Show simple item record

dc.rights.licensehttps://creativecommons.org/licenses/by-sa/2.5/ar/es_AR
dc.contributor.authorZalduendo, Ignacioes_AR
dc.contributor.authorAron, Richardes_AR
dc.contributor.authorGarcía, Domingoes_AR
dc.contributor.authorPinasco, Damiánes_AR
dc.date.accessioned2023-02-28T18:54:25Z
dc.date.available2023-02-28T18:54:25Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.utdt.edu/handle/20.500.13098/11648
dc.identifier.urihttps://doi.org/10.1007/s13398-022-01337-y
dc.description.abstractWe prove the following Farkas’ Lemma for simultaneously diagonalizable bilinear forms: If A1, . . . , Ak, and B : Rn × Rn → R are bilinear forms, then one—and only one—of the following holds: (i) B = a1A1 +· · ·+ak Ak , with non-negative ai ’s, (ii) there exists (x, y) for which A1(x, y) ≥ 0, . . . , Ak (x, y) ≥ 0 and B(x, y) < 0. We study evaluation maps over the space of bilinear forms and consequently construct examples in which Farkas’ Lemma fails in the bilinear setting.es_AR
dc.format.extent10 p.es_AR
dc.format.mediumapplication/pdfes_AR
dc.languageenges_AR
dc.publisherReal Academia de Ciencias Exactas, Físicas y Naturaleses_AR
dc.relation.ispartofRevista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas 117, 6 (2023).es_Ar
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.subjectBilinear Formses_AR
dc.subjectEvaluation mapses_AR
dc.subject46G25 · 47A07 · 15A69es_AR
dc.titleFarkas’ Lemma in the bilinear setting and evaluation functionalses_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dcterms.identifier1579-1505
dcterms.identifierAron, R., García, D., Pinasco, D. et al. Farkas’ Lemma in the bilinear setting and evaluation functionals. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 117, 6 (2023). https://doi.org/10.1007/s13398-022-01337-yen
dc.subject.keywordFarka's Lemmaes_AR
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_AR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record