
Supermodular Utility Representations

Alejandro Francetich∗

Stanford GSB

July 11, 2011

Abstract

Many problems in decision theory and game theory involve choice problems over lat-

tices and invoke the assumption of supermodularity of utility functions. In the context

of choice over finite lattices, it is well-known that existence of supermodular representa-

tions is equivalent to existence of quasisupermodular ones for monotone preferences. In

particular, strictly monotone preferences admit a supermodular representation. This

paper revisits the axiomatic foundations of supermodularity of utility functions rep-

resenting preferences over finite lattices, and develops an axiomatic foundation in the

context of choice over lotteries over outcomes in arbitrary lattices.
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1 Introduction

Supermodularity of payoff functions is a very convenient and increasingly popular as-

sumption in many applications in economics. When the feasible set has a lattice structure

and the objective function is supermodular, the tools of monotone comparative statics (Top-

kis (1978), Milgrom and Shannon (1994) and Topkis (1998)) provide a convenient means for

making predictions about the parametric dependence of the solution set and of the value

function. Another example is the class of supermodular games (Topkis (1979), Vives (1990)

and Milgrom and Roberts (1990)) or of games with (ordinal) strategic complementarities

(Milgrom and Shannon (1994)). These are games with strategy spaces endowed with a lat-

tice structure and payoff functions that have certain supermodularity properties. Existence

of pure strategy Nash equilibria in games in these classes is established by order-theoretic

arguments. McAdams (2003) proves the existence of non-decreasing equilibria in games

with incomplete information in which players’ payoff functions have certain supermodularity

properties.

However, axiomatic foundations for supermodularity remain incomplete. Echenique and

Chambers (2009) identify a necessary and sufficient condition on preferences defined on finite

lattices to admit a supermodular representation (Theorem 11). Their condition, however, is

mainly technical and the economic intuition behind it is less than clear. They also present

what can be read as another supermodular representation theorem (Theorem 1, a counterpart

of Theorem 5 in Echenique and Chambers (2008)) with simpler conditions on preferences

but also restricted to finite sets. Shirai (2010) analyzes the case of countably infinite lattices

in Nn and focuses exclusively on submodularity (Theorem 2). His argument does not readily

extend to arbitrary countable lattices and does not apply symmetrically to supermodularity,

however.

Moreover, Echenique and Chambers (2009) also conclude that supermodularity is a vac-

uous assumption under finiteness and strict monotonicity, in the sense that a finite consump-

tion data set from a finite consumption lattice can be rationalized if and only if it can be

rationalized by a supermodular utility function (Corollary 5 and Proposition 7, respectively).

In other words, supermodularity is ‘a very weak assumption which is not testable with data

on consumption expenditures’.1

1Echenique and Chambers (2009).
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This paper revisits the axiomatic foundations of supermodularity of utility functions

representing preferences over finite lattices, and develops an axiomatic foundation in the

context of choice over lotteries over outcomes in arbitrary lattices. Section 2 revisits the

work of Echenique and Chambers (2008), Echenique and Chambers (2009) and Shirai (2010)

on supermodularity of representations of preferences over well-ordered sets. In addition,

a ‘supermodular counterpart’ of the additive representation in Kreps (1979) is explored.

Section 3 looks into the problem in the framework of choice over lotteries and develops

axiomatic foundations for supermodularity of utility functions over outcomes in expected

utility settings. Section 4 concludes. While the proofs of the main propositions are presented

in the main body of the paper, some proofs are relegated to the appendix.

2 Supermodularity in Ordinal Frameworks

This section revisits the problem of axiomatizing supermodularity in an ordinal utility

setting, that is, when preferences are defined over X. Such frameworks present a series of

challenges. First, the order and the preference relation are defined on the same space, so

supermodularity is a restriction on how these two coexisting relations interact. Consequently,

axioms must be stated in terms of the same preference relation for which we want to produce

a supermodular representation. Moreover, there is no generally accepted structure on the

choice problem under which to attempt to construct supermodular representations, so even

existence of representations is an issue. Finally, we can generally only aspire to produce ‘a’

supermodular representation, as supermodularity is typically not preserved under arbitrary

strictly increasing transformations.

Lattices, monotonicity and supermodularity

Let X be a set and let �⊆ X ×X be a partial order on X, that is, a reflexive, transitive

and antisymmetric binary relation on X, with asymmetric part >.2 The pair (X,�) is called

2The modifier ‘partial’ in partial order means that some pairs of elements in X may be incomparable
under �. That is to say, there may be some x0, x

′
0 ∈ X such that neither x′

0 � x0 nor x0 � x′
0. The
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a poset. This poset is a lattice if for all x, x′ ∈ X, both the supremum and the infimum

under �, sup�({x, x′}) and inf�({x, x′}), exist and belong to X. Let ∨,∧ : X × X → X

denote the ‘join’ and ‘meet’ operations on (X,�), respectively: x∨ x′ := sup�({x, x′}) and

x ∧ x′ := inf�({x, x′}). If A ⊆ X has the property that the restrictions of ∨,∧ to A × A,

∨ |A×A,∧ |A×A, map into A, then (A,�A×A) is called a sublattice of (X,�), where �A×A

is the restriction of � to A × A, � ∩A × A.3

A real-valued function f : X → R is non-decreasing if, for any x, x′ ∈ X, x′ � x ⇒

f(x′) ≥ f(x), while it is strictly increasing if f(x′) > f(x) whenever x′ > x. If

f(x ∨ x′) + f(x ∧ x′) ≥ f(x) + f(x′)

for any x, x′ ∈ X, then f : X → R is supermodular. . Thus, for a supermodular function,

the total value of the meet and the join of any two points is at least as great as the total

value of the two points individually. If the inequality is reversed, then f is submodular.

Following Li Calzi (1990) and Milgrom and Shannon (1994), f : X → R satisfies the

downgrading property or is quasisupermodular if, for any x, x′ ∈ X:

f(x) ≥ f(x ∧ x′) ⇒ f(x ∨ x′) ≥ f(x′)

with the corresponding statement for strict inequality. Thus, for any x, x′ ∈ X, if ‘meeting’

x with x′ ‘downgrades’ x, then ‘joining’ x and x′ ‘upgrades’ x′ (according to f).4 In other

words, if the value of x under f is strictly higher than the value under f of x ∧ x′, then f

cannot attain a higher value under x′ than under x∨ x′. If the implications run in the other

direction, then f is quasisubmodular.

A property P of a function f : X → R is an ordinal property if v◦f : X → R also satisfies

statement x′ > x for x, x′ ∈ X means that x′ � x and x′ 6= x.
3To simply notation, the restriction of a binary relation to a subset of the space will be denoted by the

same symbol as the relation on the whole of the set in the sequel.
4Li Calzi (1990) presents this property in terms of the contrapositive statements: for any x, x′ ∈ X:

f(x′) ≥ (>)f(x ∨ x′) ⇒ f(x ∧ x′) ≥ (>)f(x)

and uses the term ‘downgrading’. The term ‘quasisupermodularity’ is from Milgrom and Shannon (1994).
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P for any strictly increasing v : R → R. Property P is instead a cardinal property of f if

it is invariant to positive affine transformations of f ; that is to say, if for any a > 0, b ∈ R,

the function g = af + b also satisfies P .5 Of course, ordinal properties are also cardinal

properties.6

Being non-decreasing or strictly increasing is itself an ordinal property. Supermodularity,

on the other hand, is a cardinal property, while quasisupermodularity is an ordinal implica-

tion of supermodularity: any strictly increasing transformation of a supermodular function

is quasisupermodular. In particular, any supermodular function is itself quasisupermodu-

lar. Since x � x ∧ x′ and x ∨ x′ � x′ for any x, x′ ∈ X, any non-decreasing real-valued

function on X automatically satisfies the first part of the property of quasisupermodular-

ity. Moreover, any strictly increasing function is (automatically non-decreasing and) both

quasisupermodular and quasisubmodular.7

Quasisupermodular preferences and supermodular representations

Let %⊆ X × X be a complete preorder on X, that is, a transitive binary relation on

X such that all pair of elements from X are comparable under. Let the asymmetric and

symmetric parts of % be denoted by �, ∼ respectively.8 Let L% : X ⇒ X be the self-

correspondence that assigns the %-lower contour set to any x ∈ X: L%(x) = {x̃ ∈ X : x %

x̃}. This correspondence is non-empty-valued and satisfies the following nesting property:

L%(x) ⊆ L%(x′) whenever x′ % x.

A real-valued function u : X → R represents % or is a representation of % if x′ % x if and

only if u(x′) ≥ u(x) for any x, x′ ∈ X. A real-valued function u : X → R that represents %

and has property P is a P representation of %. If there exists a representation of %, then %

admits a representation. Similarly, if there exists a P representation of %, then we say that

% admits a P representation. It is clear that, for any strictly increasing function g : R→ R,

the composite function g ◦ u represents % if u does. Therefore, the property of representing

5The function g is defined as g(x) = af(x) + b for any x ∈ X.
6Clearly, the function v : R→ R given by v(s) = as + b is strictly increasing if a > 0.
7A proof of this well-known fact, corollary 5 in Echenique and Chambers (2009), is provided in the

appendix as Lemma 1 for the sake of completeness.
8Thus, the statement x′ � x for x, x′ ∈ X means that x′ % x but not x % x′, while x ∼ x′ means that

both x′ % x and x % x′.
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% is itself an ordinal property. On the other hand, if P is a cardinal property, then so is the

property of being a P representation of %.

Both binary relations � and % are defined on X. As they are both (pre)orders, the

triple (X,�,%) is a doubly-ordered space. Alternatively, we can think of preferences %

being defined on the lattice (X,�). We say that % is monotone if, for any x, x′ ∈ X,

x′ � x ⇒ x′ % x. If x′ � x whenever x′ > x, then % is strictly monotone.

Following Echenique and Chambers (2008) and Savvateev (2008), let % be quasisuper-

modular if:

x % x ∧ x′ ⇒ x ∨ x′ % x′,

with a corresponding statement for strict preference �. Under quasisupermodular prefer-

ences, if any bundle is ranked higher than it meet with any other bundle, then the join of

the two is ranked higher than the latter. In other words, if x is strictly preferred to x ∧ x′,

then x′ ‘brings x down’ and cannot be (weakly) preferred to x ∨ x′. If the implications are

reversed, then % is quasisubmodular (see Echenique and Chambers (2008)).

It is clear that a quasisupermodular utility function represents quasisupermodular pref-

erences and that any representation of quasisupermodular preferences must be a quasisu-

permodular function. Hence, quasisupermodularity of % is a necessary condition for % to

admit a supermodular representation, and is a sufficient condition for quasisupermodularity

of representations whenever they exist. As with real-valued functions, if % is monotone,

the first condition in the definition of quasisupermodularity of % is immediate and strictly

monotone preferences are both quasisupermodular and quasisubmodular.

As a cardinal property, not all representations of preferences that admit a supermodular

representation need be supermodular. However, there is an extreme instance in which all

representations of a preference relation in an ordinal setting are supermodular. The axiom

that represents this extreme instance is called the strong complementarity axiom, Axiom

(SC):

(SC) ∀x, x ∈ X : x′ % x ⇒ x ∼ x ∧ x′

This axiom states that the least preferred of any two elements is indifferent to their meet.

Some examples of preferences that satisfy this axiom are presented below.
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Example 1. In the case of the non-negative quadrant of R2 with the usual order ≥, (R2
+,≥),

any preference relation induced by a function of the form f(x) = min{ax1, bx2} for some

a, b > 0 satisfies Axiom (SC).

Example 2. Let X = Δ([a, b]) for some real numbers b > a. Müller and Scarsini (2006)

show that the partial order given by first order stochastic dominance, FOSD, renders X

a lattice. In the lattice (X,FOSD), the ‘meet’ and ‘join’ are given as follows. For any

π, π′ ∈ X, π ∧ π′, π ∨ π′ are the probability measures induced by the distribution functions

Fπ∧π′ := max{Fπ, Fπ′} and Fπ∨π′ := min{Fπ, Fπ′}, respectively. Then, the preference relation

% induced by g : X → R given by g(π) = inf ({x ∈ [a, b] : Fπ(x) = 1}) satisfies Axiom (SC).

To see this, take π, π′ ∈ X such that π′ % π, so that g(π′) ≥ g(π). Take any x ∈ [a, b] for

which Fπ(x) = 1. Then, Fπ∧π′(x) = 1 and x ≥ g(π ∧ π′). Taking infimum over such x ∈ X

yields g(π) ≥ g(π ∧ π′). Conversely, take any x ∈ [a, b] for which Fπ∧π′(x) = 1. Then, either

Fπ′(x) = 1 or Fπ(x) = 1. In the first case, by construction, x ≥ g(π′). Taking infimum gives

g(π ∧ π′) ≥ g(π′) ≥ g(π). Similarly, if Fπ(x) = 1, then x ≥ g(π) and g(π ∧ π′) ≥ g(π). In

either case, we get g(π) = g(π ∧ π′) and so π ∼ π ∧ π′.

The next proposition establishes that any and all representations of preferences satisfying

Axiom (SC) are supermodular.

Proposition 1. Let (X,�,%) be a doubly-ordered space such that (X,�) is a lattice and

% is a complete preorder. Assume that % satisfies Axiom (SC). If u : X → R is a represen-

tation of %, then u is non-decreasing and supermodular.

Proof. Let x, x′ ∈ X and let u : X → R be a representation of %. Assume that there exists

some y, y′ ∈ X such that y′ � y and yet y � y′. Then, y ∧ y′ = y � y′ and Axiom (SC)

is violated. Hence, % is monotone and u is non-decreasing. Then, u(x ∨ x′) ≥ u(x′) and

u(x) ≥ u(x ∧ x′). By completeness of %, either x′ % x or x % x′. Assume, without loss

of generality, that x′ % x. Then, by Axiom (SC), x ∼ x ∧ x′ or u(x) = u(x ∧ x′). Hence,

u(x∨x′)+u(x∧x′) ≥ u(x′)+u(x∧x′) = u(x′)+u(x) and supermodularity of u follows.

7



Of course, Axiom (SC) is too restrictive. It makes all representations of a preference

relation supermodular, while supermodularity is only a cardinal property. Moreover, many

standard examples of interest, like Cobb-Douglas preferences on (R2
+,≥), do not satisfy this

axiom.9

In Proposition 1 there is no restriction on X beyond what is absolutely necessary to be

able to talk about supermodularity. A direction to turn to in looking for ‘richer’ super-

modular representations is to lift some of the restrictions on % and instead impose more

structure on X. The representation results in Echenique and Chambers (2008), Echenique

and Chambers (2009) and Shirai (2010) can be regarded as pointing in the latter direction.

To present the logic behind their results, some additional notation and properties of

% have to be introduced. For each x ∈ X, define I%(x) as the indifference class of x

under %, I%(x) := {y ∈ X : x ∼ y}. Let I%(X) denote the collection of indifference

classes, I%(X) := {I%(x) : x ∈ X} and define %∗ be the binary relation on I%(X) given by

I%(x′) %∗ I%(x) if x′ % x. As ∼ is an equivalence relation 10 on X, I%(X) is the quotient

space of X with respect to %, which conforms a partition of X. Thus, %∗ is well-defined, in

the sense that the ranking under %∗ of any two I, I ′ ∈ I%(X) is independent of the specific

choice of members of these classes.11 Moreover, it is a total or complete order 12 on I%(X),

as it inherits completeness and transitivity from % but in addition it is antisymmetric.

Define X to be well-ordered by % if (I%(X),%∗) is well-ordered, that is to say, if every

subset of I%(X) contains its infimum under %∗. If X is well ordered by %, then we can

‘line-up’ all of the indifference curves according to %∗.

Proposition 2. Let (X,�,%) be a doubly-ordered space such that (X,�) is a lattice and %

is a complete preorder. If % is monotone and quasisupermodular, I%(X) is countable and X

is well-ordered by %, then % admits a non-decreasing and supermodular utility representation.

Proof. By countability, the elements in I%(X) can be enumerated as I%(X) = {In : n ∈ N}.

9Cobb-Douglas preferences are those induced by functions h : X → R of the form h(x) = xα
1 x1−α

2 for
some α ∈ [0, 1]. Consider the case α = 1/2 and take x = (9, 1) and x′ = (1, 9). Then, x ∧ x′ = (1, 1) and
h(x′) = h(x) = 3 > 1 = h(x ∨ x′), so Axiom (SC) is violated.
10An equivalence relation is a reflexive, transitive and symmetric binary relation.
11For any I, I ′ ∈ I%(X) and any y ∈ I, y′ ∈ I ′, I ′ %∗ I if and only if y′ % y.
12A total or complete order is a complete, reflexive, transitive and antisymmetric binary relation.
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As %∗ is, in particular, a complete preorder, the function d : X → [0, 1] given by d(In) =

(1/2)n produces the following standard representation ρ∗ : I(X) → [0, 1] of %∗ on I(X),

given by:

ρ∗(I) =
∑

I′∈L%∗ (I)

d(I ′)

Define ρ : X → [0, 1] as ρ(x) := ρ∗(I(x)). It follows by construction of %∗ that ρ is well-

defined and represents %. Thus, it is non-decreasing and quasisupermodular.

The set ρ(X) is a countable subset of [0, 1], so its elements can also be enumerated. In

fact, by well-ordering, they can be given an enumeration that is consistent with %, in the

sense that ρ(X) = {ρk : k ∈ N} where ρk+1 > ρk. In this case, as Echenique and Chambers

(2009) show, the function u := g ◦ ρ where g : ρ(X) → R is given by g(ρk) = 2k−1 represents

% and is supermodular.

In Echenique and Chambers (2008) and Echenique and Chambers (2009), X is assumed

to be finite. In this case, I%(X) is finite and X is well-ordered under any %. Thus, if X

is finite, then the conditions in Proposition 2 are very mild.13 In this sense, Proposition 2

can be seen as the opposite extreme of Proposition 1: virtually no restrictions on % beyond

what is necessary but severe restrictions on X. In Shirai (2010), X is a countable subset in

Nn and so the same is true.14

Since strictly monotone preferences are quasisupermodular, Echenique and Chambers

(2009) conclude that the assumption of supermodularity on a representation of strictly

monotone preferences on a finite lattice is innocuous (or vacuous). The same is true for

submodularity, as strictly monotone preferences are also quasisubmodular (Echenique and

Chambers (2008), Theorem 5). Hence, preferences on finite lattices induced by strictly in-

creasing and submodular functions admit a supermodular representation, and those induced

by strictly increasing supermodular functions admit a submodular representation.

The following example from Shmaya (????) shows that, in moving to infinite lattices,

monotonicity and quasisupermodularity are no longer enough to produce a supermodular

13Quasisupermodularity is necessary and monotonicity is a very standard assumption.
14Both Echenique and Chambers (2008) and Shirai (2010) present their results for submodularity instead.
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representation. Hence, supermodularity has stronger implications that its ordinal counter-

part.

Example 3 (Shmaya (????)). Consider the lattice ([0, 1]2,≥) and preferences induced by

u(x) = max{2x1+x2

3
, x1+2x2

3
}. These preferences are strictly monotone, hence monotone and

quasisupermodular. Assume that there exists some strictly increasing f such that f ◦ u is

supermodular. Shmaya (????) shows that f must be continuous (everywhere). Fix N ∈ N

and, for each k ∈ {2, ..., N}, take xk =
(

k+1
N

, k−2
N

)
and x′

k =
(

k−2
N

, k+1
N

)
. Then, we have

u(xk) = u(x′
k) = k

N
, u(xk ∨ x′

k) = k−2
N
and u(xk ∧ x′

k) = k+1
N
. Supermodularity implies that

f
(

k
N

)
−f
(

k−2
N

)
≤ f

(
k+1
N

)
−f
(

k
N

)
. From here we get that f

(
N−2

N

)
−f(0)+f

(
N−1

N

)
−f
(

1
N

)
≤

f(1)−f
(

2
N

)
and taking limit as N → +∞ yields f(1) ≤ f(0). This last inequality contradicts

the assumption that f is strictly increasing.

In infinite lattices, we conclude that not all quasisupermodular and non-decreasing func-

tions are supermodularizable. However, the following result from Li Calzi (1990) shows that

the non-smoothness of the utility function in the example is key.

Proposition 3. Let X ⊆ RN
+ be a sublattice that is a direct product of compact intervals

and let % be a complete preorder on X. Assume that % admits a representation that is twice

continuously differentiable on an open superset of X and has positive partial derivatives on

X. Then, % admits a supermodular utility representation.

Proof. Let u be a representation with the stated properties. Then, as Corollary 20 in Li Calzi

(1990) shows, there exists some number r ∈ R such that the composition g◦u with g : R→ R

given by g(s) := sign(r)ers is supermodular. As g is a strictly increasing function, it follows

immediately that g ◦ u also represents %.

Utility representations that satisfy the assumptions of the proposition are strictly in-

creasing. Thus, % is strictly monotone, hence quasisupermodular. As noted above, the
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proposition implies that preferences induced by strictly increasing submodular functions can

admit supermodular representations.15

These facts should not be surprising in the light of Milgrom and Shannon (1994). Their

Monotonicity Theorem establishes that quasisupermodularity and the single crossing cross-

ing property characterize the desired monotone comparative static predictions. As noted,

strictly increasing functions are quasisupermodular. Moreover, Corollary 20 in Li Calzi

(1990) produces the supermodular function as a strictly increasing transformation of the

original function, so monotonicity and single crossing properties are preserved. In this sense,

the conclusion in Echenique and Chambers (2009) extends to certain non-finite cases as

well: supermodularity has no content beyond quasisupermodularity for some strictly mono-

tone ‘smooth’ preferences.

Revisiting Kreps (1979)

Within the realm of finite lattices, we also have the following counterpart of Propositions

1 and 4 in Echenique and Chambers (2008). Consider the following Axiom (GK∗):

(GK∗) ∀x, x′, y ∈ X : x ∼ x ∧ x′ ⇒ x ∧ y ∼ x ∧ x′ ∧ y

The name (GK∗) comes from the fact that the axiom can be seen as a ‘dual’ of Property

(GK) in Epstein and Marinacci (2007), which is in turn an extension to arbitrary lattices of

Property (1.5) in Kreps (1979).16 This axiom states that if some bundle is indifferenct to its

‘meet’ with another bundle, then taking the ‘meet’ of both with any third bundle will not

alter the ranking. In the context of Kreps (1979), the axiom reads that if a subset is ranked

for what it shares with a second subset, then any ‘further shrinking’ of the set will also b e

15While the finite case works just as well for submodularity, the sufficient conditions for producing a g
as in the proof of Proposition 3 that renders g ◦ u submodular are different from those in Proposition 3 as
presented in Li Calzi and Veinott (2005). In particular, the inner product of the gradient is assumed to be
non-positive off the diagonal, so u is not strictly increasing. Whether a different monotonicity assumption
or can give both supermodularity and submodularity, as well as how much the smoothness assumptions can
be relaxed, remains an open question.
16Axiom (GK) states that, for any x, x′, y ∈ X, x ∼ x ∨ x′ ⇒ x ∨ y ∼ x ∨ x′ ∨ y.
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ranked for what this ‘shrinking’ shares with the second subset.

Axiom (GK∗) is a weakening of axiom (SC), as the next claim shows.

Claim 1. Let (X,�,%) be a doubly-ordered space such that (X,�) is a lattice and % is a

complete preorder. If % satisfies Axiom (SC), then it satisfies Axiom (GK∗).

Proof. The same argument in Proposition 1 establishes that % is monotone. Let x, x′ ∈ X

such that x ∼ x∧x′ and take any y ∈ X. By monotonicity, x∧x′ % x % x∧ y. Axiom (SC)

then gives x ∧ y ∼ x ∧ x′ ∧ x ∧ y = x ∧ x′ ∧ y, as desired.

The next claim is a counterpart of one the equivalence results in Echenique and Chambers

(2008) for quasisupermodularity. It shows that, for monotone preferences, property (GK∗)

is an alternative characterization of quasisupermodularity.

Claim 2. Let (X,�,%) be a doubly-ordered space such that (X,�) is a lattice and % is a

monotone complete preorder. Then, % is quasisupermodular if and only if it satisfies (GK∗).

Proof. Assume that % is monotone and satisfies (GK∗). By monotonicity, we need only

worry about strict preference. Let x, x′ ∈ X : x � x ∧ x′ and assume that, contrary to

quasisupermodularity, x′ ∼ x ∨ x′.17 Since x ∨ x′ � x and x ∨ x′ � x, we have that

(x ∨ x′) ∧ x′ = x′ and (x ∨ x′) ∧ x = x. Thus, by (GK∗), we have:

x = (x ∨ x′) ∧ x ∼ (x ∨ x′) ∧ x′ ∧ x = x ∧ x′

This contradicts the assumption that x � x ∧ x′.

Conversely, assume that % is monotone and quasisupermodular. Let x, x′ ∈ X such that

x ∼ x∧x′ and take any y ∈ X. By definition, since x � x∧x′ and x � x∧ y, we have that

x � (x ∧ x′) ∨ (x ∧ y) and so x % (x ∧ x′) ∨ (x ∧ y) by monotonicity. Also by monotonicity,

as (x ∧ x′) ∨ (x ∧ y) � x ∧ x′, we have that (x ∧ x′) ∨ (x ∧ y) % x ∧ x′. Thus,

17Monotonicity rules out x′ � x ∨ x′.
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x % (x ∧ x′) ∨ (x ∧ y) % x ∧ x′ ∼ x ⇒ x ∧ x′ ∼ (x ∧ x′) ∨ (x ∧ y)

By monotonicity, x ∧ y % (x ∧ x′) ∧ (x ∧ y). Assume that we have strict preference. Then,

quasisupermodularity implies (x ∧ x′) ∨ (x ∧ y) � x ∧ x′, which is absurd. Thus, GK∗ is

established.

By a straightforward alteration of the arguments in Kreps (1979), quasisupermodularity

and monotonicity give the following additive representation structure in the context of a

finite lattice.18

Claim 3. Let (X,�,%) be a doubly-ordered space such that (X,�) is a non-empty finite

lattice and % is a complete preorder. If % is monotone and quasisupermodular, there exists

a set S ⊆ X and a function u : S → R++ such that U : X → R defined by:

U(x) :=
∑

s∈S∩L�(x)

u(s)

represents %.

The set S in the claim can be taken to be the set of elements s ∈ X for which, for any

x ∈ X, if s is ranked indifferent to s∧ x, then x � s; hence, s is the ‘minimal’ element in X

(under�) for which it is ranked ‘as high as’ its meet with any other x ∈ X. In the lattice of

subsets of a set under set inclusion, subset A is in S if for any subset B such that A is ‘worth’

only what it shares with B, then B in fact contains A. Thus, there is no ‘strictly smaller’

(that is to say, no proper) subset of A that represents A’s ‘worth’ under %; removing any

further elements from A would make the resulting set strictly worse. The claim says that,

under monotonicity and quasisupermodularity, the preference ranking on a finite lattice can

be determined from a ranking of these ‘minimal’ elements, selecting, for each x ∈ X, those

that rank below x under �.
18Finiteness plays a role in the construction of the function f and the set S in the theorem, and ensures

that the sum in the representation is well-defined. The details are in the appendix.
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Another interpretation of this representation is explored in the next proposition.

Proposition 4. Let (X,�,%) be a doubly-ordered space such that (X,�) is a non-empty

finite lattice and % is a complete preorder. If % is monotone and quasisupermodular, there

exists a set S ⊆ X and a function V : X × S → R+ such that U : X → R defined by:

U(x) :=
∑

s∈S

max
y∈∩L�(x)

V (y, s)

represents %.

Proof. Let u : S → R++ be the function produced in Claim 3 and define V : X × S → R+

as V (x, s) := u(s)I(x � s). Let y ∈ L�(x). Then, y � s implies x � s; equivalently,

I(y � s) ≤ I(x � s). Thus,

u(s)I(x � s) = max ({u(s)I(y � s) : y ∈ L�(x)})

and ∑

s∈S

max
y∈∩L�(x)

V (y, s) =
∑

s∈S

u(s)I(x � s) =
∑

s∈S∩L�(x)

u(s)

By Claim 3, the latter is a representation of %.

If we think of the set S as a set of ‘states’, then the representation is an additive-

separability-across-states structure. While the function V (∙, s) need not be a representation

of %, it is the case that V (y′, s) ≥ V (y, s) for all s ∈ S implies that y′ % y.

3 Supermodularity in Cardinal Frameworks

The framework of choice over lotteries seems the more natural environment for cardinal

properties like supermodularity. Moreover, it has several features that contribute to produc-

ing a supermodular representation. First, the primitive term in the analysis is a preference
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relation over lotteries, while the supermodular representation is of the induced preferences

over outcomes. Thus, the preference relation is defined on one level and the order structure

on a different level.19 Second of all, the Mixture Space Theorem and the von Neumann

and Morgenstern Theorem provide existence of representations and a great deal of struc-

ture on them, the expected utility structure. Therefore, the problem is simply to extend

this structure to supermodularity. Finally, as a consequence of these theorems we also have

uniqueness up to positive affine transformations. Thus, if one utility representation of %X

is supermodular, then all of those that provide % its expected utility structure will also be

supermodular.

Mixture spaces and Borel probability measures

Let T be a topology on X such that (X, T ) is a T1 space, that is, a space in which all

singletons are closed sets. Denote by B(X) the Borel σ-field on X and let Δ(X) denote the

space of Borel probability measures onX, that is, the space of probability measures defined on

(X,B(X)).20 Finally, let Δ0(X) ⊆ Δ(X) be the subset of simple Borel probability measures

on X, that is, the probability measures in Δ(X) that have finite support.21 In particular, for

any x ∈ X, the point mass concentrated at x, δx, is a simple (Borel) probability measure.22

Following Fishburn (1982), a pair (Z, ∗) where Z is a set and ∗ : [0, 1] × Z × Z → Z is

an operation such that:

• ∀z, z′ ∈ Z, ∗(1, z, z′) = z

• ∀z, z′ ∈ Z, ∀α ∈ [0, 1], ∗(α, z, z′) = ∗(1 − α, z′, z)

19The reason for this working in two separate levels is twofold. From an applied point of view, it fol-
lows the standard practice in game theoretic applications. From a technical point of view, talking about
supermodularity of functions on Δ(X) requires us to specify orders that render Δ(X) a lattice. Müller and
Scarsini (2006) present some examples, but not all typical orders form lattices on Δ(X) for typical sets X.
20The Borel σ-field is the σ-field generated by the closed subsets of X. The assumption that (X, T ) is T1

implies then that all singletons are measurable: {{x} : x ∈ X} ⊆ B(X).
21Alternatively, simple (Borel) probability measures are those μ ∈ Δ(X) for which there exists a non-

negative real-valued function fμ : X → R+, called a simple density function, that has finite support and
satisfies

∑
x∈supp(fμ) fμ(x) = 1 and μ(S) =

∑
x∈supp(fμ)∩S fμ(x) for any Borel subset S ⊆ X.

22For any A ∈ B(X), δx(A) := I(x ∈ A), where I is the indicator function.
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• ∀z, z′ ∈ Z, ∀α, β ∈ [0, 1],∗(α, ∗(β, z, z′), z′) = ∗(αβ, z, z ′)

is a mixture space. Both Δ(X) and Δ0(X), coupled with the standard operation of taking

convex combinations of probability measures, ∗(α, μ, μ′) = αμ + (1 − α)μ′, form mixture

spaces.23 Henceforth, ∗ will denote this specific mixture operation.

Let D ⊆ Δ(X) be a subset of probability measures that contains all simple probability

measures and forms a mixture space on its own; that is to say, Δ0(X) ⊆ D and (D, ∗) is

a mixture space.24 While D does not form a linear space, its mixture structure makes it

possible to define a natural specialization of the notion of linearity. A function f : D → R

is linear in ∗ if for all μ, μ′ ∈ D and all α ∈ [0, 1], f (∗(α, μ, μ′)) = αf(μ) + (1 − α)f(μ′).25

Of course, any linear space is a mixture space and any linear functional is linear in ∗, with

∗ defined as the standard operation of taking convex combinations in linear spaces.

Preferences over lotteries and supermodular expected utility

Let %⊆ D ×D be now a complete preorder on D. Since D contains all point masses, %

induces a natural complete preorder on X, called the induced preorder %X and given by:

x′ %X x if δx′ % δx

for any x, x′ ∈ X. It is easy to see that the asymmetric and symmetric parts of %X , denoted

by �X ,∼X respectively, are the binary relations induced by the asymmetric and symmetric

part of %. The focus is on the connection between supermodularity of representations of

%X and properties of %. In game theoretic and other cardinal utility applications, super-

modularity is imposed on the Bernoulli utility function, which represents %X . However, the

primitive preference relation is %. Thus, the relevant link is the link between supermodular-

ity of representations of %X and properties of %.

23The support of the mixture of two probability measures is the union of the supports if the mixture has
α ∈ (0, 1); otherwise, it coincides with the support of the distribution with coefficient 1 in the mixture.
24The operation ∗ in (D, ∗) is of course the restriction of ∗ to D ×D.
25Fishburn (1982) refers to this property simply as linearity. The use of the modifier ‘in ∗’ is taken from

Kreps (Forthcoming).
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In the Mixture Space Theorem (Herstein and Milnor (1953)), the following three axioms

are imposed on %:26

(a) % is a complete preorder

(b) ∀μ, μ′, μ′′ ∈ D, ∀α ∈ (0, 1) : μ′ � μ ⇒ ∗ (α, μ′, μ′′) � ∗ (α, μ, μ′′)

(c) ∀μ, μ′, μ′′ ∈ D : μ � μ′ � μ′′, ∃α, β ∈ (0, 1) : ∗ (α, μ, μ′′) � μ′ � ∗ (β, μ, μ′′)

Axiom (a) is a basic assumption on %, needed for % to admit a numerical representation.

Axiom (b) is an independence assumption, stating that the presence of a third lottery μ′′

does not change the ranking of μ, μ′ when mixed with ‘equal weight’. Finally, Axiom (c) is

a continuity or Archimedean axiom. Following Kreps (Forthcoming), this last axiom rules

out the existence of ‘supergood’ or ‘superbad’ lotteries: no matter how high μ is ranked by

the consumer, for some mixture, μ′ is still strictly preferred to this mixture of μ and μ′′.

Similarly for μ′′: no matter how low it is ranked, μ′ is still strictly worse than some mixture

of μ and μ′′.

The Mixture Space Theorem states that a binary relation % on D satisfies these three

axioms if and only if there exists a real-valued function u on D representing % that is linear

in ∗ and unique up to positive affine transformations. That is, any other function on D

that represents % and is is linear in ∗ is a positive affine transformation of u. Thus, being a

‘linear-in-∗’ representation of % is a cardinal property.

If D = Δ0(X), the von Neumann and Morgenstern Expected Utility Representation The-

orem (henceforth, the von Neumann and Morgenstern Theorem; von Neumann and Morgen-

stern (1953)) establishes the existence of a real-valued function U on X that is also unique

up to positive affine transformations and such that u(μ) =
∫

Udμ. The case D = Δ(X)

can also be handled if there exists a metric d on X such that (X, d) is separable and if

% is appropriately continuous.27 In either case, it is clear that the function U in the von

26In Fishburn (1982) and Kreps (1988) Axiom (a) is stated with � as the primitive term. Kreps (Forth-
coming) presents a different set of axioms that are equivalent to (a), (b), (c) here.
27In any metric space, the metric topology is T1 and so there is no conflict in endowing X with a metric

and working with its metric topology. The ‘appropriate’ notion of continuity is specified later on. For more
details, see Kreps (1988), Kreps (Forthcoming).
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Neumann and Morgenstern Theorem represents %X , as U(x) = u(δx). Hence, the problem

is to establish the link between properties of % and supermodularity of U .

The obvious link is given by the following axiom, which will be called Axiom (S):

(S) ∀x, x ∈ X : ∗

(
1

2
, δx∧x′ , δx∨x′

)

% ∗

(
1

2
, δx, δx′

)

Axiom (S) states that, for any two outcomes, the 50-50 mixture between the ‘highest’ and

the ‘lowest’ of the two (under �) is weakly preferred to the 50-50 mixture between the

outcomes.28 If we think of X as the product of two lattices with the product order, the

axiom can be read as saying that a 50-50 mixture between ‘all high’ coordinates or ‘all-low’

coordinates is weakly preferred to a 50-50 lottery between elements that feature both high

and low coordinates. Thus, it can be read as a ‘complementarity across dimensions’ axiom.

Proposition 5. Let (X,�) be a lattice and let % be a binary relation on Δ0(X). Then,

% satisfies axioms (a), (b), (c) and (S) if and only if there exists a supermodular real-valued

function U : X → R such that u : Δ0(X) → R given by u(μ) =
∑

x∈supp(μ) U(x)μ({x})

represents %. Moreover, U is unique up to positive affine transformations.

Proof. Assume that preferences % are represented by u(μ) =
∑

x∈supp(μ) U(x)μ({x}) for some

real-valued supermodular function U . Then, u is linear in ∗. That % satisfies axioms (a), (b)

and (c), follows thus from the Mixture Space Theorem. To verify that % satisfies (S), take

any x, x′ ∈ X. Using linearity in ∗ of u and supermodularity of U , we find that:

u

(

∗

(
1

2
, δx∧x′ , δx∨x′

))

=
1

2
u(δx∧x′) +

1

2
u(δx∨x′) =

1

2
U(x ∧ x′) +

1

2
U(x ∨ x′)

≥
1

2
U(x) +

1

2
U(x′)

=
1

2
u(δx) +

1

2
u(δx′) = u

(

∗

(
1

2
, δx, δx′

))

28Of course, the property is trivial if x, x′ are comparable under �, in which case x ∨ x′, x ∧ x′ ∈ {x, x′}.
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Thus, Axiom (S) follows.

Conversely, assume that preferences satisfy axioms (a), (b), (c) and (S). The Mixture

Space Theorem produces a real-valued function u : Δ0(X) → R that represents % and is

linear in ∗. The von Neumann and Morgenstern Theorem produces a function U : X → R

such that u(μ) =
∑

x∈supp(μ) U(x)μ({x}). Clearly, U represents %X . Supermodularity of U

is a simple consequence of (S) and linearity of u:

u(δx∧x′) + u(δx∨x′) = 2

(
1

2
u(δx∧x′) +

1

2
u(δx∨x′)

)

= 2u

(

∗

(
1

2
, δx∧x′ , δx∨x′

))

≥ 2u

(

∗

(
1

2
, δx, δx′

))

= 2

(
1

2
u(δx) +

1

2
u(δx′)

)

= u(δx) + u(δx′)

and thus U(x∨ x′) + U(x∧ x′) = u(δx∨x′) + u(δx∧x′) ≥ u(δx) + u(δx′) = U(x) + U(x′) for any

two x, x′ ∈ X, as desired.

The statement about uniqueness up to positive affine transformations follows from the

von Neumann and Morgenstern Theorem. This completes the proof.

For the extension of the proposition to Δ(X), let TΔ be a topology on Δ(X). We say

that % is continuous (in TΔ) if, for all μ ∈ Δ(X), the sets {μ′ ∈ Δ(X) : μ′ � μ} and

{μ′ ∈ Δ(X) : μ � μ′} are in TΔ. When the space in question is a metric space, the natural

topology is the metric topology.

Proposition (Extension of Proposition 5 to Δ(X)). Let (X,�) be a lattice and let % be

a binary relation on Δ(X). Let d be a metric on X such that (X, d) is separable and let

Δ(X) be endowed with the Prokhorov metric. Then, % satisfies axioms (a), (b), (c), (S) and

is continuous if and only if there exists a continuous, bounded and supermodular real-valued

function U : X → R such that u : D → R given by u(μ) =
∫

Udμ29 represents %. Moreover,

U is unique up to positive affine transformations.

29As a continuous function, U is Borel-measurable. Thus, the proposed characterization of u is well-defined.
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The 50-50 mixture specified by Axiom (S) is crucial in the proof of Proposition 5. For

other mixtures, quasisupermodularity follows instead. Consider the following weaker version

of Axiom (S), called Axiom (qS):

(qS) ∀x, x′ ∈ X : ∃α ∈ (0, 1) : ∗ (α, δx∧x′ , δx∨x′) % ∗ (α, δx, δx′)

Axiom (qS) states that, for any two outcomes, there exists a (strict) mixture between the

‘highest’ and the ‘lowest’ of the two that is weakly preferred to the same mixture between

the outcomes themselves.30 However, this mixture may be different that 1/2 and need not

be uniform across X, it may depend on the choice of x, x′ ∈ X.31

Additionally, consider the following axiom of monotonicity in outcomes, Axiom (M):

(M) ∀x, x′ ∈ X : x′ � x ⇒ δx′ % δx

Coupling axioms (qS) and (M) yield the following counterparts of Proposition 5.

Proposition 6. Let (X,�) be a lattice and let % be a binary relation on Δ0(X). Then,

% satisfies axioms (a), (b), (c), (qS) and (M) if and only if there exists a non-decreasing and

quasisupermodular real-valued function U : X → R such that u : Δ0(X) → R given by

u(μ) =
∑

x∈supp(μ) U(x)μ({x}) represents %. Moreover, U is unique up to positive affine

transformations.

Proof. Assume that preferences % are represented by u(μ) =
∑

x∈supp(μ) U(x)μ({x}) for some

non-decreasing, quasisupermodular real-valued function U . As before, axioms (a), (b), (c)

are consequences of the Mixture Space Theorem. Moreover, that % satisfies Axiom (M) is

immediate from U being non-decreasing: for any x, x′ ∈ X, x′ � x ⇒ u(δx′) = U(x′) ≥

30Again, the property is trivial if x, x′ are comparable under �.
31If the mixture in Axiom (qS) is uniform across x, then representations will satisfy the following property,

weaker than supermodularity but stronger than quasisupermodularity. A function f : X → R defined on a
lattice (X,�) is α-supermodular if there exists some α ∈ [0, 1] such that, for all x, x′ ∈ X, αf(x∧ x′) + (1−
α)f(x ∨ x′) ≥ max{αf(x) + (1 − α)f(x′), αf(x′) + (1 − α)f(x)}.
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U(x) = u(δx). It only remains to verify that % satisfies (qS). To this end, take any x, x′ ∈ X.

By monotonicity, U(x) ≥ U(x ∧ x′). If this inequality is strict, then quasisupermodularity

implies that U(x ∨ x′) > U(x′). In this case, define the function h : [0, 1] → R as

h(α) = (1 − α)[U(x ∨ x′) − U(x′)] + α[U(x ∧ x′) − U(x)]

This function is clearly continuous and satisfies h(0) > 0 and h(1) < 0. Thus, there exists

some α∗ ∈ (0, 1) close enough to 0 such that h(α∗) > 0, which implies:

u (∗ (α∗, δx∧x′ , δx∨x′)) = α∗u(δx∧x′) + (1 − α∗)u(δx∨x′) = α∗U(x ∧ x′) + (1 − α∗)U(x ∨ x′)

> α∗U(x) + (1 − α∗)U(x′)

= α∗u(δx) + (1 − α∗)u(δx′)

= u (∗ (α∗, δx, δx′))

If U(x) = U(x∧x′) instead, by monotonicity, U(x∨x′) ≥ U(x′) and so U(x∨x′)+U(x∧x′) ≥

U(x′)+U(x∧x′) = U(x′)+U(x). Thus, in this case, we can take α = 1
2
as in Proposition 5.

Conversely, assume that preferences satisfy axioms (a), (b), (c), (qS) and (M). Let U on

X be as in the proof of Proposition 5. By (M), U is non-decreasing. Quasisupermodularity

of U is an immediate consequence of (qS). Take any two x, x′ ∈ X. Then, there exists some

α ∈ (0, 1) such that:

αU(x ∨ x′) + (1 − α)U(x ∧ x′) ≥αU(x) + (1 − α)U(x′)

α[U(x ∨ x′) − U(x)] ≥(1 − α)[U(x′) − U(x ∧ x′)]

and so U(x′) > U(x ∧ x′) implies U(x ∨ x′) > U(x). Thus, U is quasisupermodular.

Again, the last statement in the proposition follows from the von Neumann and Morgen-

stern Theorem, completing the proof.
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Proposition (Extension of Proposition 6 to Δ(X)). Let (X,�) be a lattice and let % be

a binary relation on Δ(X). Let d be a metric on X such that (X, d) is separable and let

Δ(X) be endowed with the Prokhorov metric. Then, % satisfies axioms (a), (b), (c), (qS)

and (M) and is continuous if and only if there exists a continuous, bounded, non-decreasing

and quasisupermodular real-valued function U : X → R such that u : Δ(X) → R given by

u(μ) =
∫

Udμ represents %. Moreover, U is unique up to positive affine transformation.

In this sense, supermodularity is a knife-edge property. For different weights, quasisu-

permodularity follows instead. Now Axiom (M) is clearly responsible for U being non-

decreasing. However, it also plays an important role in the proof of quasisupermodularity of

U , as in Echenique and Chambers (2009). The following example shows that the assumption

of U being non-decreasing cannot be dispensed with in going in the other direction.

Example 4. Let X = {x, x′, x ∧ x′, x ∨ x′}, with x, x′ incomparable under � and let % on

Δ(X) (which, for finite X, is also Δ0(X)) be induced by u(μ) =
∑

y∈supp(μ) U(y)μ({y}), with

U(x) = 1, U(x′) = 3 and U(x ∧ x′) = 2, U(x ∨ x′) = 0. Clearly, U fails to be non-decreasing.

However, it is quasisupermodular: the only problematic pair is (x, x′) and for this pair we

have that U(x) < U(x ∧ x′). Nonetheless, Axiom (qS) is violated: for any α ∈ (0, 1),

αU(x ∨ x′) + (1 − α)U(x ∧ x′) = 2(1 − α) < α + 3(1 − α) = αU(x) + (1 − α)U(x′)

and so no α ∈ (0, 1) as in Axiom (qS) can be produced for x, x′.

Discussion

In the context of choice under uncertainty, X is a set of ‘prizes’ and probability measures

over X are interpreted as ‘lotteries’. Consider, as an example, the case X = R2
++ endowed

with the usual topology and the usual order. For any x, x′ ∈ R2
++, the lottery ∗(1

2
, x ∨

x′, x ∧ x′) is a ‘mean preserving spread’ in outcomes of lottery ∗(1
2
, x, x′).32 Nonetheless,

32They both have the same mean and the difference between their variance/covariance matrices is a positive
semi-definite matrix.
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there is no conflict between risk aversion and supermodularity, as there are examples of both

supermodular and convex functions and supermodular and concave ones.33 Axioms (S), (qS)

are statements about ‘complementarity across dimensions’: ‘all-high / all-low’ fair lotteries

are weakly preferred to the corresponding ‘high-low’ lotteries. The ‘spread’ is in the value

of the outcomes according to �, not in the ‘risk’ associated with a lottery for a fixed mean

and support.

In the context of game theory, let I ∈ N be the number of players in a game and

I = {1, ..., I}, the set of players. Let {(Xi,�i) : i ∈ I} be a (finite) collection of lattices that

represent the spaces of pure strategies for each player and (X,�) is the product lattice and

represents the space of pure strategy profiles. The probability measures over X represent

mixed or correlated strategy profiles. For any i ∈ I, fix the pure strategy profile of the

opponents, x−i. Then, two different pure strategies for i, xi, x
′
i ∈ Xi identify two different

pure strategy profiles x, x′ ∈ X and the join and meet of the latter are x∨x′ = (xi ∨i x
′
i, x−i)

and x∧ x′ = (xi ∧i x′
i, x−i). Axiom (S) says that i weakly prefers to flip a coin between ‘her

highest’ and ‘her lowest’ of the two pure strategies to flipping a coin between the strategies

themselves, while (qS) states the existence of some such (strict) mixing (allowing the mixture

to depend on the underlying pure strategy profiles).

Proposition 2 establishes an equivalence between supermodular and quasisupermodular

representability of monotone preferences on X. Things are different in the cardinal setting.

Two expected utility representations of the same preferences over lotteries are a positive affine

transformations of each other, so both would be supermodular if any one is. The equiva-

lence in ordinal settings does not allow for induced preferences having a non-decreasing and

quasisupermodular representation that is not also supermodular.34 Similarly, in cardinal con-

texts with strictly monotone preferences over outcomes, the assumption of supermodularity

is still not vacuous as it implies a certain ranking of certain lotteries.

33For example, U(x) = ex1+x2 is supermodular and convex, while U(x) = (x1x2)1/2 is supermodular and
concave. Thus, supermodularity is consistent with any attitude towards risk.
34Let X = {0, 1}2 under the usual order and let induced preferences be represented by U : X → R,

where U(0, 0) = 0, U(1, 0) = U(0, 1) = 1 and U(1, 1) = 3
2 . This function U is non-decreasing. As for

quasisupermodularity and supermodularity, the only problematic case is that of (1, 0), (0, 1) (all other pairs
are comparable under the partial order). Since U(1, 1) > U(1, 0) = U(0, 1) > U(0, 0), U is quasisupermod-
ular. However, it is not supermodular: U(1, 1) + U(0, 0) = 3

2 < 2 = U(1, 0) + U(1, 0). Notwithstanding,
Proposition 2 implies that these preferences do admit a supermodular utility representation.
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4 Conclusion

Order-theoretic approaches have become pervasive in economics, both in choice theory

and game theory. The imposition of some form of supermodular structure on representations

of preferences raises the issue of what are the decision-theoretical foundations of such struc-

ture. Since supermodularity is a cardinal property, it is a more natural structure in problems

of choice over probability measures under the assumptions of the von Neumann and Mor-

genstern Theorem. In this cardinal setting, additional axioms on the preference relation over

probability measures are presented that capture the full implications of supermodularity of

the representation of the induced preferences.

The problem of providing axiomatic foundations for supermodularity in ordinal settings

(in which supermodularity is sometimes imposed despite its cardinal nature) is much more

complicated. Some extreme cases, both extreme in terms of the structure imposed on pref-

erences and in terms of the structure imposed on the set, are well established. It is still a

matter of ongoing work to strike a balance and provide axiomatic bases for supermodularity

of representations for a larger class of preferences than those in Proposition 1, defined on a

larger class of lattices than those covered by Proposition 2.
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Appendix

Lemma 1 (Corollary 5, Echenique and Chambers (2009)). Let (X,�) be a lattice and

f : X → R be strictly increasing. Then, f is both quasisupermodular and quasisubmodular.

Proof. By monotonicity, we need only check the ‘strict’ statements of quasisupermodularity

and quasisubmodularity. Notice that, for any x, x′ ∈ X such that x 6= x∧x′, it must be that

x′ 6= x′ ∨ x. Otherwise, x′ = x′ ∨ x � x and we would have x = x∧ x′. Similarly, x′ 6= x∨ x′

implies that x 6= x ∧ x′, for x′ � x ∧ x′ = x gives x′ = x ∨ x′.

Let x, x′ ∈ X such that f(x) > f(x ∧ x′). Then, x 6= x ∧ x′ and so x ∨ x′ 6= x′.

Since x ∨ x′ � x′, f being strictly increasing implies that f(x′ ∨ x) > f(x′). This gives

quasisupermodularity. Similarly, assume that f(x ∨ x′) > f(x′). Then, x ∨ x′ 6= x′ and so

x 6= x ∧ x′. As x � x ∧ x′, f(x) > f(x ∧ x′) and quasisubmodularity follows.

Lemma 2. Let (X,�,%) be a doubly-ordered space such that (X,�) is a non-empty finite

lattice and % is a complete preorder. Let ≥∗⊆ X × X be given by:

x′ ≥∗ x if x ∼ x ∧ x′

If % is monotone and quasisupermodular, then:

a) ≥∗ is reflexive and transitive

b) ≥∗ is monotone

c) For any x, x′, x′′ ∈ X, if x ≥∗ x′ and x′ � x′′, then x ≥∗ x′′

d) For any x, x′, x′′, x′′′ ∈ X, if x′ ≥∗ x and x′′′ ≥∗ x′′, then x′ ∧ x′′′ ≥∗ x ∧ x′′

e) For every x ∈ X, let x ∈ A ⊆ U≥∗(x); then, ∧A ∈ U≥∗(x)

f) For every x ∈ X there exists some x′ ∈ X with x � x′ such that, for any x′′ ∈ X,

x′′ ≥∗ x if and only if x′′ � x′

27



Proof. By Claim 2, % satisfy (GK∗).

a) That ≥∗ is reflexive is immediate from the fact that x ∧ x = x. Let x, x′, x′′ ∈ X such

that x′ ≥∗ x and x′′ ≥∗ x′. Then, x ∼ x ∧ x′ and x′ ∼ x′ ∧ x′′. By (GK∗) applied to

the latter, x ∧ x′ ∼ x ∧ x′ ∧ x′′. Then, using monotonicity,

x % x ∧ x′′ % x ∧ x′ ∧ x′′ ∼ x ∧ x′ ∼ x

which implies x ∼ x ∧ x′′ or x′′ ≥∗ x. Thus, ≥∗ is transitive.

b) Let x, x′ ∈ X such that x′ � x. Then, x ∧ x′ = x and the result follows immediately.

c) By b), we have x′ ≥∗ x′′. The result then follows by transitivity of ≥∗.

d) By definition, we have x ∼ x∧x′ and x′′ ∼ x′′′∧x′′. By (GK∗), we have x∧x′′ ∼ x∧x′∧x′′

and x∧ x′ ∧ x′′ ∼ x∧ x′ ∧ x′′ ∧ x′′′. Thus, by transitivity of %, x∧ x′′ ∼ x∧ x′ ∧ x′′ ∧ x′′′

or x′ ∧ x′′′ ≥∗ x ∧ x′′.

e) Let x ∈ X and let x ∈ A ⊆ U≥∗(x). Such A exists by reflexivity of ≥∗. For n ∈ N, let

#A = n + 1. If n = 1, let x′′ ∈ A \ {x} and let x′ := ∧A = x ∧ x′′. By reflexivity of

≥∗ and by d), x′ = x ∧ x′′ ≥∗ x ∧ x = x and so x′ ∈ U≥∗(x). Let k ∈ N and assume

that the statement is true when n = k. Consider the case n = k + 1. Let x̃ ∈ A and

define x′ := ∧A and x′′ := ∧ (A \ {x̃}). Then, x′ := ∧A = x′′ ∧ x̃. By the induction

hypothesis, x′′ ≥∗ x; therefore, by d), x′ = x′′ ∧ x̃ ≥∗ x ∧ x = x and so x′ ∈ U≥∗(x).

f) Let x ∈ X and let U≥∗(x) be its ≥∗-upper contour set. By reflexivity of ≥∗, U≥∗(x) is

non-empty. By finiteness of X, (X,�) is a complete lattice. Let x′ := ∧U≥∗(x). Then,

x′ is well-defined. By reflexivity of % and by definition of ∧ we have x � x′. Moreover,

by e), x′ ≥∗ x. Let x′′ ∈ U≥∗(x). Then, x′′ � x′ by definition of ∧. Conversely, let

x′′ ∈ X such that x′′ � x′. By b), x′′ ≥∗ x′ and so transitivity of ≥∗ implies x′′ ≥∗ x.

This completes the proof.

Let f : X → X be f(x) := ∧U≥∗(x). Then, f) can be rephrased as stating that for any

x, x̃ ∈ X, x̃ ≥∗ x if and only if x̃ � f(x).

28



Lemma 3. Consider the same conditions as in Lemma 2 and consider the function f defined

above. For any x, x′ ∈ X:

a) f (f(x)) = f(x)

b) x′ ≥∗ x if and only if f(x′) � f(x)

c) f is monotone

d) x =∗ f(x)

e) x ∼ f(x)

Proof. Let x, x′ ∈ X.

a) From e) and f) in Lemma 2, we have that f(x) ≥∗ x and f (f(x)) ≥∗ f(x). Thus, by

transitivity of ≥∗, f (f(x)) ≥∗ x. By another use of f), f (f(x)) � f(x). Moreover, by

construction, f(x) � f (f(x)). Thus, the result follows by antisymmetry of �.

b) Assume that x′ ≥∗ x. Then, by transitivity of ≥∗, f(x′) ≥∗ x and so f(x′) � f(x) by

construction. Conversely, assume that f(x′) � f(x). Then, by construction and by

transitivity of �, x′ � f(x). Thus, by f) in Lemma 2, it follows that x′ ≥∗ x.

c) Assume x′ � x. Then, by monotonicity of ≥∗, x′ ≥∗ x. By part b) of the Lemma,

f(x′) � f(x).

d) By construction, x � f(x). Thus, by monotonicity of ≥∗, x ≥∗ f(x). Conversely, by

part e) of Lemma 2, f(x) ≥∗ x.

e) By monotonicity of %, it follows from the fact that x � f(x) that x % f(x). Conversely,

by part d) of Lemma 2, we have that f(x) ≥∗ x, or x ∼ x ∧ f(x). By monotonicity

and transitivity of %, it follows from f(x) � f(x) ∧ x that f(x) % x.

This completes the proof.
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Lemma 4. Let Y be a non-empty finite set, <1 a complete preorder on Y and <2 a partial

order on Y . If y′ �2 y implies y′ �1 y for any y,′ y ∈ Y such that y 6= y′, then there exists

some a ∈ R#Y
++ such that the function U : Y → R+ given by:

U(y) :=
∑

ỹ∈L<2
(y)

aỹ

represents <1.

Proof. Let I1 := {I∼1(y) : y ∈ Y } be the quotient space of Y over the equivalence relation

induced by <1. By finiteness, the quotient space can be well-ordered by the natural order

induced by <1 (see Proposition 2). Thus, we can write I1 = {Ii : i ∈ {1, ..., n}} for some

n ∈ N and such that for all i, j ∈ {1, ..., n} and for all y ∈ Ii, y
′ ∈ Ij , we have that y′ �1 y

if j > i. Start with i = 1. Pick any real number a1 > 0 and set ay := a1 =: by for all

y ∈ I1. By the assumption on the way the two binary relations interact, for any such y,

L<2(y) = {y}: by reflexivity of <2, y ∈ L<2(y) for any y ∈ Y ; if there is any ỹ ∈ L<2(y)\{y},

then y �2 ỹ and hence y �1 ỹ, which implies that y /∈ I1. Consider next the case i = 2. For

any y ∈ I2 and any ỹ ∈ L�2(y), by assumption, y �1 ỹ and so L�2(y) ⊆ I1. Thus, we can

define w∗
2 : I2 → R+

w∗
2(y) :=

∑

ỹ∈L�2 (y)

aỹ

with w∗
2(y) := 0 is the index set of the sum is empty. Then,

w∗
2(y) = a1#L�2(y)

Pick any b2 > max{b1, max({w∗
2(ŷ) : ŷ ∈ I2})} and set ay := b2 − w∗

2(y). Then, b2 > b1 and

for all y ∈ I2, ay > 0 and ay + w∗
2(y) is constant on I2.

Take now i = k + 1 given some k ∈ {2, ..., n − 2}. Assume that we have a set of positive

numbers {ay : y ∈ ∪k+2
i=1 Ii} and the function w∗

k+2 : ∪k+2
i=1 Ik → R+ defined as:

w∗
k+2(y) :=

∑

ỹ∈L�2 (y)

aỹ

(and 0 when the sum is over an empty set) such that ay + w∗
k+2(y) is constant on each
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Ii : i ∈ {1, ..., k + 2} and strictly increasing across i ∈ {1, ..., k + 2}. Take y ∈ Ik+2.

Then, L�2(y) ