Show simple item record

dc.rights.licensehttps://creativecommons.org/licenses/by-sa/2.5/ar/es_AR
dc.contributor.authorShmerkin, Pabloes_AR
dc.contributor.authorHéra, Kornéliaes_AR
dc.contributor.authorYavicoli, Alexiaes_AR
dc.date.accessioned2022-11-28T21:06:33Z
dc.date.available2022-11-28T21:06:33Z
dc.date.issued2022
dc.identifier.citationKornélia Héra, Pablo Shmerkin, Alexia Yavicoli, An improved bound for the dimension of (\alpha,2\alpha)(α,2α)-Furstenberg sets. Rev. Mat. Iberoam. 38 (2022), no. 1, pp. 295–322
dc.identifier.urihttps://repositorio.utdt.edu/handle/20.500.13098/11459
dc.identifier.urihttps://www.doi.org/10.4171/RMI/1281
dc.description.abstractWe show that given α e (0, 1) there is a constant c = c α > 0 such that any planar (α, 2α)-Furstenberg set has Hausdorff dimension at least 2α + c. This improves several previous bounds, in particular extending a result of Katz–Tao and Bourgain. We follow the Katz–Tao approach with suitable changes, along the way clarifying, simplifying and/or quantifying many of the steps.es_AR
dc.description.sponsorshipRevista Matemática Iberoamericana
dc.format.extentp.295–322es_AR
dc.format.mediumapplication/pdfes_AR
dc.languagespaes_AR
dc.relation.ispartofRev. Mat. Iberoam. 38 (2022), no. 1, pp. 295–322
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.titleAn improved bound for the dimension of (α, 2α)-Furstenberg setses_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_AR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record