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Sequence learning is a ubiquitous facet of human and animal cognition. Here, using a common sequence reproduction task,
we investigated whether and how the ordinal and relational structures linking consecutive elements are acquired by human
adults, children, and macaque monkeys. While children and monkeys exhibited significantly lower precision than adults for
spatial location and temporal order information, only monkeys appeared to exceedingly focus on the first item. Most impor-
tantly, only humans, regardless of age, spontaneously extracted the spatial relations between consecutive items and used a
chunking strategy to compress sequences in working memory. Monkeys did not detect such relational structures, even after
extensive training. Monkey behavior was captured by a conjunctive coding model, whereas a chunk-based conjunctive model
explained more variance in humans. These age- and species-related differences are indicative of developmental and evolution-
ary mechanisms of sequence encoding and may provide novel insights into the uniquely human cognitive capacities.

Key words: abstract pattern; evolution; sequence learning; working memory

(s )

Sequence learning, the ability to encode the order of discrete elements and their relationships presented within a sequence, is
a ubiquitous facet of cognition among humans and animals. By exploring sequence-processing abilities at different human de-
velopmental stages and in nonhuman primates, we found that only humans, regardless of age, spontaneously extracted the
spatial relations between consecutive items and used an internal language to compress sequences in working memory. The
findings provided insights into understanding the origins of sequence capabilities in humans and how they evolve through de-
velopment to identify the unique aspects of human cognitive capacity, which includes the comprehension, learning, and pro-
duction of sequences, and perhaps, above all, language processing. /
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Introduction

Most human behavior, from the way we move our eyes or walk,
dance, or speak, to abstract cultural inventions such as reading
or mathematics, are organized in sequences. As a consequence,
the general ability to identify and learn sequences is a widespread
feature across species and throughout development (Terrace and
Mcgonigle, 1994; Saffran et al., 1996; Graybiel, 1998; Dehaene et
al., 2015), but the specific ways by which sequences are learned
can show substantial differences. Several studies converge to the
rather intuitive idea that children have a less refined system to
assimilate the structure of sequences (Orsini et al, 1987;
Pickering et al., 1998; McCormack et al., 2000; Farrell Pagulayan
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et al., 2006; Botvinick and Watanabe, 2007). For example, 7- to
11-year-old children perform worse than adults (>80%) in an
immediate serial recall task (McCormack et al., 2000). Using a
similar spatial sequence task in animals, the ability of monkeys to
memorize the temporal order of a sequence has also been found
to be relatively poor, with a performance that was <40% correct
responses when the sequence length was 3 or 4 (Botvinick et al.,
2009; Fagot and De Lillo, 2011).

Completely distinct changes could account for these observa-
tions. Just to name two categorically different possibilities,
younger children could dispose of the same resources and func-
tions to identify sequential structure, but operating at a lower re-
solution, or, alternatively, it could be that the operations by
which sequences are identified are all together distinct. In other
words, the variability underlying computational mechanisms of
sequence learning across human groups and species remains
largely unknown (Terrace and Mcgonigle, 1994). By exploring
sequence-processing abilities at different human developmental
stages and in nonhuman primates, we can begin to understand
the origins of such capabilities in humans, and how they evolve
through development to identify the unique aspects of human
cognitive capacity, which includes the comprehension, learning,
and production of sequences, and perhaps above all, language
processing (Martin and Gupta, 2004; Dehaene et al, 2015).
Comparative studies produce different patterns of sequence
learning, and the challenge is to infer, from these patterns, the
algorithms used to extract sequences by individuals of different
species or ages.

Some computational modeling studies have suggested that
sequences can be encoded through a conjunctive coding in
human adults, which crosses the item with ordinal information
(Botvinick and Watanabe, 2007; Oberauer and Lin, 2017). This
idea has been primarily supported by electrophysiological stud-
ies; single neurons in the prefrontal cortex and caudate nucleus
have been reported to respond selectively to particular items (i.e.,
shapes or locations), but their response to these items also
depends on the ordinal position of items (Barone and Joseph,
1989; Kermadi et al., 1993; Kermadi and Joseph, 1995; Funahashi
et al., 1997; Ninokura et al., 2003, 2004; Inoue and Mikami,
2006). The representational code processed by these neurons is
conjunctive, in that the neurons respond maximally to a particu-
lar conjunction of item and ordinal position. It has been pro-
posed that this conjunctive coding underlies how the brain
associates individual items with individual serial positions to
encode and maintain sequences. According to the conjunctive
coding model, the precision of items and ordinal representations
are fundamental factors that determine the accuracy of sequence
encoding and memory. Thus, it can be hypothesized that, com-
pared with adult humans, the limited capability of sequence
encoding and maintenance in young children and nonhuman
primates may be because of a lower precision of temporal ordinal
or item representations.

A second, alternative proposal emphasizes that sequence
memory depends not only on the number of items to be stored,
but also on the presence of relational regularities (Marcus et al.,
1999; Endress et al., 2009; Dehaene et al., 2015; Amalric et al.,
2017; Wang et al., 2019). Rather than encoding the complete se-
ries of individual items, the process of sequence memory is
enhanced by compressing items into a small number of known
groups or “chunks” (Miller, 1956; Ericcson et al., 1980; Chase
and Ericsson, 1982; Feldman, 2000; Cowan, 2001; Gilchrist et al.,
2008; Brady et al., 2009). The sequences that humans judge as
“complex” are not necessarily longer, but are less regular and
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therefore more difficult to compress in working memory
(Planton et al., 2021). Indeed, in our previous behavioral study,
we found that accuracy in sequence encoding and production
tasks varied according to sequence complexity (Amalric et al,
2017; Wang et al., 2019). Thus, we proposed that the complexity
of a sequence is related to the length of its compressed form
when it is encoded using an internal language (i.e., symmetries,
rotations in geometry, or combinatorial rules).

In a recent review, we distinguished the following five
levels of sequence knowledge with increasing degrees of
abstraction: transition and timing knowledge, chunking,
ordinal knowledge, algebraic patterns, and nested tree struc-
tures generated by symbolic rules (Dehaene et al., 2015). We
proposed that only humans possess a representation of nested
tree structures, also described as a “universal generative fac-
ulty” (Hauser and Watumull, 2017) or “language of thought”
(Fodor, 1975), which enables sequence encoding by “com-
pressing” information using abstract rules. By contrast, maca-
que monkeys are thought to be more limited in their ability to
spontaneously detect relational structures between items and
compress sequence memory using an internal language.

These hypotheses, nevertheless, have yet to be directly investi-
gated. Both the precision of temporal order or item recognition
and the learning of structured representations could depend on
the evolutionary history of a species or environmental pressures
during childhood. Furthermore, it is not yet clear whether the
spontaneous memory compression using relational structures is
unique to humans. Here, we directly tested these hypotheses by
using the same spatial sequence reproduction task (Jiang et al.,
2018) in human adults, children (6-7 years old), and nonhuman
primates (macaque monkeys). We then combined conjunctive
coding models to investigate the computational mechanisms
underlying developmental and evolutionary factors that contrib-
ute to the learning of both ordinal information and relational
structure during sequence encoding and compression.

Materials and Methods

Participants

The adult group comprised 40 adults (mean age=24.0years, age
range = 21-27 years, 17 males) who were recruited from the Institute of
Neuroscience, Chinese Academy of Sciences, and the Fenglin campus of
Fudan University. Six adult participants (mean age=25.0years, age
range = 22-27 years, three males) were recruited for the multisession
experiment. Participant recruitment and experimental procedures fol-
lowed the requirements of the ethical committee of the Institute of
Neuroscience, Chinese Academy of Sciences. Informed consent was
obtained from all participants. The experimental program was installed
on the Microsoft Surface Pro4 System with a touchscreen.

The child group comprised 154 children (mean age = 6.4 years,
age range = 6-7 years, 83 male) who were recruited from Shanghai
Pudong Hongwen School. The ethical committee of the Institute of
Neuroscience, Chinese Academy of Sciences approved the experi-
ments, and all children and their parents gave informed consent.
Seventeen children dropped out of the experiment, and their data
were excluded from the final analysis. One additional child was
excluded because of a failure to complete any of the sequences in
the test session of the task, which indicated that the child did not
understand the task. The experiment was framed as a game, which
children played on an iPad tablet computer in landscape orienta-
tion in a classroom. The experimental program was built in Python
3.6 using the iOS Pythonista application (http://omz-software.
com).

The nonhuman primate group comprised two adult male monkeys
[Macaca mulatta: monkey 1 (M1), 12kg; monkey 2 (M2), 9kg].
Experiments were performed in accordance with the Institute of
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Figure 1.

Delayed sequence reproduction task and behavior. A, Task. The task was highly similar between groups, and a trial was always initiated by the participants. A series of sample

stimuli (adults, length =4, 5, or 6; children, length = 4; monkeys, length =3 or 4), chosen from six spatial locations, was presented at a fixed rate. After a delay, the go cue appeared, and par-
ticipants were required to touch the screen to reproduce the sample sequence (for details, see Materials and Methods). B, Positional accuracy. Accuracies on each ordinal position during
sequence reproduction. Error bars indicate SEM across participants (adults and children) or sessions (monkeys). €, Transposition gradient in the temporal order. x-axis, The temporal order; y-
axis, the probability of response. The recall order of participants is more likely swapped with the neighbor orders. D, Transposition gradient in the spatial location. x-axis, The distance from tar-
get position on the hexagon; y-axis, the probability of error response. Participants wrongly select locations near target locations and the probability of selecting an error position decreases as

its distance from target position increases.

Neuroscience, Chinese Academy of Sciences guidelines for the use of
laboratory animals. The monkeys were housed individually and had ad
libitum access to food but received water or juice on experimental days
as rewards for correct responses during the tasks. During the experi-
ment, the monkeys sat in a primate chair 30 cm from a computer moni-
tor equipped with a touchscreen (model S2240T, DELL). Trial events,
stimulus presentation, and data recording were controlled using
MATLAB software (MathWorks).

Materials

The spatial sequences were created from six locations that formed a hex-
agon. Theoretically, the items in a sequence can locate on a contin-
uous space (e.g., on arbitrary locations on a ring). To better
control task difficulty and enable direct comparison between
humans and monkeys, we adopted discrete locations in the current
design. There were 360 sequences of the length 4, and 720 sequen-
ces of the length 5 and length 6 on the hexagon. Each location (a
point on the hexagon) was sampled once within a given sequence
(“without replacement”). Sequences were presented on the screen,
and participants had to complete the sequence using a “repeat” or
“mirror” rule. The repeat rule defined sequences in the form
ABCD|ABCD (length-4), ABCDE|ABCDE (length-5), or ABCDEF|
ABCDEF (length-6), and the mirror rule defined sequences in the
form ABCD|DCBA, ABCDE|EDCBA, or ABCDEF|FEDCBA. The
total of 360 length-4 sequences could be divided into 30 patterns

based on their geometrical relations. The pattern and the starting
point for each sequence were randomly selected trial by trial. The
procedure for testing human adults, children, and monkeys was
essentially identical.

Procedure
The delayed sequence reproduction task was similar among groups (Fig.
1) but was tailored to be appropriate for each group.

Each trial was always initiated by the participants (clicking the mouse
for human adults, touching the screen for children, and pulling a lever
for monkeys). Once a trial was initiated, the six locations indicated by
white circles (diameter, 3cm) were always presented throughout the
entire trial. The screen was blank between trials. The visual presentation
of the target sequence was indicated using a dot with color (e.g., red: di-
ameter, 3 cm) that flashed at each target location (duration: humans and
M1, 250ms; M2, 400 ms), with an intertarget interval of 250 ms for
humans and 400ms for monkeys. To render the experiment more
attractive for children, cartoon figures (i.e., stars and a cartoon airplane)
were used to indicate locations instead of the circles and flashing dot.
After a short delay (duration: adults, 750 ms; children, 500 ms; monkeys,
400-800 ms), when the white cross turned to blue (the “go” signal, which
was red for children), participants had to touch the screen to indicate the
locations according to the order defined by the rule (repeat or mirror) to
be used. Sequence productions with wrong locations (those not pre-
sented during the sample sequence) or wrong orders were considered as
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errors. Feedback (a reward) was given to monkeys after the production
of sequences. No feedback was given to human subjects, who were
required to complete the sequence.

Familiarization/training phase

Humans. The experimental sessions were preceded by a familiariza-
tion phase. For adults, verbal instructions for the rule to be used were
given and five practice trials of length-4 sequences were presented to fa-
miliarize participants with the task. For children, video-based instruc-
tions were given. Three example trials were presented together with
verbal instructions via a video clip. Each example trial consisted of a full
viewing of a length-4 sequence and sequential touches to reproduce the
sequence according to the rule required. In the first example trial, stimuli
presentation time was prolonged, and target locations were labeled with
a number indicating its ordinal position. At the end of the video, experi-
menters verbally confirmed that children had understood the task. The
video was played a second time when necessary.

Monkeys. Monkeys underwent a long-term training phase because
verbal instructions could not be provided. The details of the training
phase have been described previously (Jiang et al., 2018). During this
phase, the monkeys pulled a lever to initiate a trial and were required to
hold the lever down during the presentation of the sample stimuli. A release
of the lever at any time during the visual presentation ended the trial. After
a delay and a go signal had been presented, the monkeys had to release the
lever and reproduce the sequence according to the rule to be used. Only the
sequential touch of correct locations and orders was rewarded with water or
juice. The intertrial interval was 2000 ms, after which the monkey was
allowed to pull the lever to start the next trial. The intertrial interval was
prolonged to 4000 ms as a punishment for errors.

Dataset

Adults completed 90 length-4 trials, 180 length-5 trials, and 180 length-6
trials with the repeat rule and the mirror rule, respectively. Sequences
used were randomly selected. Participants performed the tasks of length-
4, length-5, and length-6 in the same rule in three different blocks suc-
cessively. Participants finished all blocks in the same rule then switched
to the other rule. Children completed 90 repeat trials and 90 mirror trials
on 2 separate days. On each day, participants finished one block (45 tri-
als) in one rule and switched to the second block in the other rule. In
each rule, three sequences were randomly selected from each sequence
pattern. The order of rules was counterbalanced across participants in
both adults and children. Only repeat trials were adopted in the current
study. A total of 3600 length-4 trials, 7200 length-5 trials, and 7200
length-6 trials were completed by all adult participants. A total of 12,240
length-4 trials were completed by children.

To examine the within-pattern difference in individual participants,
six adult participants were recruited for the multisession experiment.
Each participant completed a total of 3600 repeat trials in five sessions
(720 trials/session/d) within 10 d. A daily session consisted of two blocks,
and participants had a short break between blocks to avoid fatigue. In
each block, each of the 360 length-4 sequences was presented once, and
the order of sequences was randomized.

For the two monkeys, the data were collected after they had com-
pletely learned the sequence task (Jiang et al, 2018). To summarize,
monkeys learned two rules, repeat and mirror, of reproduction and
manipulation of spatial sequence. The data used here included only
those obtained during the repeat task. All sequences in a session were of
the same length. Monkeys completed test sessions across several days.
For M1, test trials were intermixed randomly with “error stop” trials
(i.e., whenever position or order was incorrect, the trial was terminated,
and the program automatically moved onto the next trial) within ses-
sions. M1 was tested with 13,034 trials, including 7573 error stop trials,
in 26 sessions (days). M2 was tested with a total of 8948 trials in 15 ses-
sions. Error stop trials were included only in analysis of the accuracy and
reaction time (RT) of the whole-sequence recall [i.e., Fig. 2 (see also Fig.
4C)], but not of the accuracy and RT of each rank [ie., Fig. 1 (see also
Fig. 4A,B)].

In the current study, only sequences with the repeat rule were
included in the analysis for the three groups of subjects. All data needed
to evaluate the conclusions in the article are present in the article. The
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data that support the findings of this study are available from the corre-
sponding author on reasonable request.

Statistical analysis

Unfinished trials (i.e., trials with a reproduced sequence that was shorter
than the sample sequence or error stop trials without any response) and
trials with repetitive touches at the same location were excluded from
the analysis. Trials with any RT that was not within the mean *3 SDs on
a per subject (adults and children) or per session (monkeys) basis were
also excluded.

Friedman’s test was used to test for difference in accuracy and RT
across ordinal position. To test for the significance of primacy and
recency effect in accuracy, planned pairwise comparisons were con-
ducted between the first and second item, as well as between the last two
items in sequences. To test for the changes in RT between successive
responses in a trial, planned pairwise comparisons were conducted
between successive RTs. Bonferroni’s correction was applied to correct
for multiple comparisons.

Sequences sharing the same geometrical structures were categorized
into one pattern. For example, the sequence 1234, 2345, 5612, etc. had
the same relationship between items and was termed as Pattern 1 (Fig.
2A). Across patterns, sequences were paired by matching the starting
point and orientation (clockwise and counterclockwise) of the sequence,
resulting in 12 matched sequences in each pattern. Friedman’s test was
used to compare accuracy difference between patterns (“between-pattern
difference”) based on accuracies of sequences (averaged over different
trials of the same sequence). Within each pattern, the accuracy difference
between sequences (“within-pattern difference”) was tested using the
Kruskal-Wallis test based on the performance on each trial (correct or
incorrect). A Bonferroni correction was applied for within-pattern dif-
ference tests. To quantify the similarity of structural learning strategies
between the different groups, we used Spearman’s rank correlation to
calculate pattern accuracy for each pair of groups.

Based on the gestalt principles of proximity and similarity, spatially
and temporally adjacent items tend to be perceived as a chunk. The 30
patterns were divided into eight chunking modes (see Fig. 4B) and were
defined as follows: “1-1-1-1” (patterns 19, 22, 23, 26, and 27), where
none of the temporally adjacent items were located spatially adjacent to
each other; “1-2-1” (patterns 13, 14, 15, 16, 18, 29, and 30), where the
second and third items in the sequence were located in adjacent spatial
locations and formed a chunk, and a sequence consisted of one single
item, a length-2 chunk, and another item; “1-1-2” (patterns 20, 21, 24,
and 25), where the last two items in the sequence formed a length-2
chunk; “2-1-1” (patterns 6, 7, 10, and 11), where the first two items in
the sequence formed a length-2 chunk; “2-2” (patterns 4, 5, 8, 9, and 12),
where the first two items (i.e., first and second items), as well as the last
two items (i.e., third and fourth items), were located in adjacent spatial
locations, and there were two consecutive length-2 chunks in a sequence;
“1-3” (patterns 17 and 28), where the second, third, and fourth items
formed a length-3 chunk; “3-1” (patterns 2 and 3), where the first, sec-
ond, and third items formed a length-3 chunk; and “[= 1> (pattern 1),
where all items were spatially adjacent to the preceding item, and the
sequences could be described as “repeat one-step movement three
times.” The whole sequence was a length-4 chunk.

The complexity of each pattern was defined according to chunk size

n
(Z kl’ where k; is the size of the chunk that contained the ith item,
i ki
and 7 is the sequence length). For example, patterns in groups 1-3 con-
sisted of a length-1 chunk and a length-3 chunk, and the chunk sizes of
each item were (1, 3, 3, 3), respectively. Thus, the complexity of these
patterns was (1 + 1/3 + 1/3 + 1/3) =2. Note that the value of the com-
plexity that was defined according to chunk size was equal to the chunk
number in the sequence. RTs of each response were averaged over all
correctly reproduced sequences. Spearman’s rank correlation was used
to examine the relationship between pattern complexity and accuracy, as
well as with average RTs of all touches in correct trials within each
group. In each chunking mode, the RTs of each ordinal position were
transformed to z scores with the mean and SD of all sequences.
Wilcoxon tests were used to test for the significance of the within-chunk
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Figure 2.

Extraction of relational structure in humans. A, B, Sequences (4) and patterns (B). The lines with the arrows on each hexagon mark the trajectory that connects the items in a sequence.

Every 12 sequences, regardless of starting position and moving direction (clockwise or counterclockwise), shared the same relational structure and were grouped into one sequence pattern (surrounded
with gray box). A total of 30 patterns was defined based on their relational structures. C, D, Within-pattern (C) and between-pattern (D) differences based on averaged data (averaged across participants
in humans and averaged across sessions in monkeys). Within each pattern, the accuracy difference between sequences was tested with the Kruskal-Wallis test for each pattem, denoted by each dot in C.
A Bonferroni correction was applied for within-pattern difference tests. Across pattems, sequences were grouped by matching the starting point and orientation (clockwise and counterclockwise) of the
sequence, resulting in 12 matched sequences in each pattem. A Friedman test was used to compare the accuracy difference between patterns based on average accuracies of sequences (D). Log-trans-
formed p values (y-axis) of within-pattern and between-pattern differences were plotted for each group. Larger log-transformed values correspond to lower p values. Horizontal dash lines mark the log-
transformed values when p = 0.05 and p = 0.001. E, Within-pattern differences on subject-by-subject basic. Bonferroni's corrections for multiple comparisons were applied. The lack of significant within-
pattem difference was highly consistent in each participant. F, Accuracy of each pattern in the three groups. Pattems were sorted according to children’s accuracy in descending order. A quadratic polyno-
mial fitting line is shown for each group. Error bars indicate SEM across sequences. G-I, Correlations of the mean accuracies of patterns between groups (n = 30). ***p << 0.001.

RT decrease (i.e., the difference between the first and second item within
a chunk).

Spearman’s rank correlation was used to test the correlation between
children’s spatial chunking strategies and learning performance at
school. Children’s scores in Chinese and math examinations ~2 months
after test sessions were averaged and used as an index of examination
performance. Outliers that exceeded the range of the median examina-
tion score *3 scaled median absolute deviations were excluded.
Correlation analyses between children’s accuracy in sequences with and
without chunking strategies and examination performance were per-
formed. Accuracies used in the analysis were the average of reproduction
accuracies in sequences with and without chunking strategies.

Conjunctive coding model specifications

Simulations were implemented using MATLAB (MathWorks). The
model consisted of (1) the encoding process for the input of sequence in-
formation, and (2) the retrieval process for the output of sequence infor-
mation (Fig. 34).

Encoding
The encoding matrix (EM) of the input sequence information S (EMs)
was determined according to the encoding process fg, as follows:

EM; = £:(S),

where a sequence was defined as S=(Ty,T5,....,T,) and
Vie {l1,2,..,n}: T; € {1,2,...,N}). Only sequences with a length
n=4 were used in the current study. There were N=6 potential
locations for sequential stimuli, and each location was sampled

only once within a given sequence (without replacement:
Vi,j€{1,2,...,n} i #j=T; # T)).

Several assumptions were made about the encoding process of
sequence information. First, we assumed that the information of T; is a
conjunction of order information i € {1,2, ...,n} and item information
T; € {1,2, ,N}

Second, for a specific target (T;), the estimation of the model for i of
T; (marked as a random variable X) obeyed the scaled Laplace distribu-
tion (also known as the double exponential distribution), and the estima-
tion of the model for T; of T; (marked as a random variable Y) was
subject to a scaled von Mises distribution (also known as the circular
normal distribution), as follows:

X~Laplace(i, A ’1) ¢ Egrger(X| T, A) = e X (1)

2
—K (lfcos (1 (Y - T,))) s
Y~von Mises(T;, k) : Eyem (Y|T;, k) = e N
(2)

where A and k are dispersion measures of the distributions, which
controlled the estimated precision of the order information i and the tar-
get T;; a higher A indicates a higher estimation accuracy of i, while a
higher « indicates a higher estimation accuracy of T;.

We chose the Laplace distribution to describe the representations of
ordinal information on the basis of previous works (Nosofsky, 1986;
Shepard, 1987; Brown et al.,, 2007). We chose the von Mises distribution
to describe the representations of item information as it is a continuous prob-
ability distribution on the circle. It is a close approximation to the wrapped
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Figure 3.  Fitting behavioral data to the conjunctive coding model. A, Model schema. The model assumed that the representation code describe the retrieval process as follows:

of a spatial sequence is a conjunction of the spatial items (six locations on the hexagon) and ordinal positions (e.g., first, second, third, and
fourth; for details, see Materials and Methods). The hinding space shown is the encoding matrix of example sequence 1-3-2-5, as the loca-
tion “1” at first (red), the “3” at second (orange), the “2” at third (green), and the “5” at fourth (blue). During sequence retrieval, the decod- A

ing matrix was obtained via a discretization and normalization of the encoding matrix (see Materials and Methods). In addition, conditional P (S|S) =fx S|EM HP R; |S
probabilities were used. Each retrieved item was removed in the subsequent step because in the current task, each location was sampled

only once in a sequence. The probability of correct retrieval of the target sequence 1-3-5-2 was shown (for details, see Materials and

Methods). B-D, Positional accuracy (B), transposition gradient in temporal order (C), and transposition gradient in spatial location (D) fitted H EMs(i, R,) (4)
from the model. Shaded error bars (B) indicate the 95% CI of model fitting results from 1000 bootstrap resamples, and the solid lines (B— Z EM(i ]

D) are the results of the model using the medians of the best fitting parameters from 1000 bootstrap resamples. E~G, The precision of tem- i

poral order (A ; E), spatial location («; F), and weights (w) assigned along with the ordinal ranks (G) from the model fitting of each group. A1)

The bars are the medians of the best fitting parameters from 1000 bootstrap resamples, and the error bars indicate the 95% Cl. H, The accu- where j € S denotes that the items

racy of sequence reproduction in human adults, children, and monkeys. Error bars indicate the SD across participants (in adults and children) ~ already retrieved would be removed in a
or sessions (in monkeys, averaged over all the sessions across two monkeys). I, The performance of 30 pattems was not predicted by the ~ subsequent step, given that each location
model. Each dot comesponds to one pattem. R? was the coefficient of determination to evaluate the goodness-of-fit of simulated versus ~ was sampled only once (without replace-
measured p(correct) of the 30 pattems (see Materials and Methods). *p << 0.05; **p << 0.01; ***p << 0.001. n.s.,, Nonsignificant. ment) within a sequence. Normalization

was performed within each order by
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normal distribution, which is the circular analog of the normal distribution. e mg e.: sum 0 probabIiities o ¢
remaining items. The I-norm normal-

"["hese encoih'r.lg prol?)abilities can be regarded asane.gative e.xponenti.al fu'.nc— ization is based on the choice axiom of Luce (1959). Taking
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2012). shown in Figure 2A.
Finally, Eqrder and Ejeeny Were integrated as the sum of the joint distribu-

tions of all targets, weighted by constants w; (Z?Zl w; = 1), whicharethe  Chyunk-based conjunctive coding model
parameters that the model needs to learn. The integration resulted in a ~ The chunk-based model assumed that chunking processing would
graded conjunctive representation of the sequence in memory for later ~ improve the order precision (A ).



856 - J. Neurosci., February 2, 2022 - 42(5):850-864

There are several additional assumptions for this model. First, we
assumed that items in a sequence could be grouped into chunks based
on their spatial and temporal proximity and similarity. The chunked
sequence information Sc was determined according to the chunking
process fc for a specific sequence S = (T4, Tz, ..., T), as follows:

Sc = fol8) = (I¢, 15, .., TS

ne

Tl.C = [T—i-1 , T
k1
j=1

i1 s ey T
k2 ijl kj) ;

where n¢ is the number of chunks within Sc and k; is the number of
targets (spatial item) within T,C (chunk size).

Chunks were defined based on the gestalt principles of proximity
and similarity. Spatially and temporally adjacent items were put into the
same chunk according to the following rules:

Vj € {1,2,...k — 1}and k;>1: |[TC(j+1) — TS(j)| = lorN — 1

Vie {1,2,...nc— 1} 1 |T5,, (1) — TS (k)| # landN — 1.

Taking the sequence S = (1,3,2,5) as an example (Fig. 4D), since
the second and the third item were spatially adjacent, it can be regarded
as S = ([1], 3,2], [5]), which consists of three chunks: [1], [3,2], and [5].

Second, we also assumed that items within the same chunk shared a
common order precision Ay, which is determined by the number of
items in the chunk (i.e., chunk size k;, where i represents the ith item in
the sequence). For example, the chunk sizes for each item in
S=([1],[3,2],[5]) are 1, 2, 2, and 1, respectively, and the precision of
the temporal order for all targets is A = ([A1], [A2, A2], [A1]). We recal-
culated A of each Tj based on chunk size k;, as follows:

VT; € TC ¢ Eguger (X|Tj, Ay, ) = € 4K (5)

{Ak } were free parameters, and their fitting results can be seen in
Figure 5C.

Path-based models
Path-based models use path characteristics of the sequences, such as the
path length L and the path crossings number 7, to recalculate A for a
specific sequence S = (T4, Ts, ..., Ty).

The path length-based model was as follows:

VT, € St Eouger (X Tj, A1) = e 6)
— 2 2
. _7TLTi+1 —7TLT,-
L= eN —eN ,

i1
where L refers to the length of the trajectory that connects the items

of sequence S. ¢ is the imaginary unit.
The relationship between A | and L was assumed to be as follows:

A.L = e’“Lﬁ-b,

where A, g, and b are non-negative free parameters.
The path crossing-based model was as follows:

VT; €S : Eoger (X[ T}, Ay, ) = €M ¥T1 )

where 75 represents the number of crossings in the spatial sequence.
When there was no crossing in the sequence [e.g, S = (1,2,3,4)],
ners = 0) or when there was one crossing [e.g., S = (1,3,2,5)], figrs = 1.
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Model fitting NI

There were PN = 7' =360 different length-4 sequences.
However, the absolute target.locations have no effect on the retrieval
results in our model. The sequences were further regrouped into 30 pat-
terns starting from location 1 based on the sequential geometrical rela-
tionships among spatial targets (Fig. 2B) with rigid transformations,

including rotations, reflections, translations, or their combinations.
360

Moreover, there were still 360 possible response sequences {§ j} : for a

j:
specific stimulus pattern S; in {S;}.,.

We chose the square error as the loss function (quadratic loss func-
tion) to estimate the free parameters in a particular model, as follows:

30 360

PR =Y Y

=1 =1

(P — Q) (®)

Pj; is the relative frequency of the data response sequence Sj for a
given stimulus pattern S;, and can be expressed in terms of n;; (the total
occurrence of response sequences S; given S;), as follows:

"ij
360 . (9)
g Nik
k=1

Qjj is the predictive probability of response sequence § ; of the model
for a given stimulus pattern S;, as follows:

Py =f<§j|5i> =

Q= P(Sj\s,.> : (10)

The fminsearch function was used to minimize the loss function in
MATLAB.

In the model fitting for length-4 sequences, the original conjunctive
coding model had the following seven free parameters: A, «, {Wi}?:p n.
The chunk-based model had the following 10 free parameters:
{Aktkeq 234y K5 {Wi}i ;> 1. The path length-based model had nine free
parameters, as follows: a, b, A, k, {Wi};.*zl, 7. The path crossing-based
model had eight free parameters, as follows: {A .. } neel01p {W,’}?Zl, n.

It is important to note that at least >30 trials were needed to obtain a
trusted relative frequency Py for each pattern, and that at least 30 x 30 =900
trials were needed to obtain a trusted Ps. 3¢ matrix for the model fitting.
The trial number in the current study was insufficient for data from each indi-
vidual participant to fit a model. Thus, data from all participants within the
same group were modeled together, and 1000 bootstrap resamples from data
were used to calculate statistical properties of the best fitting parameters (Fig.
3F,G). We used the medians of the best fitting parameters to fit the most rep-
resentative models, and the behavioral benchmarks of these models are
shown in Figure 3B-D. Then, we used a random permutation test (N'=1000)
to examine the differences in parameters among the groups (Fig. 3F,G).

The number of trials also limited the fold number of the cross-valida-
tion. Therefore, repeated threefold cross-validation (Nyepeae = 100) was
used to evaluate different models. We chose the Bayesian information
criterion (BIC) as the criterion of model evaluation because the chunk-
based models had the most parameters and the BIC generally penalizes
model fits with increasing numbers of free parameters more strongly
than does the Akaike information criterion (AIC). Without the constant
term nln(n), AIC and BIC were calculated as follows:

AIC = nIn(RSS) + 2k (11)

BIC = nIn(RSS) + kIn(n), (12)

where RSS = min(L(P,Q)) is the residual sum of squares,
n=30 X 360 is the number of data points, and k is the number of free
parameters.
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Figure 4.

Sequence compression in humans. A, RT of each ordinal position from the correct trials. Error bars indicate the SEM across participants (in adults and children) or sessions (in mon-

keys). B, The eight chunking modes (for details, see Materials and Methods) and corresponding normalized RT. The RTs of each ordinal position were transformed to z scores with the mean
and SD of all sequences (left panel). The significance of the pairwise Wilcoxon tests between the first and second item within a chunk are shown. Error bars correspond to the SEM across
sequences. Patterns in each chunking mode are listed in the right panel. C, Correlation between pattern complexity and task performance of each pattern (left, accuracy of sequence reproduc-
tion; right, mean RTs). The complexity of each pattern was measured according to chunk size (X} k%, where £; is the size of the chunk that contained the ith item, and n is the sequence length).
The accuracy of sequence reproduction (left) and mean RTs (right) in humans (adults: khaki; children: cyan) was significantly predicted by sequence complexity. In contrast, the accuracy of
monkeys (brown) showed a significant positive correlation with the complexity. The RT used in the analysis was the average of all touches in the correct trials. For each group, a regression line
is plotted, and the significance of Spearman’s correlation is shown (n = 30). D, lllustration of the chunk-based conjunctive coding model. Chunks were defined based on the gestalt principles of
proximity and similarity, and spatially and temporally adjacent items were put into the same chunk. The model assumed that chunking processing would improve the order precision (A ). The
precision of the temporal order for each target was determined by the chunk size (the number of targets in a chunk). *p << 0.05; **p << 0.01; ***p << 0.001. n.s., Nonsignificant.

The AICs and BICs averaged across 100 x 3 =300 validations are
shown in Table 1.

Data availability
The datasets and the software code that support the findings of this study
are available from the corresponding author on reasonable request.

Results

Subjects (40 adults, 154 children, and 41 sessions from two maca-
que monkeys; for details, see Materials and Methods) were
engaged in a sequence reproduction task. On each trial, spatial
sequences with a length of 3, 4, 5, or 6 elements (adults: length-4,
length-5, and length-6; children: length-4; monkeys: length-3
and length-4) were visually presented. Each element of the
sequence was drawn (without replacement) from one of the six

spatial locations of a hexagon. Participants had to reproduce the
sequences by successively touching the appropriate location on
the screen (Fig. 1A; for details see Materials and Methods).
Feedback (reward) was given to monkeys after correct comple-
tion of each sequence.

Behavioral benchmarks of sequence memory

We first identified some behavioral benchmarks of sequence
memory (Oberauer et al.,, 2018) in the sequence reproduction
task in the adults, children, and macaque monkeys. Given that all
groups had very high accuracy for the length-3 sequences, and
that there was a limit of memory capacity in children and mon-
keys, we mainly focused on length-4 sequences. Length-5 and
length-6 sequences were only used in adults.
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Figure 5.

Chunk-based conjunctive coding model and model comparisons. 4, In both children and adults, the chunk-based conjunctive coding model outperformed the other models, includ-

ing the conjunctive coding model, the path length-based model, and the path-crossings model. Error bars indicate SEM across patterns. B, The chunk-based model in monkeys showed the op-
posite prediction profile that chunking modes containing larger chunking size displayed worse behavioral performance. €, The weight (w) of each ordinal position, the precision of temporal
order (A ), and the spatial location («) of each chunk size fitted from the chunk-based conjunctive coding model in the three groups. All of the above results used the medians of the best fit-

ting parameters from 1000 bootstrap resamples.

There were several commonalities among the three groups.
The sequence accuracy of adults and monkeys showed a typical
length effect, whereby an increased sequence load resulted in a
decreased recall accuracy (Fig. 1B). There is an advantage for items
presented at the start of the sequence (the primacy effect) and at the
end of the sequence (the recency effect); thus, plotting recall accu-
racy by serial position typically results in a “bow-shaped” curve
[effect of ordinal position: adults: length-4 sequences (Friedman
test), x2 (3)= 46.268, p<<0.001, Kendall's W=0.386; length-5
(Friedman test), y2 (4)=64.675, p<<0.001, Kendall's W =0.404;
length-6 (Friedman test), y2 (5)=49.270, p<<0.001, Kendall’s
W=0.246; children: length-4 (Friedman test), xy2 (3)=110.282,
P <<0.001, Kendall's W=0.270; monkeys: length-3 (Friedman test),
X2 (2)=20.000, p<0.001, Kendall's W=1; length-4 (Friedman
test), x2 (3)=102.422, p < 0.001, Kendall’s W =0.898]. Almost
all three groups displayed this profile for behavioral results
(Fig. 1B): the primacy effect was found in all the groups
(planned pairwise comparisons with Bonferroni’s correction, first
vs second item: adults: length-4, p=0.021, Cohen’s d=0.094;
length-5, p<<0.001, Cohen’s d=0.327; length-6, p<<0.001,
Cohen’s d=0.236; children: length-4, p<0.001, Cohen’s
d=0.234; monkeys: length-3, p =0.004, Cohen’s d = 0.571; length-
4, p<0.001, Cohen’s d=0.974), but, interestingly, the recency

Table 1. Model comparison after cross-validations

Adults Children Monkeys
Model k AMIC ABIC k AAC ABIC k AAIC ABIC
Conjunctive coding 7 2888 2866 7 2692 2670 7 584 562
Chunk based 10 0 0 10 0 0 10 0 0
Path length based 9 1025 1018 9 1200 1192 9 1493 1486
Path crossings based 8 2911 2896 8 2422 2407 8 279 264

The AlCs and BICs shown were averaged across 100 x 3 =300 validations. k, Number of parameters.

effect was almost absent in monkeys (planned pairwise compari-
sons with Bonferroni’s correction: monkeys: length-3, second greater
than third item, p =0.006, Cohen’s d=0.866; length-4, third greater
than fourth item, p =0.002, Cohen’s d=0.482). Furthermore, when
an item was recalled at an incorrect serial position, its recall spatial
location was likely to lie near its original position, and its recall order
was more likely to swap with its neighbor orders, which is called a
transposition gradient. We found that the error distributions in all
three groups displayed transposition gradients for both temporal
order (Fig. 1C) and spatial location (Fig. 1D).

Extraction of relational structures in humans, but not
macaque monkeys

Sequences can be encoded not just by their spatial locations but
also by their relational structures between locations. We next
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examined whether monkeys and humans were sensitive to such
relations. In the task, each sequence item could be at one of six
spatial locations, resulting in a large number of combinations.
For length-4 sequences, a total of 360 sequences was included,
given that each location was only sampled once. Based on the se-
quential geometrical relationships among the items, the sequen-
ces can be categorized into 30 patterns (Fig. 24,B). For example,
the sequences “1234,” “2345,” “6543,” and “2165” share the same
relational structure—repeat a one-step movement three times—
which was termed pattern 1. Visualization of the spatial struc-
tures of the 30 patterns demonstrated different spatial organiza-
tions and complexities of these geometrical relationships (Fig.
2B).

We then asked whether the three groups could spontaneously
extract these spatial patterns and use this information to inform
sequence encoding (e.g., using the relational structures between
locations to encode sequences in a more succinct form; Amalric
et al, 2017; Wang et al,, 2019; Al Roumi et al., 2021). Note that
during either training in monkeys or behavioral testing in
humans, there was no explicit instruction to use such spatial pat-
terns. Therefore, if the subject indeed spontaneously learned these
structures, we could expect to observe a similar task performance
for sequences that shared the same relational pattern, and a sub-
stantial performance difference between sequences with distinct
relational patterns. The results showed a double dissociation
between humans and monkeys. In adults and children, there were
no significant differences in accuracy among the 12 sequences
within each pattern [Fig. 2C; 30 patterns, corrected for multiple
comparisons; adults (Kruskal-Wallis test): p values > 0.270, n* <
0.138; children (Kruskal-Wallis test): p values>0.087, n? <
0.051], but there was a significant difference in accuracy among
the patterns (Fig. 2D; Friedman test; adults: x2 (29)=86.043,
p<<0.001, Kendall'sW = 0247; children: y2 (29)=145.504,
p <0.001, Kendall's W). By contrast, in monkeys, there was no
difference among the patterns (Fig. 2D; Friedman test; M1: x2
(29) =16917, p=0.964, Kendall's W; M2: x2 (29)=46.036,
p=0.023, Kendall's W), and significant differences in accuracy
among sequences within patterns (Fig. 2C; Kruskal-Wallis test;
MI: p values < 0.035, n* > 0.070, 23 of 30 patterns; M2: p values
<0.027, p% > 0.141, 29 of 30). As the trial number was different
in each sequence pattern across the three groups, we additionally
compared their effect sizes. The result supported the difference in
the within-pattern effects between humans and monkeys [95% CI
of the effect size (92): adults, [0.006, 0.043]; children, [0.002,
0.0135]; M1, [0.095, 0.145]; M2, [0.211, 0.290]). When further
examining the sequence differences within patterns in monkeys,
we found that they were mainly because of the biases of spatial
location but not sequence direction (clockwise and counterclock-
wise; spatial location of the starting point, Friedman test: M1: x2
(5) =50.186, p < 0.001, Kendall's W=0.335; M2: x2 (5) =51.733,
p <0.001, Kendall’s W =0.345. Sequence direction, Friedman test;
MI: x2 (1) =0.006, p=0. 940, Kendall's W< 0.001; M2: x2
(1) =2.222, p=0.136, Kendall's W=0.012). Such biases were not
present in the performance of adults and children [spatial location
of the starting point (Friedman test): adults: x2 (5)=6.332, p=0.
275, Kendall's W=0.042; children: x2 (5)=7.257, p=0.202,
Kendall’s W=0.048; sequence direction (Friedman test): adults:
x2 (1)=0.659, p=0. 417, Kendall's W=0.004; children: 2
(1)=0.360, p=0.549, Kendall’s W=0.012]. We then removed the
patterns that contained the biased locations and recalculated the
within-pattern and between-pattern differences in both monkeys.
The result confirmed the double dissociation between humans
and monkeys [difference between the patterns (Friedman test):
adults: x2 (16) = 54.849, p < 0.001, Kendall’s W =0.286; children:
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x2 (16) = 99.903, p < 0.001, Kendall's W=10.520; M1: x2 (16) =
9.633, p=0.885, Kendall's W=0.050; M2: x2 (16) = 25.888,
p=0.056, Kendall's W=0.135; difference within the patterns
(Kruskal-Wallis test); adults: p values > 0.153,7? < 0.138; chil-
dren: p values > 0.050, n? < 0.051 (not significant in 10 of 17 pat-
terns); M1: p values < 0.028,7% > 0.047 (significant in 14 of 17
patterns); M2: p values < 0.015, 52 > 0.096 (significant in 15 of
17 patterns)], as shown in Figure 2, C and D.

However, we should notice that the comparison between
humans and monkeys was based on pooling human participants
and monkey behavioral sessions. To test whether the within-pat-
tern effect could also be found on a participant-by-participant
basis, we additionally recruited six human adults, who were
asked to perform 3600 trials within 10d (see Materials and
Methods). We found that the lack of within-pattern difference
was highly consistent in individual human participants [Fig. 2E;
30 patterns in each participant, corrected for multiple compari-
sons (Kruskal-Wallis test): p values > 0.334, 2 < 0.133; except
in one pattern in one participant: p values = 0.027, p*= 0.214].

Did human adults and children implement a similar strategy
or language to detect the complexities of the 30 patterns? We
plotted the behavioral performance of the three groups in
sequences of all 30 patterns in descending order of accuracy in
children (i.e., highest to lowest; Fig. 2F, dark cyan curve). The
performance of adults showed a trend similar to that of children
(Fig. 2F, khaki curve), but the performance of the monkeys was
entirely different from that of humans (Fig. 2F, brown curve).
The statistical analysis confirmed a significant positive correla-
tion in sequence performance across the 30 patterns between
adults and children (Fig. 2G; Spearman’s pg = 0.829, p<
0.001), but not between humans and monkeys (Fig. 2H: adults vs
monkeys: psy = —0.177, p =0.349; Fig. 2I: children vs monkeys:
P sy = —0.099, p=0.601). These results indicate that while adults
and children adopted a similar internal language of extracting
relational structures during spatial sequence processing, maca-
que monkeys might lack the ability to spontaneously detect the
geometrical structures and use them to compress the sequences
in memory.

Fitting data to the conjunctive coding model

As a first attempt to model the performance of the three groups
of subjects, including the positional accuracy and transposition
gradients in both spatial and ordinal dimensions, we adopted the
conjunctive coding model (Botvinick and Watanabe, 2007;
Oberauer and Lin, 2017; Fig. 3A; Materials and Methods). The
assumption was that the representational code of spatial sequen-
ces is a conjunction of approximate codes for the spatial items
(e.g., six locations on the hexagon) and their corresponding ordi-
nal positions (e.g., first, second, third, and fourth). This model
allowed us to accurately describe representations of individual
spatial locations as a scaled von Mises distribution, which is a
normal distribution that is appropriate for spatial locations (Eq.
2; Materials and Methods). The six spatial locations were
assumed to share a similar distribution in the model. For the or-
dinal representation, we made no prior assumptions of a com-
pressive code, according to which ordinal tuning curves would
broaden with increasing order (Botvinick and Watanabe, 2007).
Instead, we described representations of ordinal information
using the scaled Laplace distribution (Brown et al., 2007; Eq. 1;
Materials and Methods). Finally, we assumed that ordinal infor-
mation is integrated with spatial information through multiplica-
tive gain modulation, resulting in a conjunctive representation of
the sequence in memory (Eq. 3; Materials and Methods). During
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the sequence reproduction task, the retrieval probability of each
item was conditional, given that each location was sampled only
once, without replacement, within a sequence (Eq. 4; Materials
and Methods).

The results of model fitting in the three groups replicated the
sequence reproduction benchmarks shown in Figure 1. The posi-
tional accuracy of the model displayed the same “bow-shaped”
curve in humans (Fig. 3B). This pattern of performance (primacy
and recency effects) stems from interference effects because the
probability of exchanging items with near neighbors is lower at
the start and end of the sequence. More importantly, the model
can reproduce not only the behavioral profile of correct trials,
but also the distribution of error responses, by showing the same
profile of location and rank transposition gradients as the behav-
ior results in Figure 3, C and D. Items in nearby ordinal or spatial
locations are represented more similarly than items at more dis-
tant positions, which makes it relatively easy for the model to
confuse the locations of closely spaced items in both ordinal and
spatial manners.

Although we initially set the ordinal representation as the
scaled Laplace distribution, it is worth noting that the fitting
results demonstrated a compressive ordinal code in all the three
groups (Fig. 3E). That is, the ordinal tuning curves broadened
with increasing order. Such a compressive profile in the encoding
matrix was reflected by the pattern of the assigning weight (w) of
each order; the weights decreased with increasing order (Fig.
3E). The code profile was consistent with previous electrophysio-
logical work in monkeys by Nieder and Miller (2003) and Nieder
et al. (2006), which showed that parietal neurons represent count
information using a compressive code that is reflected by more
broadly tuned receptive fields for larger numbers. Thus, the pri-
macy effect and the increasing of the transposition error along
ranks derive, additionally, from the higher precision of orders at
the beginning of the sequence, which is driven by the compres-
sive ordinal code of the model.

Despite these similarities in behavioral benchmarks, there
were several notable differences among the three groups. First,
the overall performance of children (mean = SD; 45.01 =
21.65%) and monkeys (64.38 = 16.69%) was much lower than
that of adults (91.24 + 7.24%; Fig. 3H; Kruskal-Wallis test: y2
(2) = 102.6, p<0.001; pairwise Wilcoxon rank-sum test with
Bonferroni’s correction: adults vs children, p < 0.001; adults vs
monkeys, p < 0.001; children vs monkeys, p < 0.001). To exclude
the possibility that the poor performance of monkeys and chil-
dren was because of a lower level of understanding of the task
procedure, we examined their performance of length-3 sequen-
ces using the same task. We found all three groups of subjects
demonstrated very high performance (adults, 99.22 = 0.86%;
children, 72.18 = 22.38%; monkeys, 84.45 * 10.11%).

