Show simple item record

dc.rights.licensehttps://creativecommons.org/licenses/by-sa/2.5/ar/es_AR
dc.contributor.authorMarenco, Javieres_AR
dc.contributor.authorKoch, Ivoes_AR
dc.date.accessioned2023-06-15T14:19:10Z
dc.date.available2023-06-15T14:19:10Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.utdt.edu/handle/20.500.13098/11877
dc.identifier.urihttps://doi.org/10.1016/j.dam.2021.09.031
dc.description.abstractGiven a matrix with real-valued entries, the maximum 2D subarray problem consists in finding a rectangular submatrix with consecutive rows and columns maximizing the sum of its entries. In this work we start a polyhedral study of an integer programming formulation for this problem.We thus define the 2D subarray polytope, explore conditions ensuring the validity of linear inequalities, and provide several families of facet-inducing inequalities. We also report com- putational experiments assessing the reduction of the dual bound for the linear relaxation achieved by these families of inequalities.es_AR
dc.description.sponsorshipEste documento es una versión del artículo publicado en Applied Mathematics 323, 286-301.es_AR
dc.format.extent34 p.es_AR
dc.format.mediumapplication/pdfes_AR
dc.languageenges_AR
dc.relation.isversionofKoch, I., & Marenco, J. (2022). The maximum 2D subarray polytope: Facet-inducing inequalities and polyhedral computations. Discrete Applied Mathematics, 323, 286–301. https://doi.org/10.1016/j.dam.2021.09.031
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.subjectMaximum subarray problemes_AR
dc.subjectInteger programminges_AR
dc.subjectFacetses_AR
dc.titleThe maximum 2D subarray polytope: facet-inducing inequalities and polyhedral computationses_AR
dc.typeinfo:eu-repo/semantics/preprintes_AR
dc.type.versioninfo:eu-repo/semantics/submittedVersiones_AR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record