Show simple item record

dc.rights.licensehttps://creativecommons.org/licenses/by-sa/2.5/ar/es_AR
dc.contributor.authorShmerkin, Pabloes_AR
dc.date.accessioned2023-11-21T21:33:21Z
dc.date.available2023-11-21T21:33:21Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.utdt.edu/handle/20.500.13098/12147
dc.description.abstractWe prove inverse theorems for the size of sumsets and the L q norms of convolutions in the discretized setting, extending to arbitrary dimension an earlier result of the author in the line. These results have applications to the dimensions of dynamical self-similar sets and measures, and to the higher dimensional fractal uncertainty principle. The proofs are based on a structure theorem for the entropy of convolution powers due to M. Hochman.es_AR
dc.format.extent18 p.es_AR
dc.format.mediumapplication/pdfes_AR
dc.languageenges_AR
dc.publisherUniversidad Torcuato Di Tellaes_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.subjectMatemáticases_AR
dc.subjectMathematicses_AR
dc.subjectLq normses_AR
dc.titleInverse theorems for discretized sums and Lq norms of convolutions in Rdes_AR
dc.typeinfo:eu-repo/semantics/preprintes_AR
dc.type.versioninfo:eu-repo/semantics/submittedVersiones_AR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record