To identify the mechanism underlying the inferior sequence-
processing ability in children and monkeys, we examined between-
group differences by comparing the precision of spatial location (k)
and temporal order (A ), and the assigned weight on each temporal
order (w) in the model. We found that the precision of the tempo-
ral order () of children and monkeys is significantly lower than
that of human adults, and there were no significant differences
between children and monkeys. Meanwhile, children’s precision
of spatial location (k) was significantly lower than that in human
adults and monkeys, and there were no significant differences
between adults and monkeys [Fig. 3F,G; random permutation tests
(N=1000), A: adults vs children: p = 0, 99.9% CI: [0, 0.0076];
adults vs monkeys: p = 0.001, 99.9% CI, [0, 0.01]; children vs
monkeys: p = 0.874, 99.9% CI, [0.8361, 0.9061]; «: adults vs
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children:p =0, 99.9% CI, [0, 0.0076]; adults vs monkeys,
P =0.257, 99.9% CI, [0.213, 0.3047]; children versus monkeys:
p =0, 999% CI, [0, 0.0076]). Even with extensive long-term
training (>2 years), the precision of temporal order in monkeys
only reached the same level as that of children, who were com-
pletely naive to the spatial sequences.

Furthermore, the curve of assigned weights (w) along with
the ordinal ranks in monkeys was much steeper than that seen in
adults and children (Fig. 3E). This may suggest that, compared
with humans, monkeys reallocated most resources to the first
item (almost 100%) and much less to the other items. This pro-
file of weight assigning in w that is small enough for monkeys,
and the background noise (7; for details, see Materials and
Methods) becomes important and cannot be ignored. Therefore,
multiple factors, including the interference effect, small w, and
the background noise, caused the dramatically decreased recall
accuracy along with the ordinal position and the absence of
recency effect in monkeys (Fig. 1B).

Chunking as an internal algorithm for sequence compression
Although the conjunctive coding model can account for the posi-
tional accuracy and transpositional gradients in both spatial and
ordinal dimensions, the model failed to explain the variance of
the performance between the sequence patterns (Fig. 3I). What
is the internal format used by humans to compress spatial
sequence processing and memory? What algorithm can explain
the observed variations in working memory for the 30 sequence
patterns? Previously, we showed that human adults and pre-
schoolers can quickly grasp a “geometrical language” endowed
with simple primitives of symmetries and rotations, and combi-
natorial rules in an eight-item spatial sequence, and that they use
this internal language to predict the next item of a sequence
(Amalric et al., 2017).

To identify potential primitives or rules for the length-4
sequences, we first examined the RTs for each item during the
sequence production of the three groups. There was a similar
pattern in RTs averaged over all sequences between human
adults (Friedman test: 2 (3) = 56.550, p<<0.001, Kendall’s
W =0.471; planned pairwise comparisons with Bonferroni’s cor-
rection: first vs second item: p < 0.001, Cohen’s d = 1.465; second
vs third item: p =0.062, Cohen’s d =0.118; third vs fourth item:
p <0.001, Cohen’s d=0.267) and children (Friedman test: x2
(3) = 15.062, p=0.001, Kendall's W=0.037; planned pairwise
comparisons with Bonferroni’s correction: first vs second item:
p=0.160, Cohen’s d=0.276; second vs third item: p=0.589,
Cohen’s d=0.062; third vs fourth item: p<0.001, Cohen’s
d=0.191), whereby there were shorter RTs for each subsequent
item in a sequence, previously referred as a “collective search”
(Fig. 4A; Ohshiba, 1997; Conway and Christiansen, 2001), which
may indicate that humans use an internal forward model to com-
press items within a sequence into an integrated chunk or unit.
Conversely, the RTs of monkeys show a different trend, with
similar RTs for the first two items and then longer RTs for each
subsequent item (Friedman test: 2 (3) = 41.053, p<0.001,
Kendall's W=0.360; pairwise comparisons with Bonferroni’s
correction: first vs second item: p > 0.999, Cohen’s d = 0.318; sec-
ond vs third item: p=0.002, Cohen’s d=0.206; third vs fourth
item: p<<0.001, Cohen’s d=0.863), which indicates that they
might have used a different strategy of “serial search” in working
memory (Fig. 4A). That is, monkeys retrieved the first item,
touched it on the screen, then retrieved the next item, touched it
on the screen, and so on.
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As a further attempt to capture the two different search strat-
egies used by humans and monkeys, we used a simple algorithm
—spatial chunking—which was based on the gestalt principles of
proximity and similarity, whereby only spatially and temporally
adjacent items were chunked together. The 30 patterns were thus
divided into eight groups according to the size of their consecu-
tive chunks (Fig. 4B, right; e.g., “2-2,” two consecutive chunks of
size 2, including patterns 4, 5, 8, 9, and 12). We then plotted the
RTs of the eight modes individually (Fig. 4B, left). This revealed
decreasing RTs for items within chunks (marked by gray zones)
in both adults and children, but not in monkeys (Fig. 4B, left).
This finding indicates that humans use a generalized strategy
across different patterns that collectively chunk spatially and
temporally closed items within sequences, while monkeys may
only learn to chunk in a subset of sequences but fail to generalize
across patterns. To examine whether the performance of subjects
was reflected by chunking, we defined the complexity of a
sequence using the average chunk sizes for each pattern (ie., the
sequence 1234 has one length-4 chunk, and the sequence 1352
has four length-1 chunks), whereby a bigger chunking size within
a sequence was considered to result in a lower sequence com-
plexity and easier memory compression. We found that sequence
reproduction accuracy and RTs in adults and children were well
predicted by chunk size (Fig. 4C; adults: Spearman’s pg) =
—0.592, p<<0.001; children: Spearman’s pnsy = —0.522,
p=0.003; RT: adults: Spearman’s p (g = 0.767, p < 0.001; chil-
dren: Spearman’s p(,g) = 0.828, p < 0.001). In contrast, the per-
formance of monkeys was positively correlated with chunk size
(Fig. 4C; Spearman’s p(sy = 0.539, p=0.002). That is, the
sequence with the biggest chunk size (i.e., sequence 1234) was
associated with the worst sequence production. This could indi-
cate the presence of the interference effect in the conjunctive
coding model; for monkeys, while the spatially and temporally
close locations within a sequence were not efficiently integrated
into chunks, these locations heavily interfered with each other,
resulting in a high error rate of sequence reproduction for both
spatial and temporal dimensions. As shown in Figure 5C, the
precision of order (A) decreased with increasing chunk size in
monkeys, which agreed with the stronger interference between
spatially and temporally close items in larger chunks.

We also examined whether the children who benefit more
from a spatial chunking strategy had better results at school. The
average scores of children’s mathematics and Chinese examina-
tions ~2 months after test sessions were used as an index of
examination performance. We divided sequences into two cate-
gories, depending on whether chunking strategies were involved
in sequence reproduction. We found that, unlike the use of root
memory in the sequence task (the group 1-1-1-1: Spearman’s
pasn = 0.172, p=0.06), the task performance of the sequences
using the chunking strategy (other groups except Fig. 4B, group
1-1-1-1) was significantly correlated with children’s examination
score (Spearman’s p(j3;) = 0.202, p=0.025; see Materials and
Methods).

Finally, to explain the variance of task performance at the
relational structure level, we added the component of pattern
complexity (chunk size) to our basic conjunctive coding model
by recalculating the precision (A) of each temporal order based
on the chunk sizes in a sequence (Eq. 5; Materials and Methods).
The assumption was that chunking improves the precision of or-
dinal coding. We fitted the model to our behavioral data; while
the conjunctive coding model could predict well the behavioral
responses of both correct and incorrect responses (positional ac-
curacy and transposition gradients) and explained the sequence
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variance solely by the interference effect, the chunk-based con-
junctive coding model explained significantly more variance at
relational structure levels in human adults and children (Fig.
5A). Indeed, as predicted, while the distribution pattern of
weights (w) on each ordinal did not change, the precision of tem-
poral order predicted by the model increased along with the
chunking size in both adults and children (Fig. 5C). In contrast,
the chunk-based model in monkeys showed the opposite predic-
tion (Fig. 5B), whereby the chunking modes with a larger chunk-
ing size was associated with a worse behavioral performance,
which is consistent with the correlation analysis shown in Fig.
4C. Furthermore, we compared the efficacy of the chunk-based
model with that of a simpler model by which the precision of
temporal order was modulated according to spatial crossing or
total sequence path; these two factors have been proposed as a
measurement of spatial sequence complexity (De Lillo et al.,
2016). The chunk-based model significantly outperformed the
path-length or crossing-based models (see Materials and
Methods; Egs. 6, 7; Fig. 5A, Table 1, model comparison).

Discussion

The current study examined the computational mechanisms
underlying sequence representation in adults, children, and mac-
aque monkeys with a common sequence reproduction task, and
used conjunctive coding models to assess the between-group dif-
ferences in behavioral measures. We found the following (1) the
precision of spatial location and of temporal order were the main
factors contributing to the poor performance of sequence proc-
essing in children and monkeys; (2) even with long-term train-
ing, macaque monkeys demonstrated a strategic limitation of
resource reallocation along the ordinal ranks; (3) compared with
human subjects (adults and children), who used a common in-
ternal format for sequence representation, macaque monkeys
lacked the ability to spontaneously detect spatial relational struc-
tures; and (4) while spatiotemporal interference could explain
the behavior of correct and error responses, human behavior at
structural level required the conjunctive coding using chunking
as the internal algorithm. Our data thus provide a direct assess-
ment of the relative contributions of development and evolution
to sequence representation in humans, which could also have
implications for uniquely human cognitive capacities (e.g., lan-
guage processing).

Our observation of differences in temporal precision
between human adults and children is consistent with those
of previous studies that have proposed that the learning of
neural representation of temporal order continues to develop
over early and middle childhood (Lipton and Spelke, 2003;
Loucks and Price, 2019). Our results also expand on prior
reports by showing that both spatial and temporal accuracies
were both low in monkeys, which was not because of a lack
of behavioral training. In addition, our results indicate that
monkeys reallocated almost all of their attentional resources
to the first item, whereas humans use a more balanced reallo-
cation strategy for each item. The intrinsic limit of temporal
precision combined with this extreme strategy of resource
reallocation in monkeys was one of the reasons explaining
the between-species difference in cognitive capacity and in-
ductive learning of retaining and updating sequential infor-
mation in working memory.

Little work has examined how spatial sequences are encoded
and retrieved in humans and animals, or whether and how a
model can predict each item during the sequence reproduction.
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Previous studies have investigated cross-species differences in
pattern identification and found that humans use a more global
perception. Specifically, humans have an advantage over mon-
keys in grouping visual information into global shapes (Fagot
and Deruelle, 1997; Parron and Fagot, 2007; Spinozzi et al., 2009;
Neiworth et al., 2014). In acquiring a nonlanguage grammatical
structure, monkeys have weaker capability compared with
humans (Fitch and Hauser, 2004; Saffran et al., 2008; Wang et
al., 2015; Jiang et al., 2018). For example, monkeys can be trained
to produce sequences with supragrammars, but the learning is
much slower than for preschool children (Jiang et al,, 2018). A
recent study has shown that humans can use recursive hierarchi-
cal strategies in a nonlinguistic sequence generation task early in
development, while monkeys did so only with additional expo-
sure (Ferrigno et al., 2020). Despite these behavioral studies,
none of them has examined the computational mechanisms
underlying the group differences. At the structure level of spatial
sequences, we showed that humans, but not monkeys, displayed
significant differences in accuracy and reaction time between
patterns, indicating that humans, but not monkeys, are able to
spontaneously detect spatial regularities and encode the sequence
in memory. The difference in pattern complexities was mainly
because of the chunk strategy used in both adults and children.
However, we did not tend to conclude that chunking was the
only human-specific strategy, because the sequences used in
the current study were too short and too simple to assess the pos-
sible use of other, even higher, levels of sequence encoding
(Dehaene et al., 2015), and therefore, to test the predictions of
other measures of sequence complexity such as language of
thought (Fodor, 1975) and entropy (Kamae and Zamboni, 2002).
In previous work, using a longer eight-item spatial sequence, we
demonstrated that adults and preschoolers could spontaneously
grasp a “geometrical language” endowed with several simple
primitives of symmetry and rotation, as well as recursive combina-
torial rules (Amalric et al,, 2017). In the future, the present task may
allow testing of this model in monkeys as well. One hypothetical
suggestion from our comparative study is that monkeys only focus
on the individual locations and fail to spontaneously learn any kind
of spatial relational structures linking them (Fagot and Deruelle,
1997; Parron and Fagot, 2007; Spinozzi et al., 2009; Neiworth et al.,
2014). Here, the failure to learn such regularities was not because of
a lack of training, as the two monkeys were trained with hundreds
of thousands of trials over >2 years. Behavioral analyses and the
conjunctive coding model suggested that children outperformed
monkeys in using global geometric structure and chunking to com-
press the sequence spontaneously, although on average, they
showed a similarly poor sequence reproduction performance.

The difference in behavioral performance between humans
(adults and children) and monkeys cannot be interpreted by
other experimental accounts. For example, one may argue that
humans are more familiar or have more prior experience with
the geometrical layouts than monkeys, which may therefore have
higher possibilities for grasping abstract patterns. This seems
unlikely, as monkeys have been habituated with the spatial
sequences with different patterns for years and many trials
(>600) in every training day. Furthermore, previous behavioral
studies have indicated that infants, without much prior experi-
ence, already possess a capacity to quickly grasp abstract
sequence patterns in the first days of life (Dehaene-Lambertz et
al., 2002). The other confounding issue could be memory capacity
or attention level between humans and monkeys. This could be
easily excluded, as children and monkeys may share similar work-
ing memory capacity (Cowan, 2001; Buschman et al, 2011;
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Heyselaar et al., 2011; Lara and Wallis, 2012; Simmering, 2012),
but their performance of learning abstract patterns was signifi-
cantly different. Also, differences in the task design, such as inter-
target delays (ITDs) or stimulus onset asynchronies (SOAs), were
unlikely to account for our main observations. The two monkeys
were tested with different SOAs but did not differ in their strat-
egies. The presentation duration used in the present study (>250
ms) was also of the range (50-100 ms for a single item) in which
performance was enhanced with increased presentation duration
(Vogel et al., 2006; Bays et al., 2011). In addition, longer intertarget
intervals could lead to better performance of memory tasks (Neath
and Crowder, 1990, 1996; Guérard et al., 2010), while in the pres-
ent study, monkeys were presented with a longer ITD but showed
a worse memory performance than humans. Finally, the learning
strategy may differ between groups, as the training of the monkey
is involved in complicated procedures. It is worth noting that the
current study tested the spontaneous learning of abstract pattern
in both humans and monkeys. The task requirement, which is
repeating sequences, is orthogonal to the learning of geometrical
regularities within the sequence.

However, we cannot exclude that monkeys would eventually
be able to learn relational structures and chunking as strategies
to process spatial sequences, if given certain feedback using rein-
forcement learning algorithms and with intensive training, or
that such ability to use chunking strategy is qualitative or quanti-
tative (Minier et al., 2016; Heimbauer et al., 2018; Jiang et al.,
2018; Rey et al,, 2019; Tosatto et al., 2021). It also has been dem-
onstrated that monkeys could use chunking in other domains
(e.g., motor sequences; Fujii and Graybiel, 2003; Ramkumar et
al,, 2016). Yet, most of the behavioral studies showing that ani-
mals could learn abstract rules or structures also demonstrated a
long-time and intensive training requirement for task learning
(Fujii and Graybiel, 2003; Minier et al., 2016; Ramkumar et al.,
2016; Heimbauer et al., 2018; Rey et al., 2019; Tosatto et al.,
2021). Therefore, our comparative observations may suggest that
the difference in sequence processing between humans and other
animals may depend on both human-specific neural circuitries
(e.g., temporal-frontal language neural network) and specific
structure-sensitive learning algorithms, rather than the mere
memory capacity. It seems that only humans could use these
algorithms to represent the world in a non-task-specific way.
However, monkeys may still rely heavily on the reward as a rein-
forcer, which requires too many samples for training. Future
research should examine the neural mechanisms underlying
spontaneous pattern learning to test whether these sequence-
processing tasks involve a universal attention or working mem-
ory circuity, including dorsal visuospatial network or human-
unique language regions (Wang et al., 2019).
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