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Confidence through consensus: a 
neural mechanism for uncertainty 
monitoring
Luciano Paz1, Andrea Insabato2, Ariel Zylberberg3, Gustavo Deco2 & Mariano Sigman1,4

Models that integrate sensory evidence to a threshold can explain task accuracy, response times and 
confidence, yet it is still unclear how confidence is encoded in the brain. Classic models assume that 
confidence is encoded in some form of balance between the evidence integrated in favor and against 
the selected option. However, recent experiments that measure the sensory evidence’s influence on 
choice and confidence contradict these classic models. We propose that the decision is taken by many 
loosely coupled modules each of which represent a stochastic sample of the sensory evidence integral. 
Confidence is then encoded in the dispersion between modules. We show that our proposal can account 
for the well established relations between confidence, and stimuli discriminability and reaction times, 
as well as the fluctuations influence on choice and confidence.

The decision-making process has been widely modeled as a stochastic integration of sensory evidence to a thresh-
old1–5. These models have been used to explain with quantitative detail task accuracy, response times and confi-
dence6–9, yet it is still unclear how confidence is encoded in the brain. A classic model by Vickers10 assumes that, 
when deciding amongst alternatives based on sensory evidence, the evidence in favor of each option is noisily 
integrated until one reaches a threshold. After this race, the option that reached the threshold first is selected and 
the balance of evidence between competing alternatives encodes the confidence. On the other hand, a typical 
model that is derived from optimal statistical decision theory, encodes a single decision variable that integrates 
the difference between the evidences in favor of each alternative11,12. This variable is related to the log odds of 
each alternative being correct given the evidence so far and follows a drift-diffusion process until a threshold of 
admissibility. The confidence is then given by the belief of having made a correct response.

Both models have been used to successfully explain several behavioral aspects of decision-making con-
fidence, the most noteworthy being the relations between confidence and task difficulty, and confidence and 
response times8,13–15. Typically, confidence is low for difficult trials and high for easy trials, and if subjects are 
free to respond whenever they choose, their confidence is higher for fast responses16–23. Both models also have 
some shortcomings, for example they are not well defined to study confidence in more than two alternative 
tasks. Furthermore, recent psychophysical experiments have been able to measure the influence that the sensory 
evidence has on the resulting decision and confidence as a function of time24. By letting external noise rather 
than internal noise limit task performance, the average of the noise conditioned by the subject’s choice provides 
an estimate of the integration window and the sensitivity of decisions to fluctuations as a function of time (i.e. 
the influence that sensory evidence at a given time has on choice)25. This average is referred to as the decision 
and confidence kernels. The main characteristics of these kernels (at least for two alternatives tasks) are that evi-
dence fluctuations in favor of an option, have the same influence on the resulting decision as fluctuations against 
the competing alternative. This is not the case for confidence, where fluctuations in favor of an option yield an 
increase in high confidence report rates, whereas fluctuations against the alternative option almost do not affect 
confidence. This property is in staggering contradiction with what drift-diffusion and balance of evidence models 
of confidence predict24. Drift-diffusion is inherently symmetric in the sense that fluctuations in favor of an option 
immediately become fluctuations against the competing option. The balance of evidence also fails as it takes into 
account the difference between accumulated evidence for each option to construct confidence reports, thus being 
symmetrically affected by fluctuations.
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In this work we propose a model that is able to explain both the decision and confidence kernels. We make a 
key assumption based on the fact that the integration of evidence is corrupted by internal and external noise26. 
This implies that the integral that drives choice will be randomly distributed. If subjects have access to a rep-
resentation of the former distribution (such as a summary statistic, like the distribution’s mean and variance), 
the belief that the decision is correct can be estimated. This belief will depend on the reliability of the evidence, 
and we assume it is normatively associated to decision confidence through the dispersion of the distribution of 
evidence integrals27. For instance, a highly reliable stimulus will be normatively associated to higher confidence 
reports whereas low reliability will produce low confidence reports. Furthermore, we ground our proposal on 
three key relations.

1. In stochastic processes, the variance of the evidence’s integral is very correlated with elapsed time28 (See 
SI section A). Hence, by relying on the dispersion to construct confidence reports, confidence will be very 
correlated to response times.

2. Attractor neural networks have been shown to implement evidence integration for probabilistic deci-
sion-making29,30. These attractors rely on the competition of two populations that encode the competing 
options and receive sensory input in favor of their encoded alternative. Competition is mediated by the 
dynamics of slow recurrent excitatory feedback, to integrate fast sensory input, and lateral inhibition, to 
force an option’s selection. Fluctuations of the sensory evidence have an asymmetric effect on the attractor’s 
response time, as a consequence of two mechanisms: 1) positive fluctuations bring more total input current 
to the network compared to negative fluctuations and 2) the sensory input to one population affects its 
firing rate instantly but it takes more time to affect the dynamics of the competing population.

3. There is evidence that supports the coexistence of multiple integration processes in the brain, even for the 
same sensory cue31–33. For example, Lafuente et al.33 show in a random dot movement task that MIP and 
LIP integrate the evidence when the decision is to reach to a location, whilst LIP also integrates when the 
decision is signaled by saccades. We also propose that multiple almost independent integration processes 
coexist in the same brain region.

We propose that the decision process is performed redundantly and in parallel by many loosely coupled mod-
ules that integrate the time varying sensory input. These modules form a sample of the of evidence integral’s 
probability distribution and hence can be used to estimate its variance, which in turn is used to report confidence. 
Furthermore, we propose that each module is an ANN. We hypothesize that the fluctuations’ asymmetric influ-
ence on each ANN’s time should transfer to an asymmetric influence on the dispersion of samples, leading to 
asymmetric confidence kernels.

Our proposal is similar to Koriat’s self-consistency model34 in which subjects are assumed to retrieve a sample 
of representations of the alternatives, decide based on a majority rule, and assess their confidence based on the 
consistency of samples. Koriat assumes that the consistency of the samples is a measure of the selected alterna-
tive’s reliability just as we assume that the dispersion is a measure of sensory reliability. However, Koriat assumes 
that consistency is measured from the difference between the number of samples that are in favor and against 
the selected option, while we use the dispersion within the samples of the selected alternative. Our model also 
provides a neurophysiological implementation while Koriat’s is purely normative.

Our proposal is independent of a particular implementation of the decision modules. However, we provide an 
exemplary computational implementation in order to address the following issues:

1. What is the maximum degree of interconnection between modules so that they can no longer be consid-
ered independent samples of the evidence integral probability distribution? To address this, we study the 
correlation of the inter-module dispersion, increasing an inter-module coupling parameter (IC).

2. How can the decision be read from the activity of the modules? We propose a “voting scheme” where each 
module “votes” for an option and when an option gets more than half the votes, it is selected. We provide a 
simple firing rate threshold detection neural implementation for detecting each module’s vote.

3. How can the variance be readout from the distribution of firing rates? We show that an indirect measure 
of the dispersion can be computed by counting the number of modules that have their firing rate in certain 
range above the vote threshold. This is equivalent to computing percentiles over the distribution of firing 
rates.

4. How is the variance transformed to a binary confidence report? We propose that this occurs in a separate 
network, which selects high or low confidence with a sigmoid probability that depends on the dispersion’s 
estimate.

Figure 1 shows a schematic representation of our model’s operation for decision making and confidence 
reports.

Results
Model construction. We assume that in order to decide, sensory evidence is integrated to a threshold. We 
assume that confidence is determined by an estimate of the sensory evidence’s reliability, which can be decoded 
from the dispersion of the evidence integral’s probability distribution. In order to estimate said variability we 
propose a network of many modules that integrate the same sensory evidence in parallel and decide collectively 
(Fig. 1A). We propose that each module can be thought of as a sample from the evidence integral probabil-
ity distribution, thus the sensory reliability, and in turn confidence, can be decoded from an estimate of the 
inter-module firing rate dispersion (σdv) of the populations that are associated to the selected option at response 
time (Fig. 1B).
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Additionally, we propose that each module is an attractor neural network (ANN), a widely studied neural 
implementation of evidence accumulation that relies on reverberant activity of competing neural populations and 
mutual inhibition mediated by slow NMDA channel opening dynamics35–38. The decision of each ANN depends 
on the activity of the competing decision populations. When a threshold of activity (λ) is surpassed, the ANN 
commits to a choice. We study the simplified case where λ remains constant (we take it to be 15 Hz), although 

Figure 1. A schematic representation of the model. (A) shows the decision mechanism. Sensory input of the 
competing alternatives is fed into the N separate modules. Each module is constructed by an ANN with two 
populations that have recurrent excitation and lateral inhibition, and receive the external sensory input from 
one of the two alternatives, and a baseline of noisy background input from other regions of the brain that are 
not task specific. All the populations are interconnected across modules. This interconnection is regulated by 
parameter IC. Each module casts a vote in favor of one option depending on the competition’s outcome. When 
an option is voted by more than half the modules (represented with a star), it is selected as the response.  
(B) shows the confidence mechanism. All modules integrate evidence and commit to a global choice at a 
certain time. At that time, the dispersion amongst the selected options firing rate, σdv is estimated, and its value 
is transmitted to an external layer. This layer assigns the binary confidence report randomly with a sigmoid 
probability that depends on the dispersion estimate.
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there is evidence the decision threshold varies39–42. When a module’s ANN chooses an option, it casts a vote in 
favor of it. The global decision is taken when an option is voted by over half the modules (Fig. 1A).

We assume that confidence is decoded from an estimate of σdv (we provide the details of the proposed estimate 
in sec. “A neural mechanism to decide and estimate σdv”) in a separate layer. Our aim is to model binary confi-
dence reports (i.e. high or low confidence), hence the layer that decodes confidence must produce binary values. 
We propose that the probability of a high confidence report is given by a sigmoid distribution that takes the σdv’s 
estimate as input, ( ) = / + ( − )P x a x c1 1 exp[ ]High . The parameters of the sigmoid control the bias and the slope 
of the transition from high to low confidence (Fig. 1B).

Effect of module interconnectivity. In order to test our proposal, we first study how module interconnec-
tivity (controlled by parameter IC) affects our assumption that σdv can be used to decode confidence. To do this, 
we study σdv’s correlation with stimuli discriminability, task accuracy and reaction times (RT) in free to respond 
perceptual decisions, with varying IC values (Fig. 2). When IC =  0, modules are fully independent, while for 
=IC 1 modules are fully coupled. We simulate a network of =N 100 modules that must decide which of two 

stimuli is brighter. Both stimuli brightness flicker around a fixed mean each 40 ms. The distractor’s average lumi-
nance was fixed and the target luminance was varied. The stimuli discriminability measures the difference 
between the target and the distractor’s brightness. We simulated 2000 trials for each discriminability and IC value.

A first key result is that IC does not affect the mean accuracy nor the mean RT over trials as a function of 
stimuli discriminability (Fig. 2A,B). However, for small IC values, average σdv is strongly correlated with discrim-
inability, task difficulty and accuracy (Fig. 2C–E). This correlation disappears for growing IC values. It is clear 
that for small IC values, average σdv decreases with discriminability, and increases with mean RT (in fact, the 
positive correlation between σdv and RT also occurs within the same discriminability level as shown in SI Fig. S6).  
As we assume that σdv is an inverse measure of the reliability of the stimuli, high σdv will confer on average low 
confidence. This implies that our model reproduces the well known positive correlation between discriminability 
and confidence16,19, and RT and confidence17,18. Furthermore, our model also reproduces the known positive 
resolution of confidence - higher confidence for correct rather than incorrect responses (Fig. 2C). However, the 
studied task only yields slow errors (Fig. 2D) and is not suited to study our model’s ability to predict confidence 
in tasks characterized by fast errors43,44.

Hence, even when the modules are interconnected, the known correlations between confidence and other 
relevant behavioral observables (accuracy, RT and discriminability) are preserved. However, this interconnection 
must be small.

Figure 2. How IC affects σdv’s ability to encode confidence. (A,B) show the model’s accuracy (i.e. the average 
correct trials) and response times as a function of stimuli discriminability for several IC values. The different IC 
values are represented with different colors as shown in the lateral color bar. The black data points are for 
= .IC 0 5. It is clear that different IC values do not affect the relation between these variables. (C–E) show the 

average σdv for different IC values as a function of discriminability, average RT and average accuracy. In (C,D), 
square markers indicate averaged values over correct trials and crosses correspond to averaged values over 
incorrect trials. It is clear that σdv is correlated with discriminability, RT and accuracy for low IC values, and the 
correlation vanishes for high IC’s. It is also clear that for low discriminabilities, σdv is on average higher, hence 
confidence will be lower. In C, it is clear that error trials have higher average σdv for all discriminabilities, and 
thus will be associated with lower confidence reports. However, σdv’s increase in error trials does not affect the 
functional relation between σdv and RT, as is clear from (D).
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A neural mechanism to decide and estimate σdv. In the previous sections we stated that the model 
commits to a choice based on the “votes” of all modules and decodes confidence from σdv. In this section we pro-
vide a neural implementation of the decision method and σdv’s estimation.

We propose that when the activity of one of the competing populations, e.g. populations sensitive to option A, 
in a module surpasses λ, the module “votes” for A. Detecting if a population has an activity greater than a certain 
threshold is easily accomplished using a disinhibition microcircuit45–47. Briefly, the crossing is signaled by a sepa-
rate binary population of neurons that are either silent or bursting. This binary population is normally inhibited 
by a group of interneurons. When one of the competing populations surpasses λ it inhibits the interneurons and 
releases the inhibition of the binary population, which begins to burst. Counting votes is simply accomplished by 
summing the activity of the binary populations.

This decision mechanism implies that, at the response time, the median of the distribution of firing rates for 
the selected option is λ. Hence, σdv can be estimated from the from the fraction of modules in the vicinity of λ48. 
In particular, it is sufficient to count the fraction of modules that are between λ and a slightly higher value 
λ λ+ ∆  (FMC). We take λ =  15 Hz and Δ λ =  5 Hz. This is accomplished by subtracting the sum of the bursting 
neurons that indicate activity greater than λ with a second group of binary neurons that signal activity greater 
than λ λ+ ∆  (Fig. 1B and SI Fig. S3).

The intuition of the mechanism is simple: if the variance is low, the firing rate of all modules should be within 
a narrow range relative to the median. Instead, if the variance is high, only a few modules will have firing rates 
within a narrow interval relative to the median (Fig. 3A,B). This relation can be empirically tested (Fig. 3C). It 
is clear that FMC is inversely correlated with σdv and the correlations with discriminability, RT and accuracy are 
preserved with an inverted dependence (Fig. 3D–F, the inverse relation exists even within the same discrimi-
nability level SI Fig. S7 ). Hence, FMC is a valid representation of stimuli reliability and can be used to decode 
confidence.

Fluctuations’ asymmetric influence on ANNs. A key relation, that had not been studied previously, and 
which we rely on is the asymmetric influence that fluctuations have on an ANN’s RT. We hypothesize that this 
asymmetric influence should transfer to the whole network’s RT and to confidence, due to the correlation between 
σdv and RT. To illustrate this property, we simulate a network with =N 100 modules and measure the network RT, 
σdv, FMC, accuracy and time at which one of the modules casts its vote (vote time) under two stimulation proto-
cols (SP). One where a brief positive pulse (an increase of 1cd/m2 for 40 ms) is injected into the A population, and 
another SP where a pulse of the same amplitude but opposite sign is delivered to the B population (Fig. 4, the basal 
luminance is 50 cd/m2). A simulation of 105 trials of each condition revealed that, as expected, both pulse manip-
ulations resulted in comparable effects on accuracy (Fig. 4A), increasing the probability of selecting option A 
relative to chance for both SPs. However, the two pulse conditions had markedly different effects on RTs. For the 
single module’s vote time, correct votes were fastest for SP 1 (Fig. 4B).

This shows that at the module level, vote times are asymmetrically affected by sensory fluctuations. This asym-
metry can be interpreted to be a consequence of the fact that a positive fluctuation brings more total input current 

Figure 3. (A,B) Schematic of the relation between the fraction of modules in the counter range, FMC, and σdv. 
The counter range is placed between λ and λ λ+ ∆ . When an option is selected, the median firing rate is equal 
to λ and the FMC is inversely related to σdv. (C) measures the relation between average σdv and average FMC for 
different discriminabilities and several IC values. The different IC values are represented with different colors as 
shown in the lateral color bar. The black data points are for = .IC 0 5. (D–F) show FMC as a function of stimuli 
discriminability, average RT and accuracy. It is clear that average FMC is inversely correlated to σdv, hence for 
small IC’s FMC is correlated with discriminability, RT and accuracy. However, the inverse relation with σdv 
associates large FMC to high confidence and small FMC to low confidence.
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(the combined input to both competing populations) while a negative fluctuation brings less total input. When a 
module has a higher total input current, it commits to a vote faster, which is in fact the basis for the neural imple-
mentation of the balance of speed and accuracy in decision making40,42. Furthermore, the asymmetric influence 
can also be interpreted to derive from the different latencies with which fluctuations in favor of an option become 
synaptic input against the competing alternative. Sensory evidence in favor of the encoded option propagates 
rapidly (in V1, it has been shown to be mediated by AMPA receptors49) and hence is integrated rapidly, while 
lateral interactions have a slower build-up time governed by the temporal constants of NMDA receptors and 
the characteristic time of recursion in the circuit35,50. Hence, this could be interpreted to cause an asymmetric 
influence of the fluctuations on each of the competing populations, which in turn transfers to module vote time.

We hypothesized that the fluctuations’ asymmetric influence on vote time transfers to an asymmetric influ-
ence on the network RT and dispersion. We are able to confirm our hypothesis finding that network’s RT are 
significantly faster for SP 1 (Fig. 4C) and σdv is significantly lower (Fig. 4D). FMC is also asymmetrically affected 
(Fig. 4E) reflecting smaller dispersion for SP 1, thus leading to on average higher confidence reports for SP 1 
relative to SP 2. This implies that positive fluctuations that target the selected option produce on average higher 
confidence than negative fluctuations that target the non-selected option.

The model accounts for subjects’ experimental performance and confidence. In this section we 
show that our model is able to reproduce subjects’ performance and confidence reports, and the decision and 
confidence kernels in a two alternative, reaction time, perceptual task.

We aim to model the experimental data obtained in24. In this experiment, human subjects had to select the 
brightest of two patches, reporting simultaneously the choice (‘left’ or ‘right’) and the confidence in their choice 
(‘high’ or ‘low’) (Fig. 5A). The critical manipulation of the experiment was the addition of time-varying lumi-
nance noise to the average luminance of each patch. By letting external noise rather than internal noise limit task 
performance, the average of the noise conditioned by the subject’s choice provides an estimate of the integration 
window and the influence that sensory evidence at a given time has on choice Ahumada1996 (Fig. 5B show a sam-
ple trial’s fluctuations for the selected and non-selected patches). The average of the fluctuations only conditioned 
by choice gives the decision kernel (DS and DN), and measures the influence of the fluctuation of the selected 
and non-selected patches on choice (Fig. 5C). By discriminating confidence reports, the confidence kernel is 
computed (CS and CN), the influence of the fluctuation of the selected and non-selected patches on confidence 
(Fig. 5D). Zylberberg et al., found a symmetrical decision kernel and an asymmetrical confidence kernel, which 
is inconsistent with both balance of evidence and diffusion decision confidence models24.

In order to show that our model of confidence yields asymmetrical confidence kernels, we fit the subjects 
decision kernel and task performance. To do this, we simulate a network of 100 modules that receive sensory 
input from two sources with the same distribution target and distractor luminances as seen by the subjects. We 
propose that the luminance signal is linearly transformed to neural input current as, = ( − )I g L b , where I is the 
neural input, L is the observed luminance, g is the input gain and b is the input bias. We determine the values of g 
and b by fitting the model’s decision kernel and task performance to the subjects (Fig. 6A). After obtaining the 

Figure 4. Asymmetric influence of sensory fluctuations to the model’s decision output. The top panels 
schematically show the two stimulation protocols (SP 1 and SP 2). SP 1 has a brief positive fluctuation in favor of 
(A), SP 2 has the a fluctuation of opposite sign and equal strength against (B). (A) Shows the network’s accuracy 
for both SPs. (B) shows a single module’s mean vote time under the both SPs. (C–E) show the network’s average 
RT, σdv and FMC under both SPs.
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luminance transformation parameters, we fit the parameters of the sigmoid that is used to transform FMC into a 
binary confidence reports. To do this, we fit the subjects performance discriminated by confidence (i.e. high-hits, 
high-misses, low-hits and low-misses, Fig. 6B). Crucially, the confidence kernels are not used for fitting, and thus 
the model’s confidence kernels can be considered a prediction. We found that the model’s confidence kernels are 
asymmetric and in excellent agreement with the subjects’ data (Fig. 6C).

Figure 5. (A) A trial of the luminance task. Two patches of flickering bars (updated at 25 Hz) were presented 
until participants made a response. Participants indicated which patch is brighter and the confidence in their 
decision with a single manual response. (B) Spatiotemporal profile of the luminance signal. The red vertical 
line represents the fixation point, and the four columns to each side indicate the luminance in time of the four 
bars in each patch, numbered from the fovea to the periphery. (C,D) show the subject’s decision and confidence 
kernels respectively.

Figure 6. Behavioral fit results. (A) Subjects and model’s fitted decision kernels. (B) Subjects and simulations 
fitted accuracy grouped by confidence reports. (C) Subjects and model’s confidence kernels. In (A,C), time is 
measured from stimulus onset, and the shaded areas indicate standard deviation around the mean.
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Discussion
In this work we presented a neural model for two alternative decisions where an ensemble of modules collectively 
decides and, more importantly, encodes the decision’s confidence in the dispersion of firing rates. We showed 
that our model is able to account for well established relations between confidence and task difficulty (higher 
confidence for easier trials16–20), and confidence and RT (higher confidence for faster decisions10,13,18,51). More 
importantly, it is able to account for the sensory evidence’s asymmetric influence on confidence24.

Our model’s key assumption is that decision confidence is decoded from the inter-module distribution of 
firing rates of the neurons encoding the selected option. We assume that the activity of each module can be inter-
preted as a sample of the sensory evidence’s integral over time. If subjects have access to a representation of the 
probability density of the sensory evidence integrals, they can estimate their belief of having made a correct deci-
sion, i.e. their confidence. This interpretation is based on the bayesian interpretation of confidence27. Briefly, the 
bayesian interpretation assumes that subjects decide following bayesian inference to infer the probability distri-
bution (posterior) that each alternative is correct given the evidence (distributional confidence). The subjects then 
report a summary confidence rating that combines the information of the posterior distribution (can be either 
a binary - high/low - or continuous rating). In order to do this, subjects can rely on summary statistics (such as 
the mean and variance) instead of the entire distributional information. Our model only has access to a sample of 
evidence integrals, not the probability distribution, and decodes confidence from the inter-module dispersion of 
neurons sensitive to the selected option (a single summary statistic). We reason that it only requires this because 
the dispersion is strongly related to the sensory reliability, i.e. the signal to noise ratio, which by itself is a possible 
confidence heuristic52. It could however rely on more information of the samples (other statistics) to decode 
confidence. For instance, most models of confidence only rely on the difference between the firing rates of the 
selected and non-selected alternatives53 (similar to Vickers balance of evidence10). Furthermore, this difference 
can be directly related to the log odds measure of confidence, used by diffusion models11,12, if one assumes that 
neurons use a probabilistic population code54,55. The main difference with our model is that we use many modules 
to decide and in turn have access to many samples of the sensory evidence’s integral. Hence our model has access 
to more summary statistics to report confidence, and not only on the difference between competing options.

There are other proposals that also assume that confidence is determined from multiple samples, e.g Koriat’s 
self-consistency model34. However, Koriat’s consistency rule is similar to the “balance of evidence” as it constructs 
confidence from the difference between the number of samples that are in favor and against the selected option. 
Our model uses a statistic that only takes in to account the samples of the selected option, and disregards the sam-
ples of the non-selected option. Hence, our proposal, in a way, implements a confirmation bias56,57, an ubiquitous 
stereotypical error in human confidence judgments, where only the evidence consistent with the decision is used 
to report confidence.

Our main contribution is that our model is able to account for the asymmetric confidence kernels, while “bal-
ance of evidence” models cannot24. This is possible thanks to the asymmetric influence that sensory fluctuations 
have on each module’s vote time, which transfers to both network RT and inter-module dispersion. This asymme-
try can be interpreted to be a consequence of the fact that a positive fluctuation brings more total input current 
(the combined input to both competing populations) while a negative fluctuation brings less total input. When a 
module has a higher total input current, it commits to a vote faster, which is in fact the basis for the neural imple-
mentation of the balance of speed and accuracy in decision making40,42. Furthermore, the asymmetric influence 
can also be interpreted to derive from the different latencies with which fluctuations in favor of an option become 
synaptic input against the competing alternative. Sensory evidence in favor of the encoded option propagates 
rapidly (in V1, it has been shown to be mediated by AMPA receptors49) and hence is integrated rapidly, while 
lateral interactions have a slower build-up time governed by the temporal constants of NMDA receptors and 
the characteristic time of recursion in the circuit35,50. Hence, this could be interpreted to cause an asymmetric 
influence of the fluctuations on each of the competing populations, which in turn transfers to module vote time.

Furthermore, our model is also suited to explain confidence reports in different experimental paradigms 
such as the fixed delay paradigm11,13,58. In this paradigm, subjects are presented with the stimulus during a fixed 
interval and are forced to decide after the stimulus is turned off. The main result is that the longer the stimulus 
is presented, the higher the confidence, a property that our model reproduces (SI sec. E). However, we do not 
study many known properties of confidence. For example, we did not study tasks characterized by fast errors43,44. 
These are normally linked to tasks where subjects are forced to balance their speed and accuracy tradeoff with 
additional costs for the passage of time. Our model’s speed-accuracy tradeoff (i.e. decision policy) can be tuned 
by changing the background input that targets all the competing populations (SI sec. E). However, our model is 
constructed assuming a constant decision policy, and thus we do not study the problem of confidence calibra-
tion27. Calibration is the process through which a summary statistic (in our case the σdv or FMC) is transformed 
to certainty level or a confidence report (which we assume occurs in a separate layer). This problem requires 
feedback connections and parameter tuning to actively learn the proper calibration for a variable decision policy. 
This also implies that the parameters that determine the probability of high confidence should also change with 
background input. This interesting problem is well beyond what we studied in the present work.

One of the main questions that should be addressed by future studies is: “how does the modularity arise?” Our 
model assumes that the network that decides is formed by modules that are by themselves networks with many 
neurons. It is crucial to study how this modular architecture could emerge, either from a property of the topology, 
sparse connectivity or synaptic plasticity. However, one of our important findings is that the modules do not need 
to be fully independent. Some degree of interconnection does not make the dispersion amongst module less 
informative, hence neurons residing in a given module can be connected to neurons outside it and the network 
could still function. A detailed study of the extension of our model to a spiking neuron network is necessary.

We also report a novel prediction of the model in order to falsify (or confirm) it with new experiments. The 
network modules are ANNs, that when stimulated, increase their firing rate until they are in the vicinity of a stable 
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steady state that has one population with increased firing rate and the other with low firing rate. This implies that 
as time goes on, more modules will reach a stable steady state, and variability will decrease or reach a constant 
level. Our prediction is that intermodule variability should increase as a function of RT and task difficulty. This 
prediction should be tested in a neurophysiological experiment, with simultaneous neural recordings, where RT 
and confidence are observed. Furthermore, our model is built upon the idea that the decision is taken redun-
dantly by many modules. This implies that the covariance between pairs of “integrating” neurons is not merely 
described by two point-processes with the same underlying rate, to some degree they must integrate evidence 
independently and, thus, may arrive at opposite conclusions.

Methods
Network model. Here we detail the network model without the neural layers that monitor choice and FMC 
(the full network that contains the neural populations that monitor choice and FMC is described in SI sec. B). The 
network contains N decision modules, where each module is composed of two decision populations (A and B) 
described by rate equations similar to36:
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where the superscript k denotes the module, si is the fraction of NMDA channels open in population i (i can be 
either A or B), τNMDA is the NMDA closure time, γ is a parameter of the NMDA opening rate, ρi is population I’s 
firing rate, Φ is an effective input-output relation between the synaptic input and the firing rate, ′Jij

kk  is the connec-
tion weight from population i in module k to population j in module ′k . This connection weight is determined by 
the interconnection parameter IC and Jij that is the connection weight between populations in the same module 
when the modules are taken as fully independent ( = )IC 0 . When =IC 1, all modules are fully connected, thus 
all populations i, throughout the entire network of modules, are connected with the same weight to every popu-
lation j, independently of the module they belong to. Iiext

k  is the external synaptic current that arrives to population 
i in module k. I iext has two separate contributions, the sensory signal, that is the same for every module, and the 
background noise produced by synaptic bombardement that differs for every module. The latter is modeled as an 
Ornstein-Ulhenbeck process that arises from the background noise filtered by the AMPA channel time constant 
(constant background is . nA0 3255 , O-U time constant is 10 ms and O-U variance is ⋅ −4 10 4 nA2). The connection 
weights are = = .J J 0 260911 22  nA and = = .J J 0 049712 21  nA. The response function parameters are 
= /a nC2701 , =b Hz108  and = .c s0 154 .

Behavioral task. Taken from24, participants fixated a central red dot (diameter of 0.56°) on a gray back-
ground (50 cd/m2) for 200 ms. Two flickering gray patches were presented at both sides of the fixation dot until 
a response was made. Patches were presented on the horizontal meridian, centered at ± 1.04° from the fixation 
point. Each patch was composed of four vertical, spatially adjacent bars (0.14° ×  0.56°). The luminance of the 
bars was updated synchronously every 40 ms, sampling from a Gaussian distribution with a standard deviation of 
10 cd/m2. The mean of this distribution equaled the luminance of the background for one of the patches and was 
set higher for the other (referred as “target”). Subjects simultaneously reported the location they considered was 
the target and a binary confidence (high or low).

Psychophysical kernels. The luminance fluctuations are pooled into four groups depending on the subject’s 
selection and reported confidence. The groups are: ( )/ ( ), ,L t L tHS

T k
LS
T k  (fluctuations of the selected patch with high/

low confidence) and ( )/ ( ), ,L t L tHN
T k

LN
T k  (fluctuations of the non-selected patch with high/low confidence), where the 

super-index T indicates the trial, k indicates the bar within the patch, and t is the time. The decision and confi-
dence psychophysical kernels are computed from these groups as:
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( ) = ( ) − ( ) ( )
, ,

,
C t L t L t 8N HN

T k
T LN

T k
T k

where the average is taken over trials and bars within each patch, and ( )/D tS N  and /CS N  are the decision and con-
fidence kernels respectively.

Simulation protocol. The correlations between our model’s accuracy, RT and task discriminability were 
studied by simulating 2000 independent trials for several ICs and discriminabilities (di), where a network of 
N =  100 modules was stimulated with two competing sensory signals. Both sensory signals were resampled each 
40 ms from a gaussian with 5 cd/m2 standard deviation, and mean 50 cd/m2 (distractor) and ( + )d50 i  cd/m2 (tar-
get). The network spent 0.2 s with no stimulation before stimulus onset. The sensory signal was transformed to 
neural input as ( ) = ( ( ) − ),I t g L t bi s i , where = . −g 3 37910 3 nA m2/cd and = .b 45 4 cd/m2.

The asymmetrical influence of the sensory fluctuations on an ANN’s RT were studied by performing 10000 
independent simulations, where a network of N=100 modules had to decide under 2 different stimulation pro-
tocols (SP1 and SP2 from Fig. 4). In all stimulation protocols, the network had no stimulation during 0.2 s and 
then all stimuli were turned on. The baseline sensory input was 50 cd/m2. In SP 1, input targeting A had a positive 
fluctuation of 1 cd/m2 during the first 40 ms. In SP 2, input targeting B a had a negative fluctuation of 1 cd/m2 
during the first 40 ms.

Data fitting. To fit the behavioral data, sensory input, that represented the average patch luminance observed 
by the subjects, was sent to the network of =N 100 modules. The onset of the stimulation was after a 1 s wait 
period. The mean patch luminance was resampled each 40 ms from a gaussian distribution with 5 cd/m2 standard 
deviation, and mean value that changed over trials. The mean target luminance was taken from the distribution 
of mean luminances observed by the subjects, and the mean distractor luminance was fixed at 50 cd/m2. The net-
work was forced to decide within 1 s after stimulus presentation, and penalized for non-decided trials, and early 
decision (prior to stimuli presentation). The sensory input was transformed into neural input by a linear transfor-
mation as ( ) = ( ( ) − ),I t g L t bi s i . The parameters g and b were determined by fitting subjects’ decision kernel and 
task performance, using a covariance matrix adaptation evolutionary strategy CMA-ES. The algorithm efficiently 
explores the parameter space in order to find the parameter values that minimize a merit function. The imple-
mentation was taken from59. The merit function we used was:
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2

where the first term is the squared difference between the subject and model’s decision kernels, ( )D ti  and 
( , , )D t g bi

sim  respectively. In the second term, ( , )H g bp  is the Pearson chi squared test statistic60 that the subject 
and simulation’s number of hits and misses come from the same multinomial. =w 50k  is the weight of the least 
squares and =w 1p  the weight of the Pearson statistic. The merit function is penalized by the number of early 
decision trials (Ne, decisions prior to stimulus onset) and the number of non-decided trials (Nd, trials where no 
option was selected). These forced the network to commit to a choice only due to the sensory input in 1 s. The 
model’s decision kernel and task accuracy were approximated by simulating 10000 trials for each parameter set. 
Each trial’s mean target luminance was taken from the distribution of mean target luminances observed by all 
subjects. The values of g and b that minimized the merit function were = ( . ± . ) −g 3 379 0 03 10 3nA m2/cd and 
= ( . ± . )b 45 4 0 6 cd/m2.

Once the decision kernel and performance were fitted using the luminance transformation parameters, the 
confidence report rate (number of high confidence hits and misses, and low confidence hits and misses) was fit-
ted. We propose that a separate neural layer decodes confidence from the estimate of σdv. The dispersion was 
estimated with the activity of pools CA/CB (the equivalent to FMC but computed with neural populations as 
shown in SI sec.B) at decision time. The probability of high confidence is taken as ( ) = / + ( − )P x a x c1 1 exp[ ]High , 
where x is the dispersion’s estimate. We determine a and c by sampling the model’s binary confidence responses 
from PHigh and minimizing the Pearson chi squared test statistic between the model and subject’s performance 
discriminated by confidence (number of high-hits, high-misses, low-hits and low-misses). Again, we used the 
same CMA-ES optimization algorithm to perform these fits59. The resulting parameters were, = .a 0 0631 s and 
= .c 52 6 Hz. The results are qualitatively the same when taking the artificially counted FMC as the estimate of σdv 

at response time.
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