Mostrar el registro sencillo del ítem

dc.rights.licensehttps://creativecommons.org/licenses/by-sa/2.5/ar/es_AR
dc.contributor.authorRotnitzky, Andreaes_AR
dc.contributor.authorWolock, Charles J.es_AR
dc.contributor.authorJacob, Susanes_AR
dc.contributor.authorBennett, Julia C.es_AR
dc.contributor.authorElias-Warren, Annaes_AR
dc.contributor.authorO’Hanlon, Jessicaes_AR
dc.contributor.authorKenny, Avies_AR
dc.contributor.authorJewell, Nicholas P.es_AR
dc.contributor.authorWeil, Ana A.es_AR
dc.contributor.authorChu, Helen Y.es_AR
dc.contributor.authorCarone, Marcoes_AR
dc.date.accessioned2024-07-11T20:54:30Z
dc.date.available2024-07-11T20:54:30Z
dc.date.issued2024-07-05
dc.identifier.urihttps://repositorio.utdt.edu/handle/20.500.13098/12888
dc.identifier.urihttps://doi.org/10.48550/arXiv.2407.04214
dc.description.abstractFor infectious diseases, characterizing symptom duration is of clinical and public health importance. Symptom duration may be assessed by surveying infected individuals and querying symptom status at the time of survey response. For example, in a SARS-CoV-2 testing program at the University of Washington, participants were surveyed at least 28 days after testing positive and asked to report current symptom status. This study design yielded current status data: Outcome measurements for each respondent consisted only of the time of survey response and a binary indicator of whether symptoms had resolved by that time. Such study design benefits from limited risk of recall bias, but analyzing the resulting data necessitates specialized statistical tools. Here, we review methods for current status data and describe a novel application of modern nonparametric techniques to this setting. The proposed approach is valid under weaker assumptions compared to existing methods, allows use of flexible machine learning tools, and handles potential survey nonresponse. From the university study, we estimate that 19% of participants experienced ongoing symptoms 30 days after testing positive, decreasing to 7% at 90 days. Female sex, history of seasonal allergies, fatigue during acute infection, and higher viral load were associated with slower symptom resolution.es_AR
dc.description.sponsorshipEste preprint fue publicado el 05/07/2024 en Arxiv.org Se archiva en el Repositorio Digital Universidad Torcuato Di Tella para su preservarlo en el tiempo y para ayudar a su difusión.es_AR
dc.format.extent33 p.es_AR
dc.format.mediumapplication/pdfes_AR
dc.languageenges_AR
dc.publisherArxives_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.subjectCovid-19es_AR
dc.subjectStatistical analysises_AR
dc.subjectAnálisis estadísticoes_AR
dc.titleInvestigating symptom duration using current status data: a case study of post-acute COVID-19 syndromees_AR
dc.typeinfo:eu-repo/semantics/preprintes_AR
dc.subject.keywordInterval censoringes_AR
dc.subject.keywordMachine Learninges_AR
dc.subject.keywordnonparametrices_AR
dc.subject.keywordSurvival analysises_AR
dc.type.versioninfo:eu-repo/semantics/submittedVersiones_AR


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem