0548 - 

val_rmsle_loss: 0.0540 

Epoch 12/15 

32252/32252 [==============================] - 3s 78us/step - loss: 0.0541 - rmsle_loss: 0.0541 - val_loss: 0.0547 - 

val_rmsle_loss: 0.0540 

Epoch 13/15 
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32252/32252 [==============================] - 3s 80us/step - loss: 0.0540 - rmsle_loss: 0.0541 - val_loss: 0.0547 - 

val_rmsle_loss: 0.0540 

Epoch 14/15 

32252/32252 [==============================] - 3s 86us/step - loss: 0.0540 - rmsle_loss: 0.0540 - val_loss: 0.0547 - 

val_rmsle_loss: 0.0540 

Epoch 00014: early stopping 
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Extract 4: Household MAC000173 from Affluent-Tou group with LSTM Univariate Model 

Epoch 1/15 

32252/32252 [==============================] - 4s 112us/step - loss: 0.0637 - rmsle_loss: 0.0637 - val_loss: 0.0656 

- val_rmsle_loss: 0.0657 

Epoch 2/15 

32252/32252 [==============================] - 3s 85us/step - loss: 0.0615 - rmsle_loss: 0.0615 - val_loss: 0.0655 - 

val_rmsle_loss: 0.0655 

Epoch 3/15 

32252/32252 [==============================] - 3s 84us/step - loss: 0.0613 - rmsle_loss: 0.0613 - val_loss: 0.0653 - 

val_rmsle_loss: 0.0654 

Epoch 4/15 

32252/32252 [==============================] - 3s 88us/step - loss: 0.0611 - rmsle_loss: 0.0611 - val_loss: 0.0651 - 

val_rmsle_loss: 0.0652 

Epoch 5/15 

32252/32252 [==============================] - 3s 87us/step - loss: 0.0609 - rmsle_loss: 0.0609 - val_loss: 0.0649 - 

val_rmsle_loss: 0.0650 

Epoch 6/15 

32252/32252 [==============================] - 3s 84us/step - loss: 0.0606 - rmsle_loss: 0.0606 - val_loss: 0.0645 - 

val_rmsle_loss: 0.0646 

Epoch 7/15 

32252/32252 [==============================] - 3s 85us/step - loss: 0.0604 - rmsle_loss: 0.0604 - val_loss: 0.0642 - 

val_rmsle_loss: 0.0643 

Epoch 8/15 

32252/32252 [==============================] - 3s 87us/step - loss: 0.0602 - rmsle_loss: 0.0602 - val_loss: 0.0641 - 

val_rmsle_loss: 0.0642 

Epoch 9/15 

32252/32252 [==============================] - 3s 89us/step - loss: 0.0602 - rmsle_loss: 0.0602 - val_loss: 0.0641 - 

val_rmsle_loss: 0.0642 

Epoch 10/15 

32252/32252 [==============================] - 3s 89us/step - loss: 0.0601 - rmsle_loss: 0.0601 - val_loss: 0.0641 - 

val_rmsle_loss: 0.0642 

Epoch 00010: early stopping 
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Extract 5: Household MAC004478 from Comfortable-Std group with LSTM Univariate Model 

Epoch 1/15 

32252/32252 [==============================] - 3s 81us/step - loss: 0.0782 - rmsle_loss: 0.0782 - val_loss: 0.0717 - 

val_rmsle_loss: 0.0704 

Epoch 2/15 

32252/32252 [==============================] - 1s 39us/step - loss: 0.0684 - rmsle_loss: 0.0684 - val_loss: 0.0689 - 

val_rmsle_loss: 0.0676 

Epoch 3/15 

32252/32252 [==============================] - 1s 39us/step - loss: 0.0665 - rmsle_loss: 0.0665 - val_loss: 0.0666 - 

val_rmsle_loss: 0.0653 

Epoch 4/15 

32252/32252 [==============================] - 1s 39us/step - loss: 0.0654 - rmsle_loss: 0.0654 - val_loss: 0.0656 - 

val_rmsle_loss: 0.0644 

Epoch 5/15 

32252/32252 [==============================] - 1s 41us/step - loss: 0.0650 - rmsle_loss: 0.0651 - val_loss: 0.0651 - 

val_rmsle_loss: 0.0639 

Epoch 6/15 

32252/32252 [==============================] - 2s 55us/step - loss: 0.0648 - rmsle_loss: 0.0648 - val_loss: 0.0648 - 

val_rmsle_loss: 0.0636 

Epoch 7/15 

32252/32252 [==============================] - 3s 79us/step - loss: 0.0646 - rmsle_loss: 0.0646 - val_loss: 0.0644 - 

val_rmsle_loss: 0.0632 

Epoch 8/15 

32252/32252 [==============================] - 3s 91us/step - loss: 0.0644 - rmsle_loss: 0.0644 - val_loss: 0.0642 - 

val_rmsle_loss: 0.0630 

Epoch 9/15 

32252/32252 [==============================] - 3s 79us/step - loss: 0.0643 - rmsle_loss: 0.0643 - val_loss: 0.0639 - 

val_rmsle_loss: 0.0627 

Epoch 10/15 

32252/32252 [==============================] - 2s 59us/step - loss: 0.0642 - rmsle_loss: 0.0642 - val_loss: 0.0637 - 

val_rmsle_loss: 0.0626 

Epoch 11/15 

32252/32252 [==============================] - 3s 79us/step - loss: 0.0641 - rmsle_loss: 0.0641 - val_loss: 0.0636 - 

val_rmsle_loss: 0.0624 

Epoch 12/15 

32252/32252 [==============================] - 2s 67us/step - loss: 0.0640 - rmsle_loss: 0.0641 - val_loss: 0.0635 - 

val_rmsle_loss: 0.0623 

Epoch 13/15 
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32252/32252 [==============================] - 2s 61us/step - loss: 0.0640 - rmsle_loss: 0.0640 - val_loss: 0.0634 - 

val_rmsle_loss: 0.0622 

Epoch 14/15 

32252/32252 [==============================] - 2s 75us/step - loss: 0.0640 - rmsle_loss: 0.0640 - val_loss: 0.0634 - 

val_rmsle_loss: 0.0622 

Epoch 15/15 

32252/32252 [==============================] - 1s 41us/step - loss: 0.0639 - rmsle_loss: 0.0640 - val_loss: 0.0633 - 

val_rmsle_loss: 0.0622 
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Extract 6: Household MAC004485 from Comfortable-Tou group with LSTM Univariate Model 

Epoch 1/15 

32252/32252 [==============================] - 6s 184us/step - loss: 0.0557 - rmsle_loss: 0.0557 - val_loss: 0.0504 - 

val_rmsle_loss: 0.0499 

Epoch 2/15 

32252/32252 [==============================] - 5s 146us/step - loss: 0.0523 - rmsle_loss: 0.0523 - val_loss: 0.0503 - 

val_rmsle_loss: 0.0498 

Epoch 3/15 

32252/32252 [==============================] - 4s 132us/step - loss: 0.0522 - rmsle_loss: 0.0522 - val_loss: 0.0502 - 

val_rmsle_loss: 0.0498 

Epoch 4/15 

32252/32252 [==============================] - 4s 117us/step - loss: 0.0521 - rmsle_loss: 0.0521 - val_loss: 0.0502 - 

val_rmsle_loss: 0.0497 

Epoch 5/15 

32252/32252 [==============================] - 4s 121us/step - loss: 0.0520 - rmsle_loss: 0.0520 - val_loss: 0.0502 - 

val_rmsle_loss: 0.0497 

Epoch 6/15 

32252/32252 [==============================] - 4s 116us/step - loss: 0.0519 - rmsle_loss: 0.0519 - val_loss: 0.0502 - 

val_rmsle_loss: 0.0497 

Epoch 00006: early stopping 
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Extract 7: Household from Adversity-Std group with LSTM Multivariate Model 

Epoch 1/15 

32256/32256 [==============================] - 2s 64us/step - loss: 0.0676 - rmsle_loss: 0.0676 - val_loss: 0.0739 - 

val_rmsle_loss: 0.0771 

Epoch 2/15 

32256/32256 [==============================] - 2s 56us/step - loss: 0.0629 - rmsle_loss: 0.0629 - val_loss: 0.0696 - 

val_rmsle_loss: 0.0729 

Epoch 3/15 

32256/32256 [==============================] - 1s 45us/step - loss: 0.0628 - rmsle_loss: 0.0629 - val_loss: 0.0655 - 

val_rmsle_loss: 0.0692 

Epoch 4/15 

32256/32256 [==============================] - 2s 47us/step - loss: 0.0625 - rmsle_loss: 0.0625 - val_loss: 0.0635 - 

val_rmsle_loss: 0.0674 

Epoch 5/15 

32256/32256 [==============================] - 1s 45us/step - loss: 0.0620 - rmsle_loss: 0.0620 - val_loss: 0.0625 - 

val_rmsle_loss: 0.0665 

Epoch 6/15 

32256/32256 [==============================] - 1s 46us/step - loss: 0.0615 - rmsle_loss: 0.0615 - val_loss: 0.0619 - 

val_rmsle_loss: 0.0660 

Epoch 7/15 

32256/32256 [==============================] - 1s 46us/step - loss: 0.0610 - rmsle_loss: 0.0610 - val_loss: 0.0614 - 

val_rmsle_loss: 0.0656 

Epoch 8/15 

32256/32256 [==============================] - 1s 45us/step - loss: 0.0606 - rmsle_loss: 0.0606 - val_loss: 0.0610 - 

val_rmsle_loss: 0.0653 

Epoch 9/15 

32256/32256 [==============================] - 1s 46us/step - loss: 0.0601 - rmsle_loss: 0.0601 - val_loss: 0.0607 - 

val_rmsle_loss: 0.0650 

Epoch 10/15 

32256/32256 [==============================] - 1s 45us/step - loss: 0.0597 - rmsle_loss: 0.0597 - val_loss: 0.0604 - 

val_rmsle_loss: 0.0648 

Epoch 11/15 

32256/32256 [==============================] - 1s 45us/step - loss: 0.0594 - rmsle_loss: 0.0594 - val_loss: 0.0602 - 

val_rmsle_loss: 0.0646 

Epoch 12/15 

32256/32256 [==============================] - 1s 45us/step - loss: 0.0591 - rmsle_loss: 0.0591 - val_loss: 0.0601 - 

val_rmsle_loss: 0.0645 

Epoch 13/15 
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32256/32256 [==============================] - 1s 45us/step - loss: 0.0588 - rmsle_loss: 0.0588 - val_loss: 0.0600 - 

val_rmsle_loss: 0.0645 

Epoch 14/15 

32256/32256 [==============================] - 1s 46us/step - loss: 0.0586 - rmsle_loss: 0.0586 - val_loss: 0.0600 - 

val_rmsle_loss: 0.0645 

Epoch 15/15 

32256/32256 [==============================] - 1s 45us/step - loss: 0.0584 - rmsle_loss: 0.0585 - val_loss: 0.0600 - 

val_rmsle_loss: 0.0645 
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Extract 8: Household from Adversity-Tou group with LSTM Multivariate Model 

Epoch 1/15 

32256/32256 [==============================] - 2s 61us/step - loss: 0.0462 - rmsle_loss: 0.0462 - val_loss: 0.0489 - 

val_rmsle_loss: 0.0479 

Epoch 2/15 

32256/32256 [==============================] - 1s 44us/step - loss: 0.0450 - rmsle_loss: 0.0450 - val_loss: 0.0478 - 

val_rmsle_loss: 0.0467 

Epoch 3/15 

32256/32256 [==============================] - 1s 43us/step - loss: 0.0446 - rmsle_loss: 0.0446 - val_loss: 0.0469 - 

val_rmsle_loss: 0.0458 

Epoch 4/15 

32256/32256 [==============================] - 1s 43us/step - loss: 0.0443 - rmsle_loss: 0.0443 - val_loss: 0.0463 - 

val_rmsle_loss: 0.0452 

Epoch 5/15 

32256/32256 [==============================] - 1s 43us/step - loss: 0.0440 - rmsle_loss: 0.0440 - val_loss: 0.0459 - 

val_rmsle_loss: 0.0447 

Epoch 6/15 

32256/32256 [==============================] - 1s 44us/step - loss: 0.0437 - rmsle_loss: 0.0437 - val_loss: 0.0455 - 

val_rmsle_loss: 0.0443 

Epoch 7/15 

32256/32256 [==============================] - 3s 85us/step - loss: 0.0434 - rmsle_loss: 0.0434 - val_loss: 0.0451 - 

val_rmsle_loss: 0.0439 

Epoch 8/15 

32256/32256 [==============================] - 2s 70us/step - loss: 0.0431 - rmsle_loss: 0.0431 - val_loss: 0.0448 - 

val_rmsle_loss: 0.0435 

Epoch 9/15 

32256/32256 [==============================] - 2s 67us/step - loss: 0.0427 - rmsle_loss: 0.0428 - val_loss: 0.0445 - 

val_rmsle_loss: 0.0432 

Epoch 10/15 

32256/32256 [==============================] - 2s 48us/step - loss: 0.0425 - rmsle_loss: 0.0425 - val_loss: 0.0443 - 

val_rmsle_loss: 0.0431 

Epoch 11/15 

32256/32256 [==============================] - 2s 48us/step - loss: 0.0423 - rmsle_loss: 0.0423 - val_loss: 0.0442 - 

val_rmsle_loss: 0.0430 

Epoch 12/15 

32256/32256 [==============================] - 2s 47us/step - loss: 0.0422 - rmsle_loss: 0.0422 - val_loss: 0.0442 - 

val_rmsle_loss: 0.0429 

Epoch 13/15 
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32256/32256 [==============================] - 2s 51us/step - loss: 0.0421 - rmsle_loss: 0.0421 - val_loss: 0.0441 - 

val_rmsle_loss: 0.0429 

Epoch 14/15 

32256/32256 [==============================] - 2s 67us/step - loss: 0.0420 - rmsle_loss: 0.0420 - val_loss: 0.0441 - 

val_rmsle_loss: 0.0429 

Epoch 15/15 

32256/32256 [==============================] - 2s 51us/step - loss: 0.0420 - rmsle_loss: 0.0420 - val_loss: 0.0441 - 

val_rmsle_loss: 0.0429 

Epoch 00015: early stopping 
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Extract 9: Household from Affluent-Std group with LSTM Multivariate Model 

Epoch 1/15 

32256/32256 [==============================] - 2s 65us/step - loss: 0.0725 - rmsle_loss: 0.0725 - val_loss: 0.0711 - 

val_rmsle_loss: 0.0719 

Epoch 2/15 

32256/32256 [==============================] - 1s 46us/step - loss: 0.0694 - rmsle_loss: 0.0694 - val_loss: 0.0706 - 

val_rmsle_loss: 0.0714 

Epoch 3/15 

32256/32256 [==============================] - 2s 47us/step - loss: 0.0691 - rmsle_loss: 0.0691 - val_loss: 0.0702 - 

val_rmsle_loss: 0.0709 

Epoch 4/15 

32256/32256 [==============================] - 1s 46us/step - loss: 0.0686 - rmsle_loss: 0.0686 - val_loss: 0.0698 - 

val_rmsle_loss: 0.0704 

Epoch 5/15 

32256/32256 [==============================] - 1s 46us/step - loss: 0.0681 - rmsle_loss: 0.0681 - val_loss: 0.0694 - 

val_rmsle_loss: 0.0699 

Epoch 6/15 

32256/32256 [==============================] - 2s 47us/step - loss: 0.0676 - rmsle_loss: 0.0676 - val_loss: 0.0689 - 

val_rmsle_loss: 0.0694 

Epoch 7/15 

32256/32256 [==============================] - 2s 47us/step - loss: 0.0671 - rmsle_loss: 0.0671 - val_loss: 0.0683 - 

val_rmsle_loss: 0.0688 

Epoch 8/15 

32256/32256 [==============================] - 2s 47us/step - loss: 0.0666 - rmsle_loss: 0.0667 - val_loss: 0.0679 - 

val_rmsle_loss: 0.0683 

Epoch 9/15 

32256/32256 [==============================] - 2s 48us/step - loss: 0.0662 - rmsle_loss: 0.0662 - val_loss: 0.0675 - 

val_rmsle_loss: 0.0678 

Epoch 10/15 

32256/32256 [==============================] - 1s 46us/step - loss: 0.0659 - rmsle_loss: 0.0659 - val_loss: 0.0672 - 

val_rmsle_loss: 0.0675 

Epoch 11/15 

32256/32256 [==============================] - 1s 46us/step - loss: 0.0657 - rmsle_loss: 0.0657 - val_loss: 0.0671 - 

val_rmsle_loss: 0.0673 

Epoch 12/15 

32256/32256 [==============================] - 2s 47us/step - loss: 0.0655 - rmsle_loss: 0.0655 - val_loss: 0.0670 - 

val_rmsle_loss: 0.0672 

Epoch 13/15 
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32256/32256 [==============================] - 2s 47us/step - loss: 0.0654 - rmsle_loss: 0.0654 - val_loss: 0.0670 - 

val_rmsle_loss: 0.0672 

Epoch 14/15 

32256/32256 [==============================] - 2s 47us/step - loss: 0.0653 - rmsle_loss: 0.0653 - val_loss: 0.0670 - 

val_rmsle_loss: 0.0672 

Epoch 00014: early stopping  
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Extract 10: Household from Affluent-Tou group with LSTM Multivariate Model 

Epoch 1/15 

32256/32256 [==============================] - 2s 53us/step - loss: 0.0353 - rmsle_loss: 0.0353 - val_loss: 0.0307 - 

val_rmsle_loss: 0.0313 

Epoch 2/15 

32256/32256 [==============================] - 1s 37us/step - loss: 0.0304 - rmsle_loss: 0.0304 - val_loss: 0.0303 - 

val_rmsle_loss: 0.0309 

Epoch 3/15 

32256/32256 [==============================] - 1s 37us/step - loss: 0.0302 - rmsle_loss: 0.0302 - val_loss: 0.0301 - 

val_rmsle_loss: 0.0308 

Epoch 4/15 

32256/32256 [==============================] - 1s 38us/step - loss: 0.0301 - rmsle_loss: 0.0301 - val_loss: 0.0299 - 

val_rmsle_loss: 0.0305 

Epoch 5/15 

32256/32256 [==============================] - 2s 49us/step - loss: 0.0301 - rmsle_loss: 0.0301 - val_loss: 0.0295 - 

val_rmsle_loss: 0.0302 

Epoch 6/15 

32256/32256 [==============================] - 2s 50us/step - loss: 0.0301 - rmsle_loss: 0.0301 - val_loss: 0.0291 - 

val_rmsle_loss: 0.0297 

Epoch 7/15 

32256/32256 [==============================] - 2s 50us/step - loss: 0.0300 - rmsle_loss: 0.0300 - val_loss: 0.0288 - 

val_rmsle_loss: 0.0294 

Epoch 8/15 

32256/32256 [==============================] - 1s 39us/step - loss: 0.0300 - rmsle_loss: 0.0300 - val_loss: 0.0285 - 

val_rmsle_loss: 0.0291 

Epoch 9/15 

32256/32256 [==============================] - 1s 36us/step - loss: 0.0300 - rmsle_loss: 0.0299 - val_loss: 0.0284 - 

val_rmsle_loss: 0.0290 

Epoch 10/15 

32256/32256 [==============================] - 1s 46us/step - loss: 0.0299 - rmsle_loss: 0.0299 - val_loss: 0.0283 - 

val_rmsle_loss: 0.0289 

Epoch 11/15 

32256/32256 [==============================] - 1s 45us/step - loss: 0.0299 - rmsle_loss: 0.0299 - val_loss: 0.0283 - 

val_rmsle_loss: 0.0289 

Epoch 12/15 

32256/32256 [==============================] - 1s 37us/step - loss: 0.0299 - rmsle_loss: 0.0299 - val_loss: 0.0284 - 

val_rmsle_loss: 0.0289 

Epoch 00012: early stopping 
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Extract 11: Household from Comfortable-Std group with LSTM Multivariate Model 

Epoch 1/15 

32256/32256 [==============================] - 2s 52us/step - loss: 0.0514 - rmsle_loss: 0.0514 - val_loss: 0.0498 - 

val_rmsle_loss: 0.0515 

Epoch 2/15 

32256/32256 [==============================] - 1s 33us/step - loss: 0.0498 - rmsle_loss: 0.0498 - val_loss: 0.0495 - 

val_rmsle_loss: 0.0511 

Epoch 3/15 

32256/32256 [==============================] - 1s 33us/step - loss: 0.0496 - rmsle_loss: 0.0496 - val_loss: 0.0494 - 

val_rmsle_loss: 0.0509 

Epoch 4/15 

32256/32256 [==============================] - 1s 32us/step - loss: 0.0495 - rmsle_loss: 0.0495 - val_loss: 0.0492 - 

val_rmsle_loss: 0.0507 

Epoch 5/15 

32256/32256 [==============================] - 1s 34us/step - loss: 0.0494 - rmsle_loss: 0.0494 - val_loss: 0.0491 - 

val_rmsle_loss: 0.0506 

Epoch 6/15 

32256/32256 [==============================] - 1s 30us/step - loss: 0.0493 - rmsle_loss: 0.0493 - val_loss: 0.0489 - 

val_rmsle_loss: 0.0504 

Epoch 7/15 

32256/32256 [==============================] - 1s 31us/step - loss: 0.0492 - rmsle_loss: 0.0491 - val_loss: 0.0488 - 

val_rmsle_loss: 0.0502 

Epoch 8/15 

32256/32256 [==============================] - 1s 31us/step - loss: 0.0490 - rmsle_loss: 0.0490 - val_loss: 0.0486 - 

val_rmsle_loss: 0.0500 

Epoch 9/15 

32256/32256 [==============================] - 1s 32us/step - loss: 0.0489 - rmsle_loss: 0.0489 - val_loss: 0.0485 - 

val_rmsle_loss: 0.0498 

Epoch 10/15 

32256/32256 [==============================] - 1s 30us/step - loss: 0.0488 - rmsle_loss: 0.0488 - val_loss: 0.0484 - 

val_rmsle_loss: 0.0496 

Epoch 11/15 

32256/32256 [==============================] - 1s 30us/step - loss: 0.0487 - rmsle_loss: 0.0487 - val_loss: 0.0483 - 

val_rmsle_loss: 0.0495 

Epoch 12/15 

32256/32256 [==============================] - 1s 31us/step - loss: 0.0486 - rmsle_loss: 0.0486 - val_loss: 0.0482 - 

val_rmsle_loss: 0.0494 

Epoch 13/15 
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32256/32256 [==============================] - 1s 39us/step - loss: 0.0485 - rmsle_loss: 0.0485 - val_loss: 0.0481 - 

val_rmsle_loss: 0.0493 

Epoch 14/15 

32256/32256 [==============================] - 1s 40us/step - loss: 0.0484 - rmsle_loss: 0.0484 - val_loss: 0.0480 - 

val_rmsle_loss: 0.0492 

Epoch 15/15 

32256/32256 [==============================] - 1s 44us/step - loss: 0.0484 - rmsle_loss: 0.0483 - val_loss: 0.0480 - 

val_rmsle_loss: 0.0491 
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Extract 12: Household from Comfortable-Tou group with LSTM Multivariate Model 

Epoch 1/15 

32256/32256 [==============================] - 3s 87us/step - loss: 0.0604 - rmsle_loss: 0.0604 - val_loss: 

0.0543 - val_rmsle_loss: 0.0548 

Epoch 2/15 

32256/32256 [==============================] - 1s 35us/step - loss: 0.0537 - rmsle_loss: 0.0537 - val_loss: 

0.0537 - val_rmsle_loss: 0.0542 

Epoch 3/15 

32256/32256 [==============================] - 2s 50us/step - loss: 0.0534 - rmsle_loss: 0.0534 - val_loss: 

0.0536 - val_rmsle_loss: 0.0541 

Epoch 4/15 

32256/32256 [==============================] - 2s 47us/step - loss: 0.0533 - rmsle_loss: 0.0533 - val_loss: 

0.0536 - val_rmsle_loss: 0.0542 

Epoch 00004: early stopping 
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 Here we show each model’s more detailed results, so we have the minimum RMSLE 

for a given ACORN-Tariff, the maximum RMSLE and the average RMSLE for the whole 

group. 

 

1) Average Basic Model 
 
 Table 22 shows the results for the benchmark model ‘Average Basic’ for each group.  

 

Table 22: Minimum/Average/Maximum RMSLE for reach group 

  Minimum Average Maximum 

Average basic 

Adversity – Std 0.028 0.152 0.430 

Adversity – ToU 0.058 0.158 0.273 

Affluent – Std 0.025 0.171 0.526 

Affluent – ToU 0.076 0.166 0.349 

Comfortable – Std 0.001 0.147 0.437 

Comfortable – ToU 0.079 0.141 0.254 

 

2) Average Weekly 
 

 Table 23 shows the results for the benchmark model ‘Average Weekly’ for each 

group.  

Table 23: Minimum/Average/Maximum RMSLE for reach group 

  Minimum Average Maximum 

 

Average Weekly 

 

Adversity – Std 0.022 0.130 0.369 

Adversity – ToU 0.051 0.139 0.226 

Affluent – Std 0.026 0.149 0.472 
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Average Weekly 

Affluent – ToU 0.060 0.144 0.299 

Comfortable – Std 0.002 0.128 0.424 

Comfortable – ToU 0.066 0.125 0.256 

 

3) ARIMA 

 

 Table 24 shows the results for the ARIMA models for each group. 

 

Table 24: Minimum/Average/Maximum RMSLE for reach group 

  Minimum Average Maximum 

ARIMA 

Adversity – Std 0.028 0.153 0.430 

Adversity – ToU 0.058 0.158 0.273 

Affluent – Std 0.025 0.171 0.526 

Affluent – ToU 0.076 0.166 0.349 

Comfortable – Std 0.001 0.147 0.437 

Comfortable – ToU 0.079 0.141 0.253 

 

4) LSTM Univariate Model 
 

 Table 25 shows the results for the LSTM Univariate model for each group. 

 

Table 25: Minimum/Average/Maximum RMSLE for reach group 

  Minimum Average Maximum 

 

LSTM Univariate 

Adversity - Std 0.030 0.132 0.432 

Adversity - ToU 0.040 0.153 0.315 
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LSTM Univariate 

Affluent - Std 0.010 0.160 0.574 

Affluent - ToU 0.051 0.130 0.315 

Comfortable - Std 0.022 0.125 0.295 

Comfortable - ToU 0.051 0.120 0.216 

 

 
5) LSTM Multivariate Model 

 

 Table 26 shows the results for the LSTM Multivariate model for each group.  

 

Table 26: Minimum/Average/Maximum RMSLE for reach group 

  Minimum Average Maximum 

LSTM Multivariate 

Adversity - Std 0.026 0.111 0.274 

Adversity - ToU 0.051 0.114 0.174 

Affluent - Std 0.017 0.112 0.260 

Affluent - ToU 0.058 0.106 0.247 

Comfortable - Std 0.002 0.103 0.257 

Comfortable - ToU 0.048 0.098 0.158 
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Here we also present a more detailed table of the resulting RMSE for each model and 

for each ACORN-Tariff group. 

Model Result Adversity - 

Std 

Adversity-

Tou 

Affluent-Std Affluent-

Tou 

Comfortable-

Std 

Comfortable-

Tou 

Avg basic Min 0.029 0.067 0.032 0.095 0.033 0.101 

Avg basic Avg 0.238 0.246 0.280 0.255 0.226 0.202 

Avg basic Max 0.949 0.486 1.317 0.618 0.919 0.394 

Avg 

weekly 

Min 0.024 0.059 0.035 0.08 0.027 0.083 

Avg 

weekly 

Avg 0.2056 0.2217 0.247 0.226 0.202 0.183 

Avg 

weekly 

Max 0.836 0.422 0.863 0.545 0.885 0.396 

ARIMA Min 0.029 0.067 0.095 0.095 0.033 0.101 

ARIMA Avg 0.238 0.247 0.255 0.255 0.226 0.202 

ARIMA Max 0.949 0.486 0.618 0.618 0.92 0.392 

LSTM 

Uni 

Min 0.033 0.045 0.01 0.059 0.025 0.06 

LSTM 

Uni 

Avg 0.171 0.203 0.225 0.171 0.157 0.152 

LSTM 

Uni 

Max 0.704 0.469 1.004 0.485 0.476 0.288 

LSTM 

Multi 

Min 0.027 0.061 0.017 0.073 0.003 0.061 

LSTM 

Multi 

Avg 0.180 0.187 0.189 0.172 0.165 0.145 

LSTM 

Multi 

Max 0.624 0.309 0.73 0.458 0.567 0.253 
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