dc.rights.license | https://creativecommons.org/licenses/by-sa/2.5/ar/ | es_AR |
dc.contributor.author | Shmerkin, Pablo | es_AR |
dc.contributor.author | Héra, Kornélia | es_AR |
dc.contributor.author | Yavicoli, Alexia | es_AR |
dc.date.accessioned | 2022-11-28T21:06:33Z | |
dc.date.available | 2022-11-28T21:06:33Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Kornélia Héra, Pablo Shmerkin, Alexia Yavicoli, An improved bound for the dimension of (\alpha,2\alpha)(α,2α)-Furstenberg sets. Rev. Mat. Iberoam. 38 (2022), no. 1, pp. 295–322 | |
dc.identifier.uri | https://repositorio.utdt.edu/handle/20.500.13098/11459 | |
dc.identifier.uri | https://www.doi.org/10.4171/RMI/1281 | |
dc.description.abstract | We show that given α e (0, 1) there is a constant c = c α > 0 such that any planar (α, 2α)-Furstenberg set has Hausdorff dimension at least 2α + c. This improves several previous bounds, in particular extending a result of Katz–Tao and Bourgain. We follow the Katz–Tao approach with suitable changes, along the way clarifying, simplifying and/or quantifying many of the steps. | es_AR |
dc.description.sponsorship | Revista Matemática Iberoamericana | |
dc.format.extent | p.295–322 | es_AR |
dc.format.medium | application/pdf | es_AR |
dc.language | spa | es_AR |
dc.relation.ispartof | Rev. Mat. Iberoam. 38 (2022), no. 1, pp. 295–322 | |
dc.rights | info:eu-repo/semantics/openAccess | es_AR |
dc.title | An improved bound for the dimension of (α, 2α)-Furstenberg sets | es_AR |
dc.type | info:eu-repo/semantics/article | es_AR |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_AR |