Mostrar el registro sencillo del ítem

dc.rights.licensehttps://creativecommons.org/licenses/by-sa/2.5/ar/es_AR
dc.contributor.authorShmerkin, Pabloes_AR
dc.contributor.authorOrponen, Tuomases_AR
dc.contributor.authorDe Saxcé, Nicoláses_AR
dc.date.accessioned2023-11-21T21:20:35Z
dc.date.available2023-11-21T21:20:35Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.utdt.edu/handle/20.500.13098/12146
dc.description.abstractWe prove the following. Let $\mu_{1},\ldots,\mu_{n}$ be Borel probability measures on $[-1,1]$ such that $\mu_{j}$ has finite $s_j$-energy for certain indices $s_{j} \in (0,1]$ with $s_{1} + \ldots + s_{n}>1$. Then, the multiplicative convolution of the measures $\mu_{1},\ldots,\mu_{n}$ has power Fourier decay: there exists a constant $\tau = \tau(s_{1},\ldots,s_{n})>0$ such that $$ \left| \int e^{-2\pi i \xi \cdot x_{1}\cdots x_{n}} \, d\mu_{1}(x_{1}) \cdots \, d\mu_{n}(x_{n}) \right| \leq |\xi|^{-\tau}$$ for sufficiently large $|\xi|$. This verifies a suggestion of Bourgain from 2010.es_AR
dc.format.extent14 p.es_AR
dc.format.mediumapplication/pdfes_AR
dc.languageenges_AR
dc.publisherUniversidad Torcuato Di Tellaes_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.subjectFourier decayes_AR
dc.subjectMatemáticases_AR
dc.subjectMathematicses_AR
dc.subjectBorel measurees_AR
dc.subjectFractal Measureses_AR
dc.subjectBourgain’s Theoremes_AR
dc.subjectClassical Analysis and ODEses_AR
dc.titleOn the Fourier decay of multiplicative convolutionses_AR
dc.typeinfo:eu-repo/semantics/preprintes_AR
dc.type.versioninfo:eu-repo/semantics/submittedVersiones_AR


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem