Mostrar el registro sencillo del ítem

dc.rights.licensehttp://creativecommons.org/licenses/by/4.0/es_AR
dc.contributor.authorBedi, Gillinderes_AR
dc.contributor.authorCarrillo, Facundoes_AR
dc.contributor.authorCecchi, Guillermo A.es_AR
dc.contributor.authorFernández Slezak, Diegoes_AR
dc.contributor.authorSigman, Marianoes_AR
dc.contributor.authorMota, Natália B.es_AR
dc.contributor.authorRibeiro, Sidartaes_AR
dc.contributor.authorJavitt, Daniel C.es_AR
dc.contributor.authorCopelli, Mauroes_AR
dc.contributor.authorCorcoran, Cheryl M.es_AR
dc.date.accessioned2018-08-06T14:08:33Z
dc.date.available2018-08-06T14:08:33Z
dc.date.issued2015-08-26
dc.identifierdoi: 10.1038/npjschz.2015.30es_AR
dc.identifier.urihttps://doi.org/10.1038/npjschz.2015.30es_AR
dc.identifier.urihttps://repositorio.utdt.edu/handle/20.500.13098/11075
dc.description.abstractBACKGROUND/OBJECTIVES: Psychiatry lacks the objective clinical tests routinely used in other specializations. Novel computerized methods to characterize complex behaviors such as speech could be used to identify and predict psychiatric illness in individuals. AIMS: In this proof-of-principle study, our aim was to test automated speech analyses combined with Machine Learning to predict later psychosis onset in youths at clinical high-risk (CHR) for psychosis. METHODS: Thirty-four CHR youths (11 females) had baseline interviews and were assessed quarterly for up to 2.5 years; five transitioned to psychosis. Using automated analysis, transcripts of interviews were evaluated for semantic and syntactic features predicting later psychosis onset. Speech features were fed into a convex hull classification algorithm with leave-one-subject-out cross-validation to assess their predictive value for psychosis outcome. The canonical correlation between the speech features and prodromal symptom ratings was computed. RESULTS: Derived speech features included a Latent Semantic Analysis measure of semantic coherence and two syntactic markers of speech complexity: maximum phrase length and use of determiners (e.g., which). These speech features predicted later psychosis development with 100% accuracy, outperforming classification from clinical interviews. Speech features were significantly correlated with prodromal symptoms. CONCLUSIONS: Findings support the utility of automated speech analysis to measure subtle, clinically relevant mental state changes in emergent psychosis. Recent developments in computer science, including natural language processing, could provide the foundation for future development of objective clinical tests for psychiatry.es_AR
dc.format.extent7 p.es_AR
dc.format.mediumapplication/pdfes_AR
dc.languageenges_AR
dc.relation.ispartofnpj Schizophrenia volume 1, Article number: 15030 (2015). ISSN: 2334-265X/15es_AR
dc.rightsinfo:eu-repo/semantics/openAccesses_AR
dc.subjectNeurologíaes_AR
dc.subjectEsquizofreniaes_AR
dc.subjectComunicaciónes_AR
dc.subjectHablaes_AR
dc.titleAutomated analysis of free speech predicts psychosis onset in high-risk youthses_AR
dc.typeinfo:eu-repo/semantics/articlees_AR
dc.subject.keywordNeurosciencees_AR
dc.subject.keywordSchizophreniaes_AR
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_AR
dc.description.filiationFil: Bedi, Gillinder. Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY, USA. Division on Substance Abuse, New York State Psychiatric Institute, New York, NY, USAes_AR
dc.description.filiationFil: Carrillo, Facundo. Department of computer Science, School of Sciences, Universidad de Buenos Aires, Buenos Aires, Argentinaes_AR
dc.description.filiationFil: Cecchi, Guillermo A. 4Computational Biology Center—Neuroscience, IBM T.J. Watson Research Center, Yorktown Heights, NY, USAes_AR
dc.description.filiationFil: Fernández Slezak, Diego. Department of computer Science, School of Sciences, Universidad de Buenos Aires, Buenos Aires, Argentinaes_AR
dc.description.filiationFil: Sigman, Mariano. Universidad Torcuato Di Tella, Escuela de Negocios, Laboratorio de Neurociencia, Buenos Aires, Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ministry of Science, Buenos Aires, Argentinaes_AR
dc.description.filiationFil: Mota, Natália B. 6Brain Institute, Federal University of Rio Grande do Norte, Natal, Braziles_AR
dc.description.filiationFil: Ribeiro, Sidarta. Brain Institute, Federal University of Rio Grande do Norte, Natal, Braziles_AR
dc.description.filiationFil: Javitt, Daniel C. Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY, USA. Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY, USAes_AR
dc.description.filiationFil: Copelli, Mauro. Department of Physics, Federal University of Pernambuco, Recife, Braziles_AR
dc.description.filiationFil: Corcoran, Cheryl M. 1Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY, USA. 7Division of Experimental Therapeutics, New York State Psychiatric Institute, New York, NY, USAes_AR


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem