
Universidad Torcuato Di Tella

Master in Management+Analytics Thesis

A Machine Learning Approach for Prediction
of Hospital Bed Availability

by

Josefina Dalla Via Monti

Advisor: Gustavo Vulcano, PhD
Co-Advisor: Nicolás Schapchuck, MBA

July, 2020

iii

Un enfoque de aprendizaje automático para
predicción de disponibilidad de camas de

internación

Tesis de Maestría en Gestión y Análisis de datos

Josefina Dalla Via Monti

Resumen

Las camas de internación constituyen un recurso escaso en las instituciones
hospitalarias, los datos, en cambio, no.
En el presente trabajo se argumenta que, haciendo uso de técnicas de apren-
dizaje automático, puede sacarse provecho del enorme volumen de data disponi-
ble en los sistemas de información de hospitales y sanatorios para construir
soluciones de analytics que potencien la eficiente utilización de las camas de
internación mediante la mejora del proceso de toma de decisiones.
Con el objetivo de poner a prueba esta hipótesis, se trabajó en conjunto con
una de las instituciones hospitalarias más importantes de la ciudad de Buenos
Aires. El foco del trabajo estuvo puesto en la construcción de un modelo de
aprendizaje automático que pudiera predecir la probabilidad de que un pa-
ciente sea dado de alta en las próximas veinticuatro horas, en función de su
historia clínica, datos demográficos y algunos otros factorales ambientales.
Para lograrlo se aplicaron técnicas de ingeniería de datos y aprendizaje super-
visado, en el contexto de un problema de clasificación. Se experimentó con
diferentes algoritmos así como formas de abordar la representación de atribu-
tos para sacar el máximo provecho de la data disponible.
Como resultado, se obtuvo un modelo con un rendimiento prometedor que
alcanza un puntaje de 0.84 de área bajo la curva ROC y ha demostrado gene-
ralizar muy bien en datos desconocidos. Dicho modelo fue la base sobre la
cual se montó una herramienta de pronóstico de altas. Esta solución permite
obtener tres predicciones, con diferentes niveles de incertidumbre asociada, de
las altas esperadas en el Sanatorio para la fecha especificada. Los "niveles de
confianza" reportados fueron obtenidos mediante un ejercicio de simulación
sobre la data histórica que permitió comparar el pronóstico de la herramienta
con el escenario observado en la realidad.
El equipo de gestión de operaciones del hospital en cuestión ha hecho explíci-
to su interés en la solución propuesta, ya que evalúan que el modelo tiene un
enorme potencial para facilitar el proceso de planificación de camas y, de esta
manera, ayudar a mejorar la eficiencia operacional del sanatorio.

v

A Machine Learning Approach for Prediction of
Hospital Bed Availability

Master in Management + Analytics Thesis

Josefina Dalla Via Monti

Abstract

Hospital beds are a scarce resource for healthcare facilities, data is not.
In this thesis, we argue that machine learning techniques could take advantage
of the abundant amount of data available at hospitals information systems in
order to build analytics solutions that could propel the efficiet utilization of
beds by improving the management decission making process.
In order to test this hypothesis we have worked together with one of the most
relevant medical institutions in Buenos Aires. The focus of our work has been
placed in building a machine learning model that could predict the proba-
bility of a certain patient being discharged during the following twenty four
hours, based on his medical records as well as his demographic data and some
environmental factors. To this aim, data engineering and supervised learning
techniques have been applied in the context of a classification task. We have
experimented with different algorithms as well as feature representation ap-
proaches to make the most out of the data at hand.
As a result, a model with a promising performance of 0.84 AUC-ROC score
was obtained, and its results have demonstrated to generalize quite well on
unseen data. This model was the base on top of which a discharges forecaster
tool was developed. This solution is able to return three different predictions
of the hospital discharges for a specified date with different "confidence lev-
els" associated, thus providing management with a risk-informed prediction
of hospital beds availaibility. The "confidence" reported for each of the fore-
casts was obtained using a simulation approach for historic data where we
were able to contrast the forecast output with the actual scenario.
The hospital management team has made explicit its interest in the solution,
as they assess it has an enourmous potential for facilitating the bed planning
process and by doing so improving the hospital operational efficiency.

To Julián, for his unconditional love.
To Rafael, a light in the middle of the darkness.

vii

Contents

Abstract v

Dedication vii

Contents ix

1 Introduction 1
1.1 Background . 1

1.1.1 Hospital Bed Management . 1
1.1.2 Machine Learning . 2

1.2 Justification . 3
1.3 Objective . 3

2 Methods & Procedures 5
2.1 CRISP-DM Methodology . 5
2.2 Data . 8

2.2.1 Exploration . 9
2.2.2 ETL . 18

2.3 Machine Learning Techniques . 23
2.3.1 Supervised Learning Algorithms 23
2.3.2 Machine Learning Model Evaluation 28
2.3.3 Feature Engineering Techniques 33

2.4 Software . 35

3 Results 37
3.1 Model Experiments . 37
3.2 Model Selection . 41
3.3 Final Model Assessment . 50

4 Discussion 53

5 Conclussions and Recommendations 57
5.1 Project Achievements . 57
5.2 Limitations . 58
5.3 Management Recommendations . 60

ix

x Contents

A List of variables in each dataset 65

B Data Quality Reports 73

C Data Quality Plan 81

D Feature importance plots for different model experiments 87

E Simulation results 91

F Forecaster output example 93

Bibliography 95

Chapter 1

Introduction

Hospital Operations Management around the world is devoted to one simple but
hard to achieve goal: make the most efficient use of hospital scarce resources. These
go from expensive and very specific health machinery assets to the most qualified and
specialized physicians, including, of course, hospital beds.

Indeed, bed capacity management is one of the key activities of hospital opera-
tions management. Poor bed management may result in either overcrowded emergency
rooms, valuable resources out of use or treatment limitations for critical patients, just
to name a few. Patient dissatisfaction is the immediate result, leading to a detrimental
effect for the health unit reputation in the long term. Thus, optimization of hospital
bed management is key for hospital’s success.

While hospital beds are a scarce resource for a hospital, data is not. There might
be exceptions but, in general terms, hospitals’ information systems are flooded with
data. Each time a patient is hospitalized, each study performed, each symptom in-
formed by the patient, each diagnosis received, each physician a patient was treated
by, everything is recorded in the hospital’s database with its corresponding timestamp.
Data is everywhere, but most of the time, it is misused by management.

Can this abundant amount of data propel the efficient utilization of those scarce
hospital beds? Our hypothesis is that it surely can.

1.1 Background

1.1.1 Hospital Bed Management

Bed management can be defined as: keeping a balance between flexibility for ad-
mitting emergency patients and high bed occupancy [which] has been an indicator of
good hospital management (Green and Armstrong, 1994). It concerns the placement of
emergency admissions, but may extend to balancing between emergency and elective
admissions since the two may require the same resources.

1

2 Introduction

Essentially, bed management can be viewed as the process of matching up demand
for beds with the supply of beds, in a completely dynamic context in which both, sup-
ply and demand, are changing minute by minute. Demand changes together with the
inflow of emergency patients, while variations in supply are determined by the evolu-
tion of discharges.

According to Infosys, a multinational consulting firm, there are two main constraints
to hospital management efforts to optimize bed allocation: lack of powerful forecasting
tools and lack of real-time information flows. Even today, hospitals use rule of thumb
or rudimentary forecasting methods to predict patients inflow [outflow]. Since capacity
and resource planning are done based on such forecasts, any inaccuracy results in an
under or over-allocation of both (Infosys, 2018).

1.1.2 Machine Learning

Machine learning refers to a category of algorithms that use statistics to find pat-
terns in massive amounts of data. Leveraged by the revolution of big data, the ap-
plication of these techniques to different industries, powers the vast majority of the
current artificial intelligence advancements: recommendation systems in e-commerce,
feeds customization in social media, delivery time prediction for logistics, just to name
a few.

Moreover, machine learning supervised algorithms have proved extremely useful in
forecasting. Supervised learning is a subset of the machine learning universe in which
the learning process is led by a target variable, as opposed to unsupervised learning, in
which data has no labels and thus algorithms just look for whatever pattern they may
find. Efficiency of supervised learning in forecasting tasks has been reflected several
times (Bontempi et al, 2013; Di Piazza et al, 2016; Krollner et al, 2010). In this sense,
supervised learning appears as an opportunity to tackle the hospital management prob-
lems regarding the lack of accurate forecasts that has been previously explained.

However, the application of machine learning to healthcare operations management
is not a widespread practice and even today still remains in its early stages. While
there clearly exists a need for advanced analytics tools, hospital management remains
reluctant to delegate its decisions on an automated, self-learned model. As an ex-
ample, Glintt (Global Intelligent Technologies), a Portugal-based leading IT solutions
company in the healthcare area claims to have developed, together with IBM, Wise-
Ward, a solution that uses predictive analytics to improve bed assignment decisions.
However, the current version relies completely on analytical and business rules rather
than artificial intelligence (Forneas, 2018).

In the academic field, a paper published in March 2019, took advantage of recursive
neural networks to forecast monthly bed occupancy levels in medium scale hospitals
(Kutafina et al, 2019). Another paper reports the development of a data-mining-based
model using only the number of patients hospitalized and the respective date, with an
acceptable performance on predicting weekly discharges. There are also examples of

1.2 Justification 3

machine learning models applied to the prediction of length of stay (Davis and Lowell,
1999; Pendharkar and Khurana, 2014; Turgeman et al, 2017; Walczak et al, 1998).

1.2 Justification
While interesting, the above described approaches for supervised-learning forecast-

ing do not make use of all the available patient’s data which we believe has enormous
predictive potential. Moreover they provide acceptable predictions at an aggregate
level, but they tell little about how likely is that a certain bed (in certain conditions)
might be idle in the subsequent hours.

Our proposal is to build a classification model, to predict the probability of a given
patient being discharged in the following twenty four hours, conditional on his entire
medical history. While ambitious, this objective is aligned with the needs of hospital
management which, on a daily basis, has to balance supply and demand of each bed
aiming to make the most efficient use of the resources. It will not only let the hospital
management team have a prediction for the aggregate discharges, but also to have a
probabilistic measure of how likely is that each bed will be liberated and consequently,
the resources associated with each bed. Thus, while aiming at improving bed capacity
management, the model could also be integrated with other scarce resources manage-
ment systems within the hospital unit.

To our best knowledge, by the time of submitting this document, no scientific work
using the described machine learning approach is currently available.

1.3 Objective
The objective of this project is to develop a machine learning model that, by taking

advantage of the full hospitals database, is able to predict, with an acceptable perfor-
mance, the odds that a given patient will be discharged during the following day. This
being said, the problem will be approached as a classification task and, to this aim,
ensemble methods will be applied. This type of methods constitutes the gold standard
technique for tabular data in the industry due to its optimal trade-off between perfor-
mance and training speed.

Moreover, we expect not only to provide the model and its predictions, but to un-
derstand how the different features impact on the probability of discharge. To this
end, we will take advantage of visualizations as well as simulation analysis. We aim to
prevent the black-box effect associated with machine learning approaches, thus facili-
tating management adoption of our model as a business solution.

Chapter 2

Methods & Procedures

2.1 CRISP-DM Methodology

The CRISP-DM (Cross-industry standard process for data mining) provides a struc-
tured approach to planning a data mining/machine learning project. This framework
was conceived in the late 1996 by representatives from SPSS, Teradata, Daimler, NCR
and OHRA, when the data mining market was still young and immature. Their guide-
lines remain widely-used in most analytics models nowadays and were used to guide
most part of this project.

The CRISP-DM framework consists of six phases implicated in any data min-
ing/machine learning project, which are shown in the Figure 2.1. Each phase’s output
determines the tasks to be performed in the next phase and the process is iterative
rather than sequential, meaning that moving back and forth between different phases
is always required.

Figure 2.1: Phases of the CRISP-DM reference model (SPSS, 2000)

5

6 Methods & Procedures

The initial phase, Business Understanding, focuses on understanding the project
objectives and requirements from a business perspective and then translating this into
a Machine Learning problem definition together with a preliminary plan to achieve the
objectives.

Figure 2.2: Generic tasks and outputs of the CRISP-DM reference model (SPSS, 2000)

The second phase, Data Understanding, embraces data collection and exploration.
The ultimate goal of this phase is to become familiar with the data, identify data
quality problems and uncover some first insights from the data. During this insightful
exploration, some new hypothesis might flourish, sometimes requiring to redefine the
business problem (thus going back to the first phase).

The Data Understanding phase is followed by Data Preparation, which covers all
activities needed to construct the final dataset: data transformation and cleansing,
feature engineering and feature selection.

After finishing these tasks, the Modeling phase comes. In this phase several model-
ing techniques are applied and their parameters are calibrated. As different modeling
techniques might have different requirements on the forms of the data, going back to
the Data Preparation phase is often necessary.

After having built one or more high quality models, the Evaluation phase comes
in. Before proceeding to Deployment, the steps executed to create the model should

2.1 CRISP-DM Methodology 7

be reviewed and evaluated to make sure that it properly achieves the business objec-
tives. The outcome of this phase should be a decision on the use of the achieved results.

The last phase of the framework is Deployment. This stage involves applying “live”
models within an organization’s decision making process so that the Machine Learning
customers can take advantage of it. Depending on the case, this phase can be as simple
as generating a report or as complex as implementing a real-time Machine Learning
process across the company.

Rather than just splitting the process into stages, the CRISP-DM methodology
proposes a hierarchical breakdown into four levels of abstraction that goes from general
to specific as illustrated in the Figure 2.3.

Figure 2.3: Four level breakdown of the CRISP-DM methodology (SPSS, 2000)

At the top level, the data mining process is organized into the different phases
previously described. Each phase consists of several second-level generic tasks. The
generic tasks are intended to be as complete and stable as possible. Complete means
covering both the whole process of data mining and all possible data mining applica-
tions. Stable means that the model should be valid for yet unforeseen developments
like new modeling techniques.

The third level, the specialized task level, is the place to describe how actions in the
generic tasks should be carried out in certain specific situations. For example, at the
second level there might be a generic task called clean data. The third level describes
how this task differs in different situations, such as cleaning numeric values versus clean-
ing categorical values, or whether the problem type is clustering or predictive modeling.

The fourth level, the process instance, is a record of the actions, decisions, and
results of an actual data mining engagement. A process instance is organized according
to the tasks defined at the higher levels, but represents what actually happened in a
particular engagement, rather than what happens in general (Chapman et al, 2000).

8 Methods & Procedures

2.2 Data
The data used for the development of the project has been provided by one of

the most relevant hospitals in Argentina under a non-disclosure agreement. We were
granted access to the full hospital’s database. However, not all the hospital data was
of interest for our problem. The data we analyzed and took advantage of for these
project includes:

• Patient admissions dataset

This dataset contains information corresponding to all hospitalizations. Each
row represents an admission which is identified by a unique admission-id, and a
patient-id (that is shared among the different hospitalizations of a certain person).
For each admission there is data regarding patient’s demographics, the diagnosis
received, physicians who treated the patient, admission conditions, etc.

• Laboratory studies dataset

This dataset contains information regarding the laboratory studies performed to
the hospital’s patients. Each row represents a set of laboratory tests requested at
a certain point in time and it is linked to a patient-id, an admission-id and the
corresponding date. For each laboratory test there is data regarding specifications
of the tests required, physicians who requested the study and datetime variables.

• Images studies dataset

This dataset contains information regarding the images studies performed to hos-
pital’s patients. Each row represents a set of images requested at a certain point
in time and it is linked to a patient-id, an admission-id and the corresponding
date. For each image study, there is data regarding specifications of the images
required, physicians who requested the study and datetime variables.

• Surgeries dataset

This dataset contains information regarding all surgeries performed at the hospi-
tal. Each row represents a surgery and it is linked to a patient-id, an admission-id
and the corresponding date. For each surgery there is data regarding the patient’s
previous and post-surgery conditions, specifications on the performed surgery and
its requirements, physicians and related staff that were involved in the surgery
and datetime variables.

• Sectors admissions dataset

This dataset contains information regarding patients flow across different hos-
pital sectors. Each row represents an admission to a particular sector and it is
associated with a patient-id and an admission-id.

• Hospital sectors dataset

This dataset reflects the structure of the different Sectors in which the hospital
is organized.

A full list of the available variables in each dataset is included in Appendix A.

2.2 Data 9

2.2.1 Exploration

Data exploration is a key part of both the Data Understanding and Data Prepara-
tion phases of CRISP-DM. According to Kelleher, Mac Namee and D’Arcy (2015), its
main objectives are two:

• Detecting data quality issues that could adversely affect the models: missing
values, outliers, irregular cardinality.

• Getting to know the data: understanding characteristics such as the types of
values a feature can take, the ranges into which the values in a feature fall, and
how the values in a dataset for a feature are distributed across the range that
they can take.

Data Quality

One of the most important tools in exploratory analysis for detecting data quality
issues is the data quality report. This report includes tabular reports (one for con-
tinuous features and one for categorical features) that describe the characteristics of
each feature in the data using standard statistical measures of central tendency and
variation.

According to Kelleher et al (2015), the table in a data quality report that describes
continuous features should include a row containing the minimum, first quartile, mean,
median, third quartile, maximum, and standard deviation statistics for that feature
as well as the total number of instances in the dataset, the percentage of instances
in the dataset that are missing a value for each feature and the cardinality of each
feature. The table in the data quality report that describes categorical features should
include a row for each feature in the dataset that contains the most frequent levels for
the feature (for example the mode and second mode) and their frequency. Each row
should also include the percentage of instances in the dataset that are missing a value
for the feature and the cardinality of the feature.

The data quality report should also include a histogram for each continuous feature
in the dataset. For continuous features with cardinality less than 10, it is suggested
to use bar plots instead of histograms as this usually produces more informative data
visualization. For each categorical feature in the dataset a bar plot should be included
in the data quality report (Kelleher et al, 2015).

We have followed these guidelines in order to conduct our data quality analysis.
The Dataset class, from thesis_lib Python’s module, provides a method called
get_quality_report() that generates a complete quality report for both the cate-
gorical as well as the numerical variables in the dataset at stake, including distribution
plots and tabular data for each feature.

An example of the Data Quality report provided by the get_quality_report()
method, following the aboved described guidelines, is included in Appendix B.

10 Methods & Procedures

After analyzing the data quality reports, some data quality issues were identified.
Following the best-practices provided by Kelleher et al, in Fundamentals of Machine
Learning for Predictive Analytics (2015), a comprehensive data quality plan was built.
We have summarized here some of the main data quality issues found and how we
approached each of them. For a more detailed view of the full Data Quality Plan see
Appendix C.

• Structural missing values

Several variables have missing values due to valid data. For example, the variable
previous_sector in the admissions dataset (which refers to the previous hospital
sector in which the patient was hospitalized) has 98% of missing values, because
most patients don’t have a previous admission. While this does not represent a
problem in terms of the quality of the information, it is a problem for machine
learning models as most algorithms do not handle missing values. Different ap-
proaches could be followed here depending on the case. As most variables dealing
with this issue are categorical, in the Data Quality Plan we have suggested to
generate a new category for the missing values, as the simple fact that data is
missing for a certain datapoint can be informative itself.

• Missing values due to data collection errors

We have identified a collection of variables that have more than 60% of missing
values with apparently no reason for the value to be missing, we assumed that
these represent data collection issues. Unfortunately, in these situations, we will
consider discarding the features as we consider they will not provide enough
information for a model to learn.

• Extremly high cardinality

There are some categorical variables with as many levels as rows in the table.
These are usually keys (like patient_id or surgery_id) that are useful to under-
stand the relationship between different tables in the hospital’s database but do
not carry intrinsic meaning. This type of variables must be excluded from the
model, as learning anything from them would mean that the model is overfitting
the training data. In other cases, there are high cardinality variables which are
certainly not keys (for example presumptive_diagnosis or scheduled_surgery).
We have identified that in these cases, the variable levels are not standardized
(there are many labels that actually correspond to the very same category but
they are encoded differently, probably due to data collection errors). Thus, we
should standardize their levels when possible, by manually detecting the different
labels that map to the very same level.

• Inappropriate data types

This is a common issue, especially when data has been exported to different file
formats as has been the case with our database. The most noticeable inappropri-
ate data types variables in our data are time related variables which are treated
as categorical (for example: surgery_starttime, or surgery_end_time). These
variables should be converted to the appropriate data type.

2.2 Data 11

• Large number of outliers

As illustrated in the boxplots of our data quality report (see Appendix B), many
of the continuous variables in the data presented distributions with an important
number of outliers. At a first sight, some of them may look like invalid data (for
example a patient having 134 surgeries or a surgery taking 1439 minutes long).
However, digging into the data, we have found evidence of these data points being
consistent. In the literature there is no strong take in regard to how to approach
these cases. The only concern related to this type of outliers (valid outliers) is
that some machine learning techniques do not perform well in the presence of
extreme values, so we will just take notes of this for possible handling later on.

• Invalid outliers

We have also identified some variables with invalid outliers. This is the case,
for example, for the variable new_born_gestation_age in the admission dataset,
which has a bimodal distribution with peaks of forty weeks (the standard ges-
tation length) and zero weeks. All cases with a zero value on this field are not
newborn patients, meaning that they should actually have a missing value in-
stead. For this case, we considered it would not be problematic as, despite its
invalidism, the zero value will be a sign for the learning algorithm that the patient
is not a newborn.
In other cases, were we detected invalid outliers could be problematic, we pro-
ceeded to discard the corresponding datapoints or discard the variable itself (if
we considered the proportion of invalid outliers was arbitrarily high).

Data Understanding

Besides getting to know the available data, its distribution and quality issues, the
exploratory stage was insightful in terms of finding relationships between the different
variables available in the data and our objective: predicting discharges. We made
special emphasis on the variables that correlated with the admission length. Here we
present our main findings from the exploratoy phase:

• Hospitalization length and patient age

As common sense will dictate, there is an evident relationship between patients’
length of stay and their age. While not unexpected, it was pleasing to observe
such a clear pattern in the data. Figure 2.4 illustrates how older people tend to
be hospitalized for longer periods of time, as far as they are not too old, in which
case hospitalization length starts to decrease (probably due to sooner death).

12 Methods & Procedures

Figure 2.4: Avg. Hospitalization length (hours) vs. Patient age

• Hospitalization length and medical insurance

Another compelling relationship found in the data is the one between patients’
length of stay and their medical insurance service (entity_group). The extremely
high expected hospitalization length that patients from PAMI exhibit is particu-
larly notorious (2.61 times the hospitalization length general average). This was
not a surprise: PAMI is the public health insurance agency for retirees in Ar-
gentina, thus the average PAMI patient is older and the rest of the patients which
may explain why they tend to stay longer hospitalized. However, there migth be
another underlying reason explaining this relationship. According to the insights
gathered from our conversations with the hospital management team, PAMI, as
many public agencies in Argentina, its known for its bureacratic processes and
poor operational performance, deriving in many patients being left at the hospital
for much longer time than needed.

2.2 Data 13

Figure 2.5: Hospitalization length and medical insurance

• Hospitalization length and types of surgeries

Another question posed during the exploratory stage was whether there was any
relationship between the surgeries received by the patient during his admission,
and the lenght of his stay at the hospital. As Figure 2.6 exhibits, hospitalization
length varies widely among the different types of surgeries patients might under-
take, suggesting this would be an important feature for the model to be taken
into account.

14 Methods & Procedures

Figure 2.6: Hospitalization length by surgery type

• Hospitalization length and day of the week

A further insightful finding was the one concerning the day of the week in which
the admission takes place. Patients who are hospitalized during the weekend
(days 5 and 6) should expect to stay 19-23% longer at the hospital than the
average as shown in Figure 2.8. This can be explained by an overall decline in
the hospital activity during the weekend.
Figure 2.7 reflects how both, discharges and admissions, sink during the weekends.
While the admissions decrease has certainly to do with a lower demand during this
time of the week, this explanation does not hold for the fall in discharges. Instead,
it seems to be propeled by the sanatory staff itself by anticipating discharges
before the weekend.
This certainly represents an opportunity for the hospital management in terms of
balancing the hospital occupation along the week by redirecting the demand to
the weekends and thus being able to decongest they systems during the weekdays
(Monday-Friday). They could so, for example, by scheduling non-emergency
hospitalizations (like prearranged surgeries) on Satudays and Sundays.

2.2 Data 15

Figure 2.7: Global caption.

Figure 2.8: Hospitalization length by admission day of the week.

Week goes from Monday (0) to Sunday (6).

• Hospitalization length and request sector

There are also significant differences in patient hospitalization length based on
the hospital sector that requested the admission. For instace, patients who are
directly admitted to Intensive Care Unit (ICU) and premature newborns (Neona-
tology Unit) have a longer expected hospitalization. They also represent a small
fraction of the patients admitted as show in Figure 2.10.

16 Methods & Procedures

Figure 2.10: Hospitalization length and request sector

• Hospitalization length and patient origin

With regard to patient origin (where does the admission come from), there are
significant differences in hospitalization length as well, as Figure 2.11 reflects. It
is particularly notorious how shorter scheduled hospitalizations are (labeled as
Programada). Emergencies (Emergencias) appears as the category from which
the longest admissions come from, with an average hospitalization length of al-
most 9 days (209 hours). Moreover, admissions from this origin represent 38% of
the hospitals admissions in the dataset.

2.2 Data 17

Figure 2.11: Hospitalization length and patient origin

• Hospitalization length and laboratory studies

Last but not least, from the analysis of the laboratory dataset in conjunction
with the admissions dataset we were able to plot the relationship between the
number of times a certain laboratory test is perfomed to patients and the average
hospitalization length of these patients (Figure 2.12). The underlying hypothesis
here was that some unusual, less frequent study types, when perfomed to a patient
just a few times would be an indicator of a complicated health condition, thus
causing the patient staying for a long period hospitalized. Studies like Potasio
en Sangre or Proteinas totales seem to follow this pattern.

18 Methods & Procedures

Figure 2.12: Hospitalization length vs. No. of studies per patient by Study type.

Circle size represents confidence in the mean hospitalization length estimate (sample mean).

2.2.2 ETL

In order to combine the data coming from the hospital’s database tables into a
single dataset with the necessary schema to address our classification task and ETL
process was designed.

ETL technology (that stands for Extract, Transform and Load) is a data integra-
tion process used to blend data from multiple sources. During this process, data is
extracted from a source system, converted into a format that is appropriate for the
analytics task and then stored (loaded) into a destination system. For the purpose
of this project, a customized ETL process was designed using Python with an object
oriented programming approach.
Figure 2.14 chart explains the information flow in the process ETL and the different
tasks performed.

2.2 Data 19

Figure 2.14: ETL pipeline

Extract

The Extract stage simply consists in reading the data provided by the hospital in
its original format. Some of these datasets are stored in .xlsx files while others are
stored in .csv files. Total data extracted adds up to approximately 1 Gigabyte of
memory.

Transform

During the Transform stage different tasks take place. First of all, data is cleaned
and normalized. This includes, among other things: renaming columns so that vari-
ables names are consistent across the different datasets, converting columns to the
appropriate format, dropping some columns due to irrelevance or emptiness, generat-
ing some new columns from the already available columns (for example, by combining
date and time columns, datetime variables are created which migth be useful for later
tasks) and checking for inconsistencies among the data (for example patients that have
two different birth dates). The output of this job is temporarily stored in .parquet
files (binary, faster to read file format).

In the second place, the process of generating patient clinic records occurs. This
is achieved by iterating over the list of unique patients and gathering the information
from the different datasets related to the patient at stake. To deal with this task, two
Python classes were created:

• class Patient:

This class is aimed to enclose attributes and methods related to a patient. The
class is initialized by providing a valid patient-id. Each patient has the property
admission_history which consists of a dictionary of his admissions accessed
through their admission-id.

By calling the method load_patient_data() and indicating the corresponding

20 Methods & Procedures

database where data is supposed to be extracted from, this class will gather and
store as attributes the patient’s data regarding admissions, laboratory studies,
images studies, surgeries and sector.

The class also contains a property called admission_history which consists of
a dictionary of Admission class objects indexed by their admission-id.

The method get_historic_records() is of extreme importance. By calling it,
we will be able to generate a Pandas dataframe with a row for each day the
patient spent at the hospital and all the corresponding data upto that point in
time.

• class Admission:

This class is aimed to enclose attributes and methods related to a patient’s ad-
mission. The class is initialized by providing a valid admission-id and its corre-
sponding Patient class object. Thus, both classes are related to each other in a
complementary way.

In a similar way to Patient functionality, the method load_admission_data()
will gather from the Patient.data attribute all data regarding a particular pa-
tient’s admission and store them as attributes.

In a similar way to get_historic_records(), the method get_admission_records()
will generate one record per day the patient was hospitalized during a certain
admission, with all the patient’s data upto that point in time. This includes pro-
cessing all the patient’s surgeries, laboratory studies, images studies and sectors
upto each day the patient was hospitalized during the admission.

This last step is extremely important as it guarantees that the model’s data will
be point-in-time correct and so the model will not be able to see information
during training that does not replicate the conditions in which it will be used
(i.e. incur in data leakage). For example, if a certain patient was hospitalized a
given date, and after a week in the hospital he underwent an unscheduled surgery,
we cannot use the surgery information to predict patient’s discharge during the
first week hospitalized as, although we have that information in our laboratory
settings, data from the future will not be available when using the model in a
real-life scenario.

By taking advantage of these two classes, we have built a process that basically
goes as it follows (See Algoritm 1):

2.2 Data 21

Algorithm 1 Patient records generation
1: for patient in patients do
2: patient_records = []
3: for patient in patient.admissions do
4: admission_records = admission.get_admission_records()
5: patient_records.append(admission_records)
6: end for
7: patient_records.export()
8: end for

Here there is an example of how the output of this process, for a certain patient,
looks like:

Figure 2.15: Mock view of a patient’s clinic records. Some columns have been collapsed

In this case, the patient 1000021-0 had two admissions to the hospital. The first of
them was in May 2018 (admission id 507351-7) and the following one was in July the
very same year (admission id 522368-7). The first time, he was hospitalized for 4 days
and the second time, he was hospitalized 6 days, thus his full clinic records consist of
10 rows. The first time, he had 17 laboratory tests requested on the first day of admis-
sion and 5 more tests the following day, which gives a cumulative number of laboratory
studies of 22 tests during his first admission. During the second admission, he had a
surgery on the first day of admission, and then he had laboratory studies performed
almost every day until he left the hospital.

This stage of the ETL processes more than 50,000 patient clinic records which
represented around 500,000 rows. Each patient’s records is saved as a .parquet file
named after the corresponding patient-id.

Load

The third and last step of the transform stage is the one in charge of building the
dataset that will serve as the main input for the machine learning model. In order to

22 Methods & Procedures

do this, the clinic records from the different patients generated in the previous process
are concatenated and sorted by date. Patient static variables, as for example birth
date and gender, are also included in this step. Finally, the target variable is defined:
it consists in a boolean column that will take the value 1 (True) if the patient was
discharged at that day of his admission, 0 (False) otherwise. For the example above,
the result is shown in Figure 2.16.

Figure 2.16: Mock view of the dataset. Some columns have been collapsed.

Once patients’ records are altogether and sorted and their target variable defined,
the dataset is splitted in three subsets: one of them will be used for model training,
another one will be used for model validation and the last one will remain unused for
testing purposes once the final model is chosen. In order to decide how to split the
data, three considerations were taken into account:

• The first one has to do with replicating the deployment scenario in our validation
schema: the model will learn from past data, but its predictions will be applied to
the future. Thus our training-validation split criteria should be temporal rather
than randomized. In that way, we make sure that we train the model with pre-
vious data than the one we validate the model with.

• Moreover, we considered that patients flow within the hospital is quite fluctuant
during the year, with some seasonal components. Because we want our model to
learn those patterns it is necesarry that each subset dataset includes at least a
year of data.

• We only had available two complete years of data, thus the most obvious ap-
proach of a year for training, a year for validation and a year for testing was not
an option.

As a result, we ended up with a validation schema that combined a temporal split
with a randomized one. We took a year-long period for training and the chronologically

2.3 Machine Learning Techniques 23

consequent year-long period for validation and testing. Within this second year-long
subset, we performed a random split for validation and testing with a 50%-50% distri-
bution.

Figure 2.17: Validation schema

2.3 Machine Learning Techniques

2.3.1 Supervised Learning Algorithms

Decision trees

In terms of machine learning, there are different algorithms available to approach
a classification problem as the one concerning us. Decision trees constitute a family
of supervised-learning algorithms that implement a divide and conquer strategy in a
non-parametric way by building a hierarchical data structure. Despite their relative
simplicity, decision trees are the core of many more complex and sophisticated super-
vised learning algorithms that remain an industry standard for many classification as
well as regression tasks, especially when dealing with tabular, categorical data.

A decision tree can be defined as a composed of internal decision nodes and termi-
nal leaves. Each decision node m implements a function fm(x) with discrete outcomes
labeling the branches. Each leaf node has an output label, which in the case of classi-
fication is the class label and in regression is a numeric value. A leaf node defines a
localized region in the input space where instances falling in this region have the same
labels (in classification), or very similar numeric outputs (in regression).

Given a certain input, the test is applied at each node, and one of the branches
is taken based on the outcome of this evaluation. The process is repeated recursively
until arrival at a leaf node. At that point, the value of the leaf constitutes the output
value for the input.

Decision trees are a non-parametric method, as they don’t assume any parametric
form for the classes distributions nor a fixed structure for the tree. Leaves and nodes

24 Methods & Procedures

are built during the training process depending on the complexity of the problem in-
herent in the data.

In classification tasks, splits into branches are defined based on their goodness for
the learning goal which is quantified by an impurity measure. That is, data is splitted
into branches so that the resulting nodes are as pure as possible. A common measure
for impurity is entropy defined as:

Im = −
K∑
i=1

pim log2 p
i
m (2.1)

where pim represents the probability of class i given node m.

In a binary setting (but this result can be generalized to n classes) entropy is a con-
cave function with minimum at p = 0 and p = 1, this is, when the node is perfectly pure.

The learning process for decision trees consists of iterating all the nodes which are
not yet pure, evaluating each possible split position and choosing the one that has
the minimum entropy (see Algorithm 2). This is the basis of the Classification and
Regression Tree (CART) algorithm (Breiman et al. 1984) and its extensions.

Among the main advantages of working with decision trees, lay interpretability and
simplicity. Unfortunately, the basic decision tree algorithm, as explained above, is not
as powerful as other classification approaches in terms of its predictive accuracy, be-
sides the fact that it can be very non-robust.

In order to address these issues, the Machine Learning community has developed a
series of methods known as ensemble methods that take advantage of learning decision
trees by combining them in a way that increases their performance and decreases their
bias.

2.3 Machine Learning Techniques 25

Algorithm 2 Decission tree algorithm
function GenerateTree(X)

2: if node_entropy(X) < θ then
leaf ← create_node()

4: return leaf
else

6: i ← FindBestSplit(X)
for each branch of xi do

8: find Xi samples falling in branch
GenerateTree(Xi)

10: end for
end if

12: end function

function FindBestSplit(X)
14: MinEnt ← Max

for attribute in X.attributes do
16: for each possible split do

split ← GenerateSplit()
18: e ← split.entropy()

if e < MinEnt then
20: MintEnt ← e

BestSplit ← split
22: end if

end for
24: end for

return BestSplit
26: end function

Ensemble methods

Ensemble methods are conceived as learning algorithms that construct a set of clas-
sifiers and then classify new data points by taking a weighted vote of their predictions
(Dietterich, 2000). The main discovery is that ensembles are often much more accurate
than the individual classifiers.

In his article, Ensemble Methods in Machine Learning, Dietterich T. emphasizes
the three main reasons why this is the case:

The first of them is statistical, he explains. A learning algorithm can be viewed
as searching a space H of hypotheses to identify the best hypothesis in the space.
The statistical problem arises when the amount of training data available is too small
compared to the size of the hypothesis space. Without sufficient data, the learning
algorithm can find many different hypotheses in H that all give the same accuracy on
the training data. By constructing an ensemble out of all of these accurate classifiers,
the algorithm can average their votes and reduce the risk of choosing the wrong clas-

26 Methods & Procedures

sifier.

The second reason is computational. Many learning algorithms work by performing
some form of local search that may get stuck in local optima. In the particular case
that concerns us, decision tree algorithms employ a greedy splitting rule to grow the
decision tree: they evaluate splits one a time and decide which split to choose inde-
pendently on the consequent possible splits. Notice that, actually, optimal training of
a decision tree is NP-hard (Hyafil and Rivest, 1976; Blum and Rivest, 1988). Thus an
ensemble constructed by running the local search from many different starting points
may provide a better approximation to the true unknown function than any of the
individual classifiers.

The last issue is representational. In many machine learning applications, the true
function f cannot be represented by any of the hypotheses in H. Even with very flex-
ible algorithms like decision trees, as the training sample is finite, they will explore a
finite set of hypotheses and stop searching when they find one that fits the training
data. Forming weighted sums of hypotheses from H can actually expand the space of
representable functions.

In terms of how the ensemble is constructed, different techniques have been de-
veloped. Some of them work particularly well with decision trees classifiers, more
specifically: bagging and boosting.

• Bagging:

Bagging is an ensemble technique that takes advantage of bootstrapping to im-
prove statistical learning methods such as decision trees by reducing its variance.
We recall from basic statistics theory that, given a set of independent observations
Zi,Z1,...,Zn, each with variance σ2:

Var(Z̄) =
N∑
i=1

σ2
i = σ2/N (2.2)

Thus a natural way of reducing variance (and hence increasing the prediction
accuracy of a statistical learning method) is to take many independent training
sets from the population, building a classifier and then averaging their predictions.
An approximation to this idea is to generate bootstrapped training datasets,
train a classifier with each bootstrapped training set and then averaging their
predictions, which is exactly what bagging does:

f̂bag(x) =
1

B

B∑
b=1

f̂ ∗b(x) (2.3)

An improvement over the plain bagging technique is the one applied by the well
known Random Forest algorithm. To prevent the different bagged trees from

2.3 Machine Learning Techniques 27

looking quite similar in presence of a very strong predictor, Random Forest al-
gorithm forces each classifier to consider only a random subset of the predictors,
thus decorrelating the trees. This approach has proved particularly efficient in
preventing overfitting as well as speeding up training. Besides this, as trees are
trained independently from each other, parallel processing can be applied accel-
erating the training process even more.

Random Forest is one of the learning algorithms that we have experimented with
in our model. The most important hyperparameters in its configuration are:

– B: the number of classifiers (learning trees) to fit. In bagging, large number
of classifiers usually do not derive in overfitting, thus the optimal choice of
B will rely upon the trade off between increasing performance and fastening
training.

– m: the sample number of the features to use when building each tree. The
smaller the number of features used, the less correlated the different clas-
sifiers will be. However, this will sacrifice some performance as well. A
balance should be found with regard to this parameter value.

• Boosting:

A quite different approach to improve performance of decision trees by taking
advantage of ensembles is boosting. Like bagging, boosting is a general approach
that can be applied to many statistical learning methods. Here we restrict our
discussion of boosting in the context of decision trees.

Instead of training trees independently from each other, boosting proposes a se-
quential training of the different classifiers: each tree is grown using information
from previously grown trees. The idea behind this procedure is to prevent fitting
a large decision tree which is likely to overfit the training data. Instead, the
boosting algorithm learns slowly by building relatively small trees which aim to
predict the residuals of the previous classifier rather than the outcome Y (See
Algorithm 3), thus it focuses on improving the decision function f̂ in those areas
where it is not performing well.

This slow learning process has demonstrated to excel in terms of performance,
dominating most Kaggle’s and other data science competitions.

The main hyperparameters in the boosting algorithm are:

– B: the number of classifiers trained, which, unlike what happens with Ran-
dom Forest, can derive in overfitting if it is too large.

– λ , the shrinkage parameter or learning rate, which controls the speed at
which boosting learns. Very small values of λ will slow the training and also
require a larger number of classifiers to achieve good performance.

28 Methods & Procedures

– d which constitutes a regularization parameter controlling the maximum
number of splits in a single tree (i.e. the depth of the tree).

Algorithm 3 Boosting Algorithm
function BoostDecisionTrees(X, B,λ,d)

f̂(x)← 0
3: for all i in X do:

ri ← yi
end for

6: for b in 1,2,3.....B do
f̂ b ← GenerateTree(X, d)
f̂(x)← f̂(x) + λf̂ b(x)

9: ri ← ri − λf̂ b(xi)
end for
return f̂(x)

12: end function

2.3.2 Machine Learning Model Evaluation

Performance Metric

Our metric of choice for the assessment of the different machine learning models ex-
perimented in this project has been Area under the ROC curve. Area under the ROC
curve (AUC-ROC) is a widely known performance metric in the Machine Learning
community that has been gaining more and more adherence in recent years because of
its properties that make it especially useful for domains with skewed class distribution
or unequal classification costs.

As its name indicates, this metric is obtained by calculating the area under the
Receiver Operating Characteristics (ROC) curve. The Receiver Operating Character-
istics curve is a graphical plot that illustrates the potential of a binary classifier as its
discriminant threshold varies. The curve is obtained by plotting the different combi-
nations of TPR (true positive rate) on the y-axis, and FPR (false positive rate) on
the x-axis, derived from using a certain discriminant threshold. By iterating over the
threshold space [0,1] and plotting its results, a curve can be drawn. The closer the
curve is to the diagonal, the lower the degree of separability that the classifier pro-
vides. At the extreme, a random classifier’s ROC curve would actually be the diagonal
where TPR = FPR).

2.3 Machine Learning Techniques 29

Figure 2.18: Example of ROC Curve

While interesting in graphical terms, to compare classifiers it is necessary to reduce
performance measure to a single scalar value and that’s where AUC-ROC comes to the
scene (Fawcett, 2005). Since it’s a portion of an area of a unit square it lies between 0
and 1: the larger its value, the better the classifier. The AUC-ROC has an important
statistical property: its value is equivalent to the probability that a classifier will rank
a randomly chosen positive instance higher than a randomly chosen negative instance.

In the paper The use of the area under the ROC curve in the evaluation of machine
learning algorithms, Bradley (1996) presented the results of a series of experiments
analyzing the performance of six different machine learning algorithms using both
AUC-ROC and the more conventional accuracy metric.

AUC-ROC demonstrated to have increased sensitivity in Analysis of Variance test,
a standard error that decreased as both AUC-ROC and the number of test samples
increased, independency from decision threshold and invariant to a priori class proba-
bilities.

In the context of our patient discharge prediction task, we are presented with a
highly imbalanced dataset (See Figure 2.20) where positive cases (discharges) account
for only 13% of the data-points. This is due to the fact that most patients stay more
than 2 days hospitalized, as the density distribution of admission length illustrates
in Figure 2.19. This characteristic of the data requires the use of a classification
performance metric robust to class imbalance, such as AUC-ROC.

30 Methods & Procedures

Figure 2.19: Empiric distribution of Hospitalization length

Figure 2.20: Empiric distribution of class probabilities

Hyperparameters Tuning: a Bayesian Optimization approach

Hyperparameters are important for machine learning algorithms since they directly
control the behaviors of training algorithms and have a significant effect on the perfor-
mance of machine learning models (Wu et al, 2019, pp.26).

The aim of hyperparameter optimization in machine learning is to find the hyper-
parameters of a given machine learning algorithm that return the best performance as
measured on a validation set (Koehrsen, 2018). In analytical terms, this problem can
be represented by the following equation:

x? = arg min
x∈X

f(x) (2.4)

where f represent the objective score to minimize (in our case, 1- AUC ROC score)
evaluated on the validation set and x∗ the set of hyperparameters values that mini-

2.3 Machine Learning Techniques 31

mizes this function. The process of solving this problem is known as fine tuning and
it constitutes an NP-hard optimization problem itself.

There are many approaches to the fine tuning process. Some of the most extended
ones make use of a brute-force search (grid search) or a random search from a hyperpa-
rameter subspace in order to find which is the combination of hyperparameter values
that minimizes f within that particular subspace. The main limitation with this type
of methods is that they are highly inefficient, as they spend a significant amount of
training time evaluating irrelevant combinations of hyperparameters. Moreover, they
are constrained to search into the subspace pre-defined by the user, whose choice is not
at all trivial.

As a consequence, there is great appeal for automatic approaches to fine tuning
that could optimize the performance of any given learning algorithm to the problem
at hand (Snoek et al, 2012). Among this type of methods (known as autoML) lies the
Bayesian Optimization approach to hyperparameter tuning that has been applied in
the current project.

In general terms, Bayesian optimization typically works by assuming the unknown
function f was sampled from a Gaussian process and maintains a posterior distribution
for this function as observations are made. In the case of hyperparameter tuning, the
observations are the results of running learning algorithm experiments with different
hyperparameters. To pick the hyperparameters of the next experiment, this method
will optimize the expected improvement (EI) or the Gaussian process upper confidence
bound (Snoek et al, 2012).

In other words, the method works by building an estimation of the probability func-
tion of the score given certain hyperparameters values. Then, it analytically optimizes
this function and finds the combination of hyperparameters that minimizes the score
surrogate probability, it applies these hyperparameters to the true objective function
(by running the experiment) and it updates the probability estimated function incor-
porating these last results. This process is repeated until certain stopping criteria is
met.

By doing this, Bayesian optimization methods are able take advantage of the knowl-
edge derived from the previous experiments in order to make an informed decision on
the following combinations of hyperparameters to experiment with. By evaluating hy-
perparameters values that appear more promising from past results, these methods can
find better model settings than random or grid search in fewer iterations.

Cross Validation

Overfitting is one of the main challenges of Machine Learning. Because inductive
bias is at the core of any learning application, one should keep always an eye on the
model ability to generalize their results.

32 Methods & Procedures

Cross-validation is the process of measuring the generalization ability of different
models by testing them on new data, unseen during training, and then choosing the
most accurate one on this set of data. There are different techniques available to
perform cross-validation. In the current project we have made use of two of them in a
complementary way: the validation-set approach and k-fold cross-validation.

• The validation-set approach

This is a very simple strategy that involves dividing the available set of obser-
vations into two parts: a training set and a validation/hold-out set. The model
is fitted using only the training set, and the trained model is used to predict
responses on the validation-set. The main drawback regarding using these ap-
proach has to do with the fact that only a subset of the observations are used to
train the model (less data will mean the model learning will be poorer) and the
performance is measured only on a subset of the observations as well (thus,the
measured error can more variable, as it’s calculated with less data). However,
these drawbacks fall behind when the available data is sufficiently large.
As in our problem data scarcity is not an issue (because we have at hand more
than two-years daily patient data), the validation-set approach seems a reason-
able technique to be applied. Cross validation using a validation-set has been
used to compare the performance of the different learning algorithms in our ex-
periments.

Figure 2.21: Cross validation: Train-Test split

• K-fold cross validation approach

This approach involves dividing randomly the set of observations into k groups
of the same size. The model is fitted k times, each of them using k − 1 folds
for training and the remaining left-out one for validation, while rotating the one
fold that is left out. By the end of the process there are k different estimates of
the model performance which are averaged to estimate the k-fold cross validation
performance.
We will use this approach to compare performance among different combinations
of hyperparameters for the same machine learning algorithm. There is one main
reason why this makes sense: when optimizing hyperparameters, a significant
number of models should be fitted. If all of them are trained and validated with
the same static train-validation split we might end up overfitting to the validation
data.

2.3 Machine Learning Techniques 33

Figure 2.22: k fold cross validation

By combining this set of strategies, we aimed to be able to capture the best of each
of them. One the hand, having a validation, large-enough set hold out from training
would enable us to get a sufficiently robust measure of models’ generalization ability
to compare among different algorithms’ performance. On the other hand, k-fold cross
validation would prevent us from overfitting the validation data when fitting a large
number of models during the hyperparameter tuning process.

Figure 2.23: Cross validation strategy

2.3.3 Feature Engineering Techniques

Feature engineering is an important but labor-intensive component of machine
learning applications (Bengio et al, 2013). Most machine learning performance is
heavily dependent on the representation of the feature vector. As a result, much
of the actual effort in deploying machine learning algorithms goes into the design of
preprocessing pipelines and data transformations (Bengio et al, 2013). To make use of
feature engineering a model’s feature vector is expanded by adding new features that
are calculations (ratios, differences, logs) based on the other features or transforma-
tions of them (Heaton, 2017).

34 Methods & Procedures

In the current project, different techniques have been applied with the objective of
getting the most out of the available data to predict discharge probability.

• Categorical features encoding

As anticipated in the exploratory analysis, the data at hand contains several cat-
egorical variables, some of them with a really high cardinality. As categories of
a categorical variable are usually not numeric, it is necessary to encode them in
a certain way so that the machine learning algorithm can take advantage of them.

One of the most simple and extended approaches, known as One-hot Encoding,
is to generate one binary variable for each category within a categorical feature.
Thus a categorical variable with k possible categories is encoded as a feature vec-
tor of length k (Zheng and Casari, 2018). One advantage of this method, besides
its simplicity, is that it deals very well with missing values within the categorical
feature.
As described in Section 2.2, the dataset in consideration has some features with
structural missing values, thus encoding the categorical features like this is a
way of assessing this issue while not losing the information derived from the very
same fact that there is no value for that feature for a certain observation. We
have implemented this method applying the OneHotEncoder from ScikitLearn’s
preprocessing module.

The downside of One-hot Encoding is the large and sparse output matrix that
this encoder generates when the number of categories is large. However the ma-
chine learning algorithm used for training our models deals very well with this
huge data space, mainly because it applies a technique called Exclusive Feature
Bundling that will be explained in detail manner in Section 2.4.

• Text embeddings

In our dataset, we were faced with some text-features related to the patient’s
diagnosis, types of interventions, etc. In order to be able to be able to add these
features to a machine learning model, some transformation is needed. There are
different techniques available to deal with this, our choice has been tf-idf trans-
formation.

Tf-idf stands for term frequency - inverse document frequency and it is a metric
that represents how frequent is a certain token within a document with respect to
the frequency of the very same token across the whole corpus. More specifically,
tf-idf calculation goes as it follows:

bow(w, d) = # times word w appears in document d
Tf-idf (w, d) = bow(w, d) ∗N/(# documents in which word w appears)

2.4 Software 35

where N is the total number of documents in the corpus (dataset).

The advantage of tf-idf transformation in comparison with other more simplis-
tics approaches to text encoding, is that it provides a better representation of a
particular token’s importance, as it not only considers the frequency of a term
but also its relationship with a certain document relative to the whole corpus.

In order to be able to generate this type of representation, some preprocessin
needed to be made to the text features in our dataset, in particular tokenization
and counting. We have implemented these by making use of Scikit Learn’s
Tf-IdfTransformer which performs both, the preprocessing and the transfor-
mation tasks, together.

However, certain adjustments were made to customize this feature processor for
the particular problem at stake. More specifically, a customized list of stopwords
was generated to this aim. Besides, bigrams and trigrams were included in the
tokenization process, as some medical terms might consist of more than one word,
or some words must be considered within its context to get its full meaning.

• Missing values

As explained in Section 2.2, some features of the dataset at hand present missing
values. In some cases, they were directly filtered out from the model because of
the little information they contained. However, some others were features with a
strong predictive potential, as far as our exploratory analysis suggested. While
the proportion of missing values was not something to worry about, the machine
learning algorithms we are working with do not accept missing values, thus some
preprocessing was needed.
In the case of categorical features this issue was already addressed by the One-
hot-encoding approach. As for numerical features, we have followed an imputation
strategy and filled out with zeros the missing-values spaces. We have done this
by applying the SimpleImputer processor from the sklearn.Impute module.

2.4 Software

Project Source Code

This project has been developed entirely using Python Programming Language.
Custom software has been developed to approach problem specific tasks and fea-
tures. This code is available at the following Git repository under the module named
thesis_lib:

github.com/josedallavia/A-Machine-Learning-Approach-for-Prediction-
of-Hospital-Bed-Availability

https://github.com/josedallavia/A-Machine-Learning-Approach-for-Prediction-of-Hospital-Bed-Availability/tree/master/thesis_lib
https://github.com/josedallavia/A-Machine-Learning-Approach-for-Prediction-of-Hospital-Bed-Availability/tree/master/thesis_lib

36 Methods & Procedures

Algorithms Implementations

In terms of the ensemble methods implementations, our algorithm of choice has
been LightGBM (in its Python’s library version). There several advantages of this
implementation of the aboved explained tree-based learning algorithms, in particular:
faster training speed and higher efficiency, lower memory usage, better accuracy, sup-
port for parallel computing and its capability in handling large-scale data.

LightGBM innovative approach relies on the techniques used for reducing the num-
ber of data instances and the number of features to speed up the training process of
traditional gradient boosting in a smart way so that performance does not seem af-
fected. To this aim, the algorithm relies on the application of both Gradient Based
One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) . The first tech-
nique (GOOS) excludes a significant proportion of data instances with small gradients
and only uses the rest of them to estimate the information gain of the possible splits,
thus obtaining quite accurate estimations with a much smaller data size. The second
one (EFB), bundles mutually exclusive features using a greedy but effective approach
and thus reduces the dimension of the data space. This results especially useful for
datasets with high cardinality categorical features, typically approached with One-hot-
encoding, generating huge sparse matrices.

By applying these variants with respect to the conventional gradient boosting de-
cision tree, LightGBM has demonstrated to speed up the training process over twenty
times while achieving almost the same accuracy (Ke et al, 2017, p. 3146).

Other Python open-source libraries

We have also made extensive use of some open-source Python libraries for Machine
Learning and data related tasks:

• Matplotlib

• Numpy

• Pandas

• Hyperopt

Other software

Furthermore, additional open-source software has served its purpose in this project:

• Jupyter Notebooks for exploration and prototyping.

• Git for version control.

• Apache Parquet for data storage.

• PyCharm for coding.

Chapter 3

Results

3.1 Model Experiments
In order to predict patient discharges, we have experimented with different ap-

proaches to the data and supervised learning algorithms. Results of these experiments
are presented in Table 3.1.

In order to understand which features were the most important in each modelling
approach, feature importance barcharts were plotted. Feature importance is calculated
by the LightGBM package based on how many times each feature was used to branch
the different decision trees within the ensemble.

Figure 3.1: Experiments performance

37

38 Results

Table 3.1: Modelling experiments results

Experiment
set

Model
description Algorithm No. of

features
Training

time (secs)
AUC-ROC
Training

AUC-ROC
Validation Overfitting

1 baseline gradient
boosting 2 15.2 0.6482 0.6344 2.1%

1 baseline random
forest 2 19.1 0.6456 0.6346 1.7%

2
categorical +
numerical
features

random
forest 59 44.4 0.8062 0.7987 0.9%

2
categorical +
numerical
features

gradient
boosting 59 38.8 0.8484 0.8309 2.1%

3 date features
only

gradient
boosting 4 13.7 0.6286 0.6131 2.5%

3

date +
categorical +
numerical
features

gradient
boosting 63 37.0 0.8591 0.8432 1.8%

3

date +
categorical +
numerical
features

random
forest 63 52.3 0.8111 0.8043 0.8%

4 text only
features

gradient
boosting 4 28.7 0.7580 0.7201 5.0%

4
text +
sequence
features

gradient
boosting 11 45.5 0.7984 0.7678 3.8%

4
text +
sequence
features

random
forest 11 52.9 0.7266 0.7102 2.3%

5 combine all
features

gradient
boosting 59 94.7 0.8569 0.8392 2.1%

5 combine all
features

random
forest 59 87.4 0.8111 0.8048 0.8%

Default hyperparameters configurations was:

• For RandomForest : { num_iterations : 100, max_depth : -1, learning_rate :
0.1, bagging_fraction : 0.7, bagging_freq : 1 }

• For GradientBoosting : { num_iterations : 100, learning_rate : 0.1, max_depth
: -1, subsample: 1.0 }

3.1 Model Experiments 39

Modelling experiments could be summarized into different groups.

• Experiments set #1: Baseline

These were models trained with very little data (more specifically only a cate-
gorical variable: patient_gender, and a numerical variable: patient_age). This
approach was applied to both RandomForest and GradientBoosting algorithms.
The objective of these models was not to produce an accurate classifier but rather
to validate the pipeline built and, simultaneously, to establish a lower bound for
the performance of the following, more complex models to be evaluated against.

Performance achieved by these experiments was 0.6344 and 0.6346 AUC-ROC
score on validation data forGradientBoosting and RandomForest classifiers. Train-
ing time was 15.2 secs for GradientBoosting and 19.1 secs for RandomForest.
Overfittintg, measured relatively to the training set AUC-ROC score was 2.1%
and 1.7% respectively.

• Experiments set #2: Categorical-&-Numerical-features-only models

This set of models included all numerical features available in our dataset with a
scaling transformation and all the categorical features with a One-hot encoding
representation. This made up to more than 28 K features(due to the high cardi-
nality of the categorical features). Both ensemble classifiers RandomForest and
GradientBoosting were tested with this data.

RandomForest achieved a performance of 0.7987 AUC-ROC score on validation
set, with a relative overfitting of less than 1%. Training time was 44.4 secs.
GradientBoosting hit an AUC-ROC score on validation of 0.8309 by incurring in
2.1% overfitting. Fitting time for this classifier was 38.8 secs.
For both models, among the top features we found hospital_day_number (this is,
how many days the patient has been hospitalized so far) and patient_age. Other
important features had to do with the cumulative number of different services
(studies, surgeries,images) the patient had received so far.

• Experiments set #3: Include-date-features models.

This set of models considered some date-related features, not included in the
original dataset but extracted from some of its variables. In particular for cat-
egorical features we built: date_weekday and date_month were extracted from
the variable date (which represented the date a particular data point refered to),
admission_weekday and admission_month were extracted from the variable ad-
mission_date (which represented the date in which the patient was admitted to
the hospital). Different experiments were run with this set of extracted features,
either including or not the previous categorical and numerical features.

The classifier fitted only with the date-related features achieved a performance
of 0.6131 AUC-ROC score on validation data with a 2.5% overfitting. The ob-

40 Results

jective of this model was to assess whether or not the date features themselves
had certain predictive value.

When added to the previous set of categorical and numerical features perfor-
mance was 0.8432 AUC-ROC score for GradientBoosting algorithm and 0.8043
for RandomForest. Training time was 37 and 52.3 secs respectively, and the num-
ber of features ascended to 63.

Among the features of these models hospital_day_number and patient_age re-
mained of critical importance. The date feature date_weekday_5 showed up
within the top fifteen features for both classifiers, reflecting that whether or not
it was Friday (i.e weekday # 5) was important to predict patient discharge.

• Experiments set #4: Include text-features.

The fourth set of experiments dealt with the introduction of some text-features.

In the dataset there were some features that were explicitly text, as for exam-
ple the variables related with the patient’s uncodified diagnosis during differ-
ent moments of their admission (such as presumptive_diagnosis or administra-
tive_diagnosis).

Furthermore, there were variables whose values were sequences of tags (i.e. se-
quences of categories). For example: labos_studies_names consisted of a list of
the different laboratory studies that were requested to the patient up to that
day. We decided to treat this and other similar variables as text, using tf-idf
with bigrams or trigrams to generate their embeddings. Thus, if there was some
pattern in the data regarding some particular sequence being an indicator of the
upcoming discharge or not discharge, we would be able to exploit it.

By doing this, performance reached an AUC-ROC score of 0.7201 on validation
data using only four features related to the patient diagnosis. The classifier took
28.7 secs to be fitted and fell into 5% of overfitting relative to training perfor-
mance.

On the second iteration of models with text-features, where sequences of cat-
egories features were treated as text, performance was even more promising,
reaching a 0.7678 AUC-ROC score on validation with GradientBoosting ensem-
ble. This training took 45.5 secs and overfitting was reduced to 3.8%. Random-
Forest instead reached a 0.7102 validation AUC-ROC score and spent 52.9 secs
on training. Overfitting in this case was 2.3%.

• Experiments set #5: Combine-all features.

3.2 Model Selection 41

In experiment set #5 the different features coming from the above described ex-
periments were combined into a single model. This final model included one-hot-
encoded categorical variables, numerical variables, date-related variables like day
of the week and month of the year that let us incorporate some seasonal/cyclical
components to the model and text-features regarding both uncodified diagnosis
and sequences of studies names, surgeries types, etc. These made up to a total
of 59 features.

Performance achieved was 0.8392 and 0.8048 AUC-ROC score on validation set
for GradientBoosting and RandomForest ensembles respectively. GradientBoost-
ing took 94.7 secs for training while RandomForest did it in 87.4. Overfitting
was 2.1% in the first case and, 0.8% in the second one.

In both models, among the top features, we found variables coming from the
different above listed experiments. Hospital_day_number and patient_age re-
mained being the most important ones, just like in the very first iterations, but
some date features (date_weekday_5 especifically) and some text-features, for
example tokens like eme (referring to emergencies) or cesarea (caesarean oper-
ation in Spanish) demonstrated to have contributed significantly to the model
performance as well.

3.2 Model Selection
After choosing the most promising models from the experiments reported in the

previous section, hyperparameters were optimized for both ensemble types, using the
Bayesian Optimization approach described in Section 2.3. Table 3.2 summarizes the
results of the hyperparameter fine tuning process.

42 Results

Table 3.2: Model Selection: Comparative results

Metric Configuration Gradient boosting Random forest

Hyperparameters

Default

{num_iterations : 100,
learning_rate : 0.1,
max_depth : -1,
subsample: 1.0 }

{num_iterations : 100,
max_depth : -1

learning_rate : 0.1,
bagging_fraction : 0.7,

bagging_freq : 1}

Optimized

{num_iterations : 500,
learning_rate : 0.06,
max_depth : 20,
subsample : 0.71}

{num_iterations : 300,
max_depth : 6,

learning_rate : 0.015,
bagging_fraction : 0.5,

bagging_freq : 2}

{num_iterations :+400,
learning_rate: +0.5,

max_depth: enabled +20,
subsample: -0.29}

{num_iterations : +200,
learning_rate: -0.085,

max_depth: enabled +6,
bagging_fraction: -0.2,
bagging_freq: +1}

Training time (sec)

Default 94.7 87.4

Optimized 144.9 132.0

50.2 44.6

AUC-ROC validation

Default 0.839 0.805

Optimized 0.844 0.804

(%) 0.61% -0.08%

Overfitting (%)

Default 2.1% 0.8%

Optimized 4.3% 0.6%

(pp) 2.22 -0.14

RandomForest

In the case of RandomForest algorithm, the hyperparameters optimized were:

• Bagging fraction

• Learning rate

• Number of trees

• Maximum tree depth

• Bagging frequency

3.2 Model Selection 43

A relevant space of hyperparameters was generated and Bayesian optimization was
applied, fitting a total of 200 classifiers. The charts below illustrate the relationship
among the different tested values of each hyperparameter tuned and the obtained cross-
validation results.

The parameter bagging fraction exhibited a negative relationship with the cross
validation loss. Most of the iterations were with values between 0.6 and 0.7.

Figure 3.2: Hyperparameters optimization results for RandomForest - bagging fraction
parameter

In case of the learning rate parameter, it did not have a great impact on the model
performance as can be seen in the Figure 3.3.

Figure 3.3: Hyperparameters optimization results for RandomForest - learning rate
parameter

44 Results

Figure 3.4: Hyperparameters optimization results for RandomForest - number of trees
parameter

Figure 3.5: Hyperparameters optimization results for RandomForest - maximum depth
parameter

With regard to the number of trees parameter, the decrease in the cross validation
loss as the number of trees increased was notorious, but it turned asymptotic after the
parameter value exceeded the 300 trees. The Bayesian Optimization algorithm seems
to have noticed this. The right chart in Figure 3.4 shows how 50% of the models fitted
by the optimizer (100 out of 200 total fits) were configured with the parameter fixed
on 300 trees.

A similar pattern was observed with regard to the maximum depth of the Ran-
domForest classifier trees but in the opposite direction. Despite the noise, in the left
chart of Figure 3.5, it can be seen how the validation loss increases as trees go deeper.
Again, this is aligned with the behaviour exhibited by the Bayesian hyperparameter

3.2 Model Selection 45

optimizer. The chart on the right of Figure 3.5 reflects how the lower values of this
hyperparameter were the most chosen by the optimizer along its iterations.

The bagging frequency parameter exhibited a positive relationship with the cross-
validation loss, meaning lower values of the parameter derived in better model perfor-
mance.

Figure 3.6: Hyperparameters optimization results for RandomForest - bagging frequency
parameter

The best combination of hyperparameters for RandomForest model found was:

• Number of trees : 300

• Maximum tree depth: 6

• Learning rate: 0.015

• Bagging fraction: 0.5

• Bagging frequency : 2

GradientBoosting

For GradientBoosting classification algorithm, the hyperparameters optimized were:

• Learning rate

• Subsample

• Number of trees

• Maximum tree depth

46 Results

In this case, the parameter learning rate demonstrated to have a clear impact on the
cross validation loss. More specifically, a diminishing asymptotic relationship between
the cross validation loss and the learning rate was observed, as illustrated by Figure 3.7.

Figure 3.7: Hyperparameters optimization results for GradientBoosting - learning rate
parameter

Figure 3.8: Hyperparameters optimization results for GradientBoosting - subsample
parameter

3.2 Model Selection 47

With regards to the subsample parameter, there is no clear pattern between the
cross validation performance and this hyperparameter’s value.

In case of the number of trees, the parameter presented a negative relationship with
the cross validation loss. This is, the larger the number of trees, the better the clas-
sifier cross validation performance, as far as these results illustrate. Once again, the
hyperparameter optimizer behaviour was aligned with this finding, as it stands out in
Figure 3.9.

Figure 3.9: Hyperparameters optimization results for GradientBoosting - number of
trees parameter

Figure 3.10: Hyperparameters optimization results for GradientBoosting - maximum
tree depth parameter

Finally, with regard to the maximum tree depth, the performance exhibited by the
classifiers was quite fluctuating. The optimizer prioritized values in the middle of the

48 Results

proposed range but there was no determinant effect on the classifier performance.

The best combination of hyperparameters found for GradientBoosting was:

• Learning rate: 0.015

• Subsample: 0.71

• Number of trees : 500

• Maximum tree depth: 20

RandomForest vs GradientBoosting

The RandomForest algorithm trained with the best combination of hyperparame-
ters found during the fine tuning process reported a performance of 0.804 as measured
by AUC-ROC score on the validation data. The model took a total of 132 seconds
on training and it presented a negligible 0.6% of overfitting relative to training perfor-
mance. Despite the optimization process, an increase in performance was not achieved
in comparison with the classifier performance with the default configuration of hyper-
parameters.

On the other hand, the optimized configuration of GradientBoosting classifier ex-
hibited a performance of 0.84429 as measured byAUC-ROC score on the validation
data, with overfitting representing a only 4% gap between training and validation
performance. The classifier training time was 145 seconds. The optimization efforts
derived in only a 1% improvement on classification performance relative to the default
configuration.

Figures 3.11 and 3.12 illustrate the classifiers performance during training. In both
cases, the number of trees presented positive but diminishing returns in terms of per-
formance: as the number of trees fitted grows, the performance gain of fitting one extra
tree (incremental gain) diminishes.

While RandomForest performance curves are noisy, reflecting the randomness in-
troduced by the algorithm during training (see Figure 3.11), GradientBoosting per-
formance curves are pretty smooth aligned with the boosting logic where each tree is
grown using information from previously grown trees (see Figure 3.12).

Furthermore, the gap between training and validation performance remains con-
stant with RandomForest algorithm across the different iterations (see Figure 3.11),
meaning the model is not overfitting the training data. In contrast, for GradientBoost-
ing ensemble, once the number of trees gets sufficiently large, the training performance
curve quickly takes off from the validation curve (see Figure 3.12), reflecting the model
starts to overfit the training data.

3.2 Model Selection 49

Figure 3.11: Random Forest - Evolution of classifier performance during training

Figure 3.12: Gradient Boosting - Evolution of classifier performance during training

Despite the fact that GradientBoosting optimized model exhibits a greater over-
fitting than the RandomForest version, the classifier presents a superior performance
both in training and validation set as Figure 3.13 illustrates. This being said, the
GradientBoosting with optimized hyperparameters has been the classifier of choice for
our final model.

50 Results

Figure 3.13: Comparative performance of optimized models

3.3 Final Model Assessment
Once the final model was chosen, it was evaluated in the test data that had been held

back from the training and optimization process until that moment. AUC-ROC score
on the test dataset was 0.84, approximately the same as validation AUC-ROC score.
Overfitting measured as the relative difference of testing vs. training performance
remained 4%, just as the validation data anticipated.

Figure 3.14: Final Model Cross-validation Performance

The ROC curve for the final model evaluated on test data was build as a graphical
way of assesing the model performance. Figure 3.15 exhibits the relationship among
TPR (True Positive Rate) and FPR (False Positive Rate) of the final model as mea-
sured on testing.

3.3 Final Model Assessment 51

Figure 3.15: Receiver operating characteristic (ROC) Curve on Test set

In terms of the most important features of the final model, hosp_day_number leads
the rank by far with 1,000 splits, as illustrated by Figure 3.16. It is followed by pa-
tient_age and a series of numerical features related to the quantity of different services
received during the admission (images studies, laboratory tests, surgeries, etc). Some
date-related categorical features show up in the top too (for instance, date_weekday_5
and date_weekday_4). Regarding text features, several tokens are present in the list,
for example: sangre, eme, arteriales, acido just to name a few. Among the categorical
most important features we find origin and entity_group.

52 Results

Figure 3.16: Top 30 features in terms of importance for final model

Chapter 4

Discussion

The current project has demonstrated how machine learning techniques can be ap-
plied to address the needs of a hospital’s Operations Management team by predicting
patient discharge based on his profile and medical history.

By experimenting with different modelling approaches, we were able to come up
with a model that combines different types of variables. We started by building a base-
line that, making use of only two independent variables, was able to achieve a better
performance than a random classifier. We found that, by adding more features to the
model that needed little preprocessing, performance could be improved more than 25%
relative to the baseline. Furthermore, we found that some date-related features had
predictive potential and we added them to our model. Last but not least, we were
able to incorporate text data related to the patient diagnosis taking advantage of tf-idf
embeddings. These features, by themselves, were able to classify patient discharge with
a 50% better performance than a random classifier. As a result, we ended up with a
model containing 59 features, including variables related to patient demographics, his
diagnosis, the length and characteristics of his stay at the hospital, etc.

Hyperparameter optimization with the Bayesian approach demonstrated having no
such an impact on performance as we expected. Many reasons might account for that.
On the one hand, several hyperparameters of LightGBM implementation for Python
were not fine tuned. While we focused on both RandomForest and GradientBoosting
main hyperparameters due to a matter of time, there are several peculiarities of the
LightGBM implementation itself that could eventually lead to an improvement in per-
formance if they’re fine tuned too. On the other hand, it could be that there was no
much more information for the classifier algorithm to learn from the data as it was,
thus more data or a different representation of it was necessary for an impactful per-
formance increase to be accomplished. However, in the case of GradientBoosting, fine
tuning achieved a 1% improvement in performance. The learning rate, the number of
trees and the maximum depth, demonstrated to have all of them a strong correlation
with the algorithm performance as illustrated in Section 3.2.

In terms of the ensemble tree-based algorithms, GradientBoosting outperformed
RandomForest in all the experiments run, despite incurring in a little bit more over-

53

54 Discussion

fitting. This result was aligned with our expectations. While there is no evidence
supporting a generalized better performance of GradientBoosting classifier over Ran-
domForest, the very different approaches both ensembles pursue would suggest this
kind of result is not surprising. RandomForest ’s main motivation is to reduce the
variance that the plain and classic decision trees classifiers exhibit. It achieves this
by building different models, each of them trained with only a random sample of the
features available and then averaging them all. Thus the result is a reduction of the
model overfitting rather than an increase of performance, just as our results illustrated.
Instead, GradientBoosting focus is placed on reducing the bias of a decision tree, by
sequentially learning new trees leaded by the gradient direction of the previously grown
trees. This can eventually introduce a higher variance (i.e. overfitting) but also helps
to improve the classifier performance in terms of its prediction error. In our case,
the increase in overfitting is more than compensated by the increase in performance,
so that in terms of the validation error GradientBoosting ends up winning the race,
achieving a 0.84 AUC-ROC score on the validation data, relative to the 0.80 of the
RandomForest classifier.

The final classifier performance, as measured on the test data, was 0.84 AUC-ROC
score, presenting almost no difference with the metric on validation. This suggests
our cross-validation strategy was successful in preventing the model from overfitting
the validation data. While there is some overfitting to the training data (around 4%
gap between in performance) it’s not sufficiently large to be something problematic. A
certain difference between the performance on the data used for training, in compar-
ison with the data previously unseen by the classifier is always expected, due to the
inductive bias that lays at the core of supervised learning.

In terms of which were the most important features for the decisions made by the
algorithm’s trees, not surprisingly the variable hosp_day_number leaded the rank in
all of the experiments made, meaning that how many days that patient has already
been in the hospital is the most important predictor of the probability of discharge. The
patient age is another of the highlighted variables in the different experiments. Just as
anticipated in the the exploratory stage (see Section 2.2.1), there is a strong relation-
ship between this variable and the target variable, and the model was able to exploit it.

Other variables, also detected during the exploratory stage as potential predictors,
showed up in the top 30 most important features as, for example, the entity_group
variable indicating the type of medical insurance the patient has. Moreover, many
of the tokens extracted from the text preprocessing of diagnosis and related features
appeared as the most important ones for the classifier. This last result was somehow
unexpected. While we did presume that patient diagnosis was important to predict
patient discharge, we did not expect tf-idf embeddings to produce as good a represen-
tation for them, especially because the tf-idf matrix was fitted among a relatively small
corpus which was the training data and because there were a lot of medical jargon that
we were not sure the tokenizer would be able to deal properly with. However this was
not the case, the decision trees of the ensemble were able to make use of some pretty
basic but apparently powerful concepts related to the patient diagnosis (for instance:

55

glucosa, creatinina, acido, gases, etc.) to predict patient discharge probability.

Chapter 5

Conclussions and Recommendations

5.1 Project Achievements
In the current project we posed the question of whether applying Machine Learn-

ing to the huge amount of data hospitals’ information systems are flooded with, could
propel the efficient utilization of scarce resources as beds, by predicting resource avail-
ability. To address this question, we worked together with one of the most relevant
hospital in Buenos Aires, Argentina in order to develop a classifier that could predict
whether a patient would be discharged in the following twenty four hours.

Data was extracted from the different tables within the hospital’s database and
processed with a customized ETL pipeline that produced a dataset with the necessary
characteristics to build a supervised learning model.

Through exploration we were able to find certain patterns in the data that let us
understand which information should the model be fed with. The model built takes
into account different types of variables as patient demographic characteristics, patient
diagnosis data, the history of services received during the admission, and some cyclical
components related to the day of the week.

We experimented with different modelling approaches, feature engineering tech-
niques, supervised learning algorithms and hyperparameters configuration. We op-
timized our classifiers using a Bayesian fine tuning approach. We applied a cross-
validation strategy that combined both: k-fold and train-validation-test split in order
to prevent overfitting.

The output of this work is a model that, given a patient at a certain date and
his medical history upto that point in time, can predict the odds of the patient being
discharged during that day. It does so by using a GradientBoosting classifier with
an overall performance of 0.84 AUC-ROC. This means that, given a randomly chosen
positive instance (discharged patient) and a randomly chosen negative one (not dis-
charged patient) the chances that the model will score the positive case higher than
the negative one is 84%.

57

58 Conclussions and Recommendations

5.2 Limitations
The results achieved by this project come together with its limitations. More specif-

ically, there are four aspects of the current project where further work could be done
aiming to improve the results achieved.

Performance

First of all, the performance reached by the classifier, while quite promising, is not
perfect. It is likely that accuracy can be improved by either incorporating more data
into the model or experimenting with different representations or algorithms for the
current data.

In terms of the model data, all the information regarding patient studies results
(images, laboratory test results, etc) was left out of this project mainly due to the
lack of standardization among the hospital’s different data sources that made it more
difficult to be processed and the lack of codification of these variables of interest.

With regard to data representation, more can be done in terms of feature engineer-
ing. For instance, trying a different encoding for categorical variables. Feature binning
is a technique that has proved to work particularly well with tree-based algorithms.
Another option is to try a different type of embeddings for text features. Unsupervised
representation learning could be a way of approaching it. As for its implementation, it
can either use some representation learning library for text (as fastText or Word2vec)
which offer already trained representations of words to generate word embeddings.
Another option, would be to develop a customized, unsupervised learning model to
this aim. However, this would require a big development effort and lots of data to be
trained with. Using transfer learning to combine the results of an already pre-trained
neural network with the particularities of the problem at stake would probably be a
more efficient approach.

Lastly, more hyperparameter fine tuning could be done. As discussed in the pre-
vious section, LightGBM algorithm configuration can be completely customized by
taking advantage of all the hyperparameters available in the Python’s API. In the cur-
rent project, we iterated over the most important hyperparameters only, due to time
restrictions. Probably, there is way more to explore on this side.

Modeling

The way we modeled the classification problem, where each data point corresponds
to a patient’s day at the hospital has an inherent bias toward patients who have stayed
longer at the hospital, as there are more observations per patient.

The algorithm will weight more data patterns coming from the patients who stay
longer, because by doing so it will be able to classify properly a higher fraction of the
data points. If patterns coming from these patients differ significantly from the char-
acteristics of patients with shorter admission periods, our model will be skewed. While

5.2 Limitations 59

the longer-stay patients represent a large fraction of the model observations, they rep-
resent a small fraction of the hospital admissions, so the hospital might actually be
more interested in the performance of the classifier on the shorter admissions’ patients.

In order to address this potential issue, two different options are available. One of
them is to first clustered the patients into relevant groups for the hospital, and then
build a different classifier for each group. Another way would be first balancing the
dataset over the patients groups so that the training data has the same fraction of
observations from each group of patients, and then fit a single classifier with that data.
Both approaches should be tested in order to decide which one is more convenient by
measuring the performance in the different groups of patients of interest and contrasting
them.

Probability Calibration

When faced with an unbalanced data classification task, a widely spred practice
is to subsample the negative class in order to balance the training data. In our case,
LightGBM implementation has a specific hyperparameter (is_unbalance) that handles
the imbalance data issue. More specifically it uses the values of Y (the target variable)
to automatically adjust weights in an inversely proportional way to class frequencies
in the input data.

While both approaches, either using the is_unbalance parameter of LightGBM or
balancing the dataset before feeding the model, should increase the overall performance
of the classifier, they will also result in poor estimates of the individual class probabil-
ities (LightGBM, 2020).

Because of this, if we were interested in using the scores predicted by the model as
class probabilities instead of just the predicted class, it would be necessary to calibrate
posterior probabilities to adjust for the undersampling/underweighting effect. In the
paper Calibrating Probability with Undersampling for Unbalanced Classification, Dal
Pazzolo et al. (2015) proposed a simple approach to adjust the posterior probabilities
that could be a good way of dealing with this issue.

Extending the prediction scope

Finally, in the current project, the focus has been on determining whether a patient
will be discharged in the following twenty four hours or not. While the usefulness of
this information for the hospital operations management team is not doubted, we are
aware it would be even more benefitial to provide a prediction for the remaining length
of stay of each inpatient, thus letting management plan ahead for the following days.

In order to do so, the problem at stake should be reframed into a survival analysis
task. Survival analysis is a collection of longitudinal analysis methods for examining
data having time until the occurrence of a particular event as an outcome variable
(Emmert-Streib & Dehmer 2019). In this case, the event of interest would the patient

60 Conclussions and Recommendations

discharge.

The use of survival analysis in the healthcare industry is a well extended practice
(Sá et al. 2007, Carter et al. 2004, Sekula et al. 2013). However, most approaches
to survival analysis rely on standard statistical methods rather than machine learning.
Following the spirit of this project, we consider it will be interesting to experiment
with a machine learning approach to this survival analysis problem.

In the article Machine learning for survival analysis: a case study on recurrence of
prostate cancer (Zupan et al. 2000), the authors propose a framework to apply machine
learning methods to survival analysis. Moreover, deep learning techniques, specifically
targeted to this type of problems, haven been developed during the last years. In
Deep Learning for Survival Analysis (2020), Löschmann and Smorodina explore dif-
ferent deep learning models available for survival analysis (in particular DeepSurv and
Cox-nnet) and provide an open-source implementation of each architecture. In plan-
ning to address the problem of the time-to-discharge prediction with machine learning
techniques, these resources should be further explored.

5.3 Management Recommendations

In terms of how the output of this research project should be used by the hospital
management team to improve their decision making process, we have built a forecaster
tool that, based on the inference made by the machine learning model, is able to re-
turn a set of predictions for the expected discharges in the next twenty four hours,
with different certainty levels. This information will be extremely useful for the deci-
sion makers as it will provide them not only with an expectation regarding the number
of discharges but also a measure of the forecasting error they are taking by assuming
each scenario.

According to our conversation with the hospital management team, it would be
useful for them to have at hand three forecast levels:

• 95 % ←− Management can almost assume that, at least, this level of beds is
going to be free by the end of the day. Very conservative, almost no risk of actual
discharges being less than this.

• 80 % ←− This would be the main reference value for management expectations
regarding the lower bound of discharges.

• 70 % ←− Management should definitely not expect more than this level of dis-
charges. Highest risk scenario.

In order to generate these forecasts, the scores provided by the model in a particular
day (estimated probabilities of discharge) should be transformed into class predictions
(either discharge or no-discharge), to then compute the sum of positive classes (dis-
charges) and thus get an estimate of the day’s discharges. It is also needed to estimate

5.3 Management Recommendations 61

the odds of actual daily discharges being at least the predicted.

Usually the classification task is approached as follows:

Predicted_class(x) =

True if f(x) ≥ t

False if f(x) ≤ t

where f is the model’s function (so f(x) is the model score for a given observation)
and t is an arbitrary threshold.

The main challenge is then to define this threshold, as there is no a priori correct
value for this parameter and it has severe consequences on the classification output.
At the same time, the choice of the threshold has a direct impact on the odds of the
discharges being over or under-estimated. Using a very low value for the threshold will
redound in the classifier capturing most of the actual discharges (i.e. high recall), but
also overestimating them (low precission). This would lead to higher chances of a bed
shortage scenario. Decision makers would expect more patients to be discharged and
then would plan to occupy these beds, but at the end of the day, there would be less
beds free than the expected, as actual discharges would not be as many as our forecast
predicted.

On the other hand, if the threshold is set too high, the prediction will be quite
precise, as only patients with a really high chance of getting discharged are going to be
classified accordingly. But we will also more likely end up underestimating the actual
number of discharges. This will affect the forecaster quality in a negative way as well.
While we do not risk a bed shortage for expecting less discharges than the actual ones,
this information will be, for sure, of less value for the decision makers. In the extreme,
telling that discharges are expected to be at least zero would be correct 100 % of the
times, but it will be of no value for the management.

To address these points, we have run a simulation over each observation (day) in
the test data. For each day we forecasted the daily discharges using each of the pos-
sible threshold values (going as far a two decimal points) in the interval [0,1]. Then
we compared the actual discharges with the classifier’s predicted discharges and we
analyzed the proportion of times in which the actual day discharges were at least the
predicted.

For a randomly chosen day in the sample, our simulation output is the following:

62 Conclussions and Recommendations

Figure 5.1: Simulation output for a sample day

As it can be seen, for this day in our sample we have that, during the first four
simulation rounds, the forecast overestimates actual discharges, thus conduncting to a
a bed shortage scenario. From threshold 0.4 onwards, actual discharges are at least the
predicted. Figure 5.2 illustrates this.

5.3 Management Recommendations 63

Figure 5.2: Simulation of discharges for a sample day (2019-11-9

As a result of this simulation, we estimated a function (Figure 5.3) that captures
the relationship between the applied threshold and the proportion of days in which the
forecast for the lower bound of discharges is correct (i.e. actual discharges are at least
the predicted). Based on this function, we determined the threshold values to use for
each of the forecast certainty levels that we aim to provide (see the highligthed points
in Figure 5.3).

Figure 5.3: Simulation Resuts: % of observations where actual discharges are at least
the predicted discharges by threshold used for classification.

64 Conclussions and Recommendations

Appendix E contains a table with the simulation output that resulted in the plot
of Figure 5.3. This appendix also includes some visualizations illustrating the trade-off
between precission and recall derived from the choice of differente thresholds and how
this impacted on the resulting curve.

To compress these results into a portable solution to be directly used by decision
makers, we built a very intuitive user interface that given some date parameters, returns
the three different forecasts of discharges for that day, with the associated risk of each
of the predictions. (See Appendix F for an example visualization of the forecaster
output).

Appendix A

List of variables in each dataset

Patients’ hospitalizations dataset

For each admission (row), the following data is available:

• Admission id

• Patient id

• Age

• Gender

• Birth date

• Insurance entity

• Entity group

• Admission date

• Admission time

• Admission year

• Admission month

• Origin

• Admission physician

• Admission sector

• Last sector

• Last category

• Isolation

• Last room

65

66 List of variables in each dataset

• Last bed

• Discharge date

• Discharge time

• Discharge year

• Discharge month

• Discharge reason

• Pre discharge date

• First sector

• Administrative diagnosis

• Diagnosis code

• Presumptive diagnosis

• Discharge diagnosis code

• Discharge diagnosis

• Discharge register date

• Discharge register time

• Discharge physician

• Discharge summary

• Discharge summary physician

• Surgery

• Express hip surgery

• Admission length days

• Responsible sector

• Second responsible sector

• Emergency admission datetime

• Has previous admission

• Previous admission id

• Previous admission date

• Previous discharge date

67

• Previous sector

• Previous discharge diagnosis

• Discharge ambulance

• Newborn weight

• Newborn gestational age

• High risk TEP

• Low risk TEP

• ARM TEP

• CEC TEP

• Request number

• Request origin

• Request diagnosis

• Request sector

• Notified

• Request user

Laboratory studies dataset

For each laboratory study the following data is available:

• Laboratory study id

• Status

• Study Date

• Study Time

• Study year-month

• Sector

• Admission id

• Patient id

• Admission date

• Discharge date

68 List of variables in each dataset

• Entity id

• Insurance entity

• Entity affiliate id

• Entity group

• Emergency

• Requester name

• Requester role

• Study code

• Study description

• No. of studies

Images studies dataset

For each image study the following data is available:

• Image study id

• Status

• Study date

• Study time

• Study yearn-month

• Sector

• Admission id

• Patient id

• Admission date

• Discharge date

• Entity id

• Insurance entity

• Entity affiliate id

• Entity group

• Emergency

69

• Requester name

• Requester role

• Study code

• Study description

• No. of images studies

Surgeries dataset

For each surgery the following data is available:

• Operating room

• Surgery date

• Surgery weekday

• Surgery year-month

• Surgery scheduled time

• Admission id

• Surgery type

• G.A.P.

• Surgery id

• Origin

• Patient id

• Gender

• Age

• Discharge type

• Entity description

• Diagnosis

• Scheduled surgery

• Actual surgery

• Surgery physician

• Dependency

70 List of variables in each dataset

• Anesthesia type

• ASA

• Antisepsia

• Prophylactic ATB

• Dosis mg

• Bed request

• Hemotherapy

• Hemotherapy ok

• X-ray

• Cardiologist

• Supplies

• Supplies ok

• Protocol no.

• Service description

• Surgery code

• Sector bed

• Specialization

• Estimated duration

• Surgery startime

• Surgery endtime

• Surgery delay

• Admission date

• Specialization code

• Entry time

• Exit time Anesthesia startime

• Anesthesia endtime

• Post-surgery condition

• Admission date

71

• Admission time

• Discharge date

• Discharge time

• Repeated surgery

• No. of surgeries

• Hips surgery

• Injury condition

• Pre-surgery-prep duration

• Surgery duration

• Post surgery duration

• Surgery-prep duration

• Antibiotic

• Seeding

• No. of assistans

• Anesthetist id

• No. of pregnancies

• No. births

• No. of cesarean

• Nulliparous

• Newborn id

• Newborn admission id

• Newborn weight

• Newborn gestation age

• Newborn alive

• Bact positive

• Scheduled surgery done

72 List of variables in each dataset

Sectors admissions dataset

For each admission to a particular sector, the following data is available:

• Admission id

• Patient id

• Sector admission date

• Sector admission time

• Sector code

• Category

• Sector admission datetime

Hospital sectors dataset

Each row represents a sector and the following data is available:

• Sector code

• Sector name

• Sector type

Appendix B

Data Quality Reports

73

74 Data Quality Reports

Figure B.1:
*Sensitive variables’ labels have been encrypted due to confidentiality reasons

75

Figure B.2:
*Sensitive variables’ labels have been encrypted due to confidentiality reasons

76 Data Quality Reports

Figure B.3:
*Sensitive variables’ labels have been encrypted due to confidentiality reasons

77

Figure B.4

78 Data Quality Reports

Figure B.5:
*Sensitive variables’ labels have been encrypted due to confidentiality reasons

79

Figure B.6:
*Sensitive variables’ labels have been encrypted due to confidentiality reasons

80 Data Quality Reports

Figure B.7

Appendix C

Data Quality Plan

81

82 Data Quality Plan
Ta

bl
e
C
.1
:
D
at
a
Q
ua

lit
y
P
la
n

D
at
a
Q
ua

lit
y
Is
su
e

Is
su
e
de
sc
ri
pt
io
n

D
at
as
et

Fe
at
ur
es

aff
ec
te
d

P
ot
en
ti
al

H
an

dl
in
g
St
ra
te
gi
es

M
is
si
ng

va
lu
es

M
or
e
th
an

60
%

st
ru
ct
ur
al

m
is
si
ng

va
lu
es

A
dm

is
si
on

s

Is
ol
at
io
n

P
re
_
di
sc
ha

rg
e_

da
te

Se
co
nd

_
re
sp
on

si
bl
e_

se
ct
or

E
m
er
ge
nc
y_

ad
m
is
si
on

_
da

te
ti
m
e

E
m
er
ge
nc
y_

se
rv
ic
e

P
re
vi
ou

s_
ad

m
is
si
on

_
id

P
re
vi
ou

s_
ad

m
is
si
on

_
da

te
P
re
vi
ou

s_
di
sc
ha

rg
e_

da
te

P
re
vi
ou

s_
se
ct
or

P
re
vi
ou

s_
di
sc
ha

rg
e_

di
ag

no
si
s

C
re
at
e
a
m
is
si
ng

va
lu
e

ca
te
go

ry
(f
or

ex
am

pl
e
’N

/A
’)

Su
rg
er
ie
s

N
ew

_
bo

rn
_
id
_
re
la
te
d

N
ew

_
bo

rn
_
ad

m
is
si
on

_
id

N
ew

_
bo

rn
_
al
iv
e

N
ew

_
bo

rn
_
w
ei
gh

t

M
or
e
th
an

60
%

m
is
si
ng

va
lu
es

du
e
to

da
ta

co
lle
ct
io
n

er
ro
rs

A
dm

is
si
on

s

R
eq
ue
st
_
nu

m
be

r
R
eq
ue
st
_
or
ig
in

R
eq
ue
st

R
eq
ue
st
_
se
ct
or

N
ot
ifi
ed

R
eq
ue
st
_
us
er

P
IM

2T
E
P

H
ig
h_

ri
sk
_
T
E
P

Lo
w
_
ri
sk
_
T
E
P

A
R
M
_
T
E
P

C
E
C
_
T
E
P

D
is
ca
rd

fe
at
ur
es

83
T
ab

le
C
.1

co
nt
in
u
ed

fr
om

p
re
vi
ou

s
p
ag
e

D
at
a
Q
ua

lit
y
Is
su
e

Is
su
e
de
sc
ri
pt
io
n

D
at
as
et

Fe
at
ur
es

aff
ec
te
d

P
ot
en
ti
al

H
an

dl
in
g
St
ra
te
gi
es

Su
rg
er
ie
s

B
ac
t_

po
si
ti
ve

Ir
re
gu

la
r
ca
rd
in
al
ity

E
xt
re
m
ly

hi
gh

ca
rd
in
al
ity

fe
at
ur
es

(v
al
id

da
ta
)

A
dm

is
si
on

s
A
dm

is
si
on

_
id

P
at
ie
nt
_
id

D
is
ca
rd

fe
at
ur
es

(u
ni
nf
or
m
at
iv
e
fo
r

pr
ed
ic
ti
ve

an
al
yt
ic
s)

Su
rg
er
ie
s

P
ro
to
co
l_

no
Su

rg
er
y_

id
P
at
ie
nt
_
id

A
dm

is
si
on

_
id

N
ew

_
bo

rn
_
ad

m
is
si
on

_
id

N
ew

_
bo

rn
_
ad

m
is
si
on

_
id

La
bo

ra
to
ry

La
bo

_
id

La
bo

_
pu

n

Im
ag

es
Im

ag
e_

id
Im

ag
e_

pu
n

C
on

ti
nu

ou
s
fe
at
ur
es

tr
ea
te
d
as

ca
te
go

ri
ca
l

A
dm

is
si
on

s

A
dm

is
si
on

_
ti
m
e

D
is
ch
ar
ge
_
ti
m
e

T
im

e_
re
gi
st
er
ed
_
di
sc
ha

rg
e

A
dm

is
si
on

_
da

te
ti
m
e

D
is
ch
ar
ge
_
da

te
ti
m
e

C
on

ve
rt

to
th
e

ap
pr
op

ri
at
e
ty
pe

84 Data Quality Plan
T
ab

le
C
.1

co
nt
in
u
ed

fr
om

p
re
vi
ou

s
p
ag
e

D
at
a
Q
ua

lit
y
Is
su
e

Is
su
e
de
sc
ri
pt
io
n

D
at
as
et

Fe
at
ur
es

aff
ec
te
d

P
ot
en
ti
al

H
an

dl
in
g
St
ra
te
gi
es

Su
rg
er
ie
s

Su
rg
er
y_

sc
he
du

le
d_

ti
m
e

Su
rg
er
y_

st
ar
ti
m
e

Su
rg
er
y_

en
dt
im

e
E
nt
ry
_
ti
m
e

E
xi
t_

ti
m
e

A
ne
st
he
si
a_

st
ar
tt
im

e
A
ne
st
he
si
a_

en
dt
im

e
A
dm

is
si
on

_
ti
m
e

D
is
ch
ar
ge
_
ti
m
e

La
bo

ra
to
ry

La
bo

_
ti
m
e

Im
ag

es
Im

ag
e_

ti
m
e

U
ns
ta
nd

ar
di
ze
d

ca
te
go

ri
es

A
dm

is
si
on

s

A
dm

is
si
on

_
ph

ys
ic
ia
n

A
dm

in
is
tr
at
iv
e_

di
ag

no
si
s

P
re
su
m
pt
iv
e_

di
an

og
si
s

D
is
ch
ar
ge
_
di
ag

no
si
s

D
is
ch
ar
ge
_
ph

ys
ic
ia
n

D
is
ch
ar
ge
_
su
m
m
ar
y_

ph
ys
ic
ia
n

P
re
vi
ou

s_
di
sc
ha

rg
e_

di
ag

no
si
s

M
ap

to
a
st
an

da
rd

se
t
of

le
ve
ls
/

Tr
ea
t
as

te
xt

(r
ep
re
se
nt

w
it
h
em

be
dd

in
gs
)

Su
rg
er
ie
s

Su
rg
er
y_

ph
ys
ic
ia
n

Sc
he
du

le
d_

su
rg
er
y

A
ct
ua

l_
su
rg
er
y

La
bo

ra
to
ry

R
eq
ue
st
er
_
ro
le

R
eq
ue
st
er
_
na

m
e

85
T
ab

le
C
.1

co
nt
in
u
ed

fr
om

p
re
vi
ou

s
p
ag
e

D
at
a
Q
ua

lit
y
Is
su
e

Is
su
e
de
sc
ri
pt
io
n

D
at
as
et

Fe
at
ur
es

aff
ec
te
d

P
ot
en
ti
al

H
an

dl
in
g
St
ra
te
gi
es

Im
ag

es
R
eq
ue
st
er
_
ro
le

R
eq
ue
st
er
_
na

m
e

O
ut
lie
rs

La
rg
e
nu

m
be

r
of

ou
tl
ie
rs

A
dm

is
si
on

s
A
dm

is
si
on

_
le
ng

th
_
da

ys
N
ew

_
bo

rn
_
w
ei
gh

t

U
se

do
m
ai
n
kn

ow
le
dg

e
to

de
te
rm

in
e
w
he
th
er

or
no

t
th
ey

ar
e
va
lid

ou
tl
ie
rs
.
If
in
va
lid

co
rr
ec
t

or
as
si
gn

m
is
si
ng

va
lu
e.

Su
rg
er
ie
s

D
os
is
_
m
g

E
st
im

at
ed
_
du

ra
ti
on

Su
rg
er
y_

de
la
y

N
o_

of
_
su
rg
er
ie
s

N
o_

of
_
pr
eg
na

nc
ie
s

N
o_

of
_
bi
rt
hs

N
o_

of
_
ce
sa
re
an

N
ew

_
bo

rn
_
w
ei
gh

t
N
ew

_
bo

rn
_
ge
st
at
io
n_

ag
e

If
va
lid

,t
ak

e
th
em

in
to

ac
co
un

t
fo
r
th
e
m
ac
hi
ne

le
ar
ni
ng

te
ch
ni
qu

e
of

ch
oi
ce
.

La
bo

ra
to
ry

N
o_

of
_
st
ud

ie
s

Im
ag

es
N
o_

of
_
st
ud

ie
s

Im
pl
au

si
bl
e
ou

tl
ie
rs

A
dm

is
si
on

s
N
ew

_
bo

rn
_
ge
st
at
io
n_

ag
e

N
ew

_
bo

rn
_
w
ei
gh

t
A
ss
ig
n
m
is
si
ng

va
lu
e

w
he
re

ap
pl
ic
ab

le

Appendix D

Feature importance plots for different
model experiments

Feature importance plots for experiments set #2

Figure D.1: Feature importance for GradientBoosting algorithm

87

88 Feature importance plots for different model experiments

Feature importance plots for experiments set #3

Figure D.2: Feature importance for GradientBoosting algorithm

89

Feature importance plots for experiments set #4

Figure D.3: Feature importance for GradientBoosting algorithm

90 Feature importance plots for different model experiments

Feature importance plots for experiments set #5

Figure D.4: Feature importance for GradientBoosting algorithm

Appendix E

Simulation results

Figure E.1: Summary of simulation results

91

92 Simulation results

F
ig
ur
e
E
.2
:
P
re
ci
ss
io
n
an

d
re
ca
ll
tr
ad

e-
off

fo
r
di
ffe

re
nt
e
th
re
sh
ol
d
le
ve
ls

an
d
it
s
im

pa
ct

on
ac
cu
ra
cy

an
d
th
e
pr
op

or
ti
on

of
ob

se
r-

va
ti
on

s
in

w
hi
ch

pr
ed
ic
te
d
di
sc
ha

rg
es

ha
pp

en
ed

Appendix F

Forecaster output example

Figure F.1

93

Bibliography

[1] Balaji,R. and Brownlee, M., (2018). Bed Management Optimization. Infosys.

[2] Boaden, R., Proudlove, N.C. and Wilson, M. (1999), An Exploratory Study of Bed
Management, Journal of Management in Medicine, Vol. 13, No.4, pp. 234-250.

[3] Bontempi G., Ben Taieb S., Le Borgne YA. (2013) Machine Learning Strategies for
Time Series Forecasting. In: Aufaure MA., Zimányi E. (eds) Business Intelligence.
eBISS 2012. Lecture Notes in Business Information Processing, vol 138. Springer,
Berlin, Heidelberg.

[4] Bradley, Andrew P. (1997) The use of the area under the ROC curve in the
evaluation of machine learning algorithms. Pattern Recognition, 30(7), pp. 1145-
1159.

[5] Carter, J.C., Blackmore, E., Sutandar-Pinnock, K. and Woodside, D.B., 2004.
Relapse in anorexia nervosa: a survival analysis. Psychological medicine, 34(4),
p.671.

[6] Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer,
C., Wirth, R.: Crisp-dm 1.0: Step-by-step data mining guide (2000),
http://www.crisp-dm.org.

[7] CRISP-DM, viewed 14 June 2020, <http://www.datascience-pm.com/
crisp-dm-2/>

[8] Dal Pozzolo, A., Caelen, O., Johnson, R.A. and Bontempi, G., (2015). Calibrating
probability with undersampling for unbalanced classification, 2015 IEEE Sympo-
sium Series on Computational Intelligence, pp. 159-166. IEEE.

[9] Davis, G.E. and Lowell, W.E., (1999). Using artificial neural networks and the
Gutenberg-Richter power law to" rightsize" a behavioral health care system.
American Journal of Medical Quality, 14(5), pp.216-228

[10] Di Piazza, A., Di Piazza, M.C. and Vitale, G., (2016). Solar and wind forecasting
by NARX neural networks. Renewable Energy and Environmental Sustainability,
1, p.39.

[11] Dietterich, T.G., (2000, June). Ensemble methods in machine learning. Interna-
tional workshop on multiple classifier systems, pp. 1-15. Springer, Berlin, Heidel-
berg.

95

http://www.datascience-pm.com/crisp-dm-2/
http://www.datascience-pm.com/crisp-dm-2/

96 Bibliography

[12] Dumas M. B. (1985). Hospital bed utilization: an implemented simulation ap-
proach to adjusting and maintaining appropriate levels. Health services research,
20(1), 43–61.

[13] Emmert-Streib, F. & Dehmer, M., 2019. Introduction to Survival Analysis in Prac-
tice. Machine Learning and Knowledge Extraction, 1(3), pp.1013–1038. Available
at: http://dx.doi.org/10.3390/make1030058

[14] ETL: What is and why it matters, viewed 14 June 2020, <https://www.sas.
com/en_us/insights/data-management/what-is-etl.html>

[15] Ferri, C., Hernández-Orallo, J. and Modroiu, R., (2009). An experimental com-
parison of performance measures for classification. Pattern Recognition Letters,
30(1), pp.27-38.

[16] Green, J and Armstrong, D (1994), "The views of service providers”, in Morrell
D, Green J, Armstrong D, Bartholomew J, Gelder F, Jenkins C, Jankowski R,
Mandalia S, Britten N, Shaw A and Savill R, Five essays on emergency pathways,
Kings Fund Institute, for the Kings Fund Commission on the future of Acute
Services in London, Kings Fund, London.

[17] Hao, K., (2018). What is machine learning?. MIT Technol-
ogy review [online]. Viewed 14 June 2020. Available from:
<https://www.technologyreview.com/2018/11/17/103781/
what-is-machine-learning-we-drew-you-another-flowchart/>

[18] J. Heaton,(2016). An empirical analysis of feature engineering for pre-
dictive modeling, SoutheastCon 2016, Norfolk, VA, , pp. 1-6, doi:
10.1109/SECON.2016.7506650.

[19] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q. and Liu, T.Y.,
(2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in
neural information processing systems, pp. 3146-3154.

[20] Kelleher, J.D., Mac Namee, B. and D’arcy, A., (2015). Fundamentals of machine
learning for predictive data analytics: algorithms, worked examples, and case stud-
ies. MIT press.

[21] Koehrsen, W., (2018). A Conceptual Explanation of Bayesian Hyperpa-
rameter Optimization for Machine Learning. Towards data science [online].
Viewed 14 June 2020. Available from: <https://towardsdatascience.com/
a-conceptual-explanation-of-bayesian-model-based-hyperparameter/
/-optimization-for-machine-learning-b8172278050f>

[22] Krollner, B., Vanstone, B.J. and Finnie, G.R., (2010, April). Financial time series
forecasting with machine learning techniques: a survey. In ESANN.

[23] Kutafina, E., Bechtold, I., Kabino, K. et al.(2019). Recursive neural networks in
hospital bed occupancy forecasting. BMC Med Inform Decis Mak 19, 39 (2019).
https://doi.org/10.1186/s12911-019-0776-1

http://dx.doi.org/10.3390/make1030058
https://www.sas.com/en_us/insights/data-management/what-is-etl.html
https://www.sas.com/en_us/insights/data-management/what-is-etl.html
https://www.technologyreview.com/2018/11/17/103781/what-is-machine-learning-we-drew-you-another-flowchart/
https://www.technologyreview.com/2018/11/17/103781/what-is-machine-learning-we-drew-you-another-flowchart/
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter//-optimization-for-machine-learning-b8172278050f
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter//-optimization-for-machine-learning-b8172278050f
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter//-optimization-for-machine-learning-b8172278050f
https://doi.org/10.1186/s12911-019-0776-1

97

[24] Löschmann,L. & Smorodina, D., (2020). Deep Learning for Survival Anal-
ysis. Humboldt-Universität zu Berlin. Viewed 8 August 2020.Available from
https://humboldt-wi.github.io/blog/research/information_systems_
1920/group2_survivalanalysis/

[25] Malkomes, G., Schaff, C. and Garnett, R., (2016). Bayesian optimization for au-
tomated model selection.Advances in Neural Information Processing Systems, pp.
2900-2908.

[26] Mekhaldi R.N., Caulier P., Chaabane S., Chraibi A., Piechowiak S. (2020). Using
Machine Learning Models to Predict the Length of Stay in a Hospital Setting. In:
Rocha Á., Adeli H., Reis L., Costanzo S., Orovic I., Moreira F. (eds) Trends and
Innovations in Information Systems and Technologies. WorldCIST 2020. Advances
in Intelligent Systems and Computing, vol 1159. Springer, Cham

[27] Nguyen, J., Six, P., Antonioli, D., Glemain, P., Potel, G., Lombrail, P., Beux,
P.L. (2005). A simple method to optimize hospital beds capacity. International
journal of medical informatics, 74 1, p. 39-49.

[28] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V. and Vanderplas, J., (2011).
Scikit-learn: Machine learning in Python. The Journal of machine Learning re-
search, 12, p.2825-2830.

[29] Perelman, L. and Barrett, E., (1997). The Mayfield handbook of technical and
scientific writing. McGraw-Hill, Inc..

[30] Sá, C., Dismuke, C.E. and Guimarães, P., 2007. Survival analysis and competing
risk models of hospital length of stay and discharge destination: the effect of
distributional assumptions. Health Services and Outcomes Research Methodology,
7(3-4), p.109-124.

[31] Sekula, P., Dunant, A., Mockenhaupt, M., Naldi, L., Bavinck, J.N.B., Halevy,
S., Kardaun, S., Sidoroff, A., Liss, Y., Schumacher, M. and Roujeau, J.C., 2013.
Comprehensive survival analysis of a cohort of patients with Stevens–Johnson
syndrome and toxic epidermal necrolysis. Journal of Investigative Dermatology,
133(5), p.1197-1204.

[32] Sitepu, S., Mawengkang, H. and Husein, I., (2018, January). Optimization model
for capacity management and bed scheduling for hospital. IOP Conference Series:
Materials Science and Engineering,Vol. 300, No. 1, p. 012016. IOP Publishing.

[33] Snoek, J., Larochelle, H. and Adams, R.P., (2012). Practical bayesian optimiza-
tion of machine learning algorithms. Advances in neural information processing
systems, p. 2951-2959.

[34] Tom Fawcett, (2006). An introduction to ROC analysis. Pattern Recogni-
tion Learning 27, 8 (June 2006), 861–874. DOI: https://doi.org/10.1016/j.
patrec.2005.10.010

https://humboldt-wi.github.io/blog/research/information_systems_1920/group2_survivalanalysis/
https://humboldt-wi.github.io/blog/research/information_systems_1920/group2_survivalanalysis/
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.patrec.2005.10.010

98 Bibliography

[35] Turgeman, L., May, J.H. and Sciulli, R., (2017). Insights from a machine learning
model for predicting the hospital Length of Stay (LOS) at the time of admission.
Expert Systems with Applications, 78, pp.376-385.

[36] Walczak, S., Pofahl, W.E. and Scorpio, R.J., (1998, May). Predicting Hospital
Length of Stay with Neural Networks. FLAIRS conference, pp. 333-337.

[37] What is the CRISP-DM methodology?, viewed 14 June 2020, <https://www.
sv-europe.com/crisp-dm-methodology/>

[38] Wu, J., Chen, X.Y., Zhang, H., Xiong, L.D., Lei, H. and Deng, S.H., (2019).
Hyperparameter optimization for machine learning models based on bayesian op-
timization. Journal of Electronic Science and Technology, 17(1), pp.26-40.

[39] Y. Bengio, A. Courville, and P. Vincent, (2013). Representation learning: A re-
view and new perspectives, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 8, pp. 1798–1828.

[40] Zheng, A. and Casari, A., (2018). Feature engineering for machine learning: prin-
ciples and techniques for data scientists. O’Reilly Media, Inc.

[41] Zupan, B., DemšAr, J., Kattan, M.W., Beck, J.R. and Bratko, I., 2000. Machine
learning for survival analysis: a case study on recurrence of prostate cancer. Arti-
ficial intelligence in medicine, 20(1), pp.59-75.

https://www.sv-europe.com/crisp-dm-methodology/
https://www.sv-europe.com/crisp-dm-methodology/

	Abstract
	Dedication
	Contents
	Introduction
	Background
	Hospital Bed Management
	Machine Learning

	Justification
	Objective

	Methods & Procedures
	CRISP-DM Methodology
	Data
	Exploration
	ETL

	Machine Learning Techniques
	Supervised Learning Algorithms
	Machine Learning Model Evaluation
	Feature Engineering Techniques

	Software

	Results
	Model Experiments
	Model Selection
	Final Model Assessment

	Discussion
	Conclussions and Recommendations
	Project Achievements
	Limitations
	Management Recommendations

	List of variables in each dataset
	Data Quality Reports
	Data Quality Plan
	Feature importance plots for different model experiments
	Simulation results
	Forecaster output example
	Bibliography

