dc.rights.license | https://creativecommons.org/licenses/by/4.0/ | es_AR |
dc.contributor.author | Martos Venturini, Gabriel | es_AR |
dc.contributor.author | Hernández, Nicolás | es_AR |
dc.contributor.author | Muñoz, Alberto | es_AR |
dc.date.accessioned | 2023-08-16T22:07:46Z | |
dc.date.available | 2023-08-16T22:07:46Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | https://repositorio.utdt.edu/handle/20.500.13098/11992 | |
dc.description.abstract | In this paper, we propose a novel approach to address the problem of functional outlier detection. Our method leverages a
low-dimensional and stable representation of functions using Reproducing Kernel Hilbert Spaces (RKHS).We define a depth
measure based on density kernels that satisfy desirable properties.We also address the challenges associated with estimating
the density kernel depth. Throughout aMonte Carlo simulation we assess the performance of our functional depth measure in
the outlier detection task under different scenarios. To illustrate the effectiveness of our method, we showcase the proposed
method in action studying outliers in mortality rate curves. | es_AR |
dc.description.sponsorship | Este artículo se encuentra publicado en International Journal of Data Science and Analytics (Springer Nature) | |
dc.description.uri | https://doi.org/10.1007/s41060-023-00420-w | |
dc.format.extent | 8 p. | es_AR |
dc.format.medium | application/pdf | es_AR |
dc.language | eng | es_AR |
dc.publisher | Springer Nature | es_AR |
dc.publisher | International Journal of Data Science and Analytics | es_AR |
dc.rights | info:eu-repo/semantics/openAccess | es_AR |
dc.subject | Functional Data | es_AR |
dc.subject | Depth measures | es_AR |
dc.subject | Outlier detection | es_AR |
dc.subject | Mortality curves | es_AR |
dc.title | Density kernel depth for outlier detection in functional data | es_AR |
dc.type | info:eu-repo/semantics/article | es_AR |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_AR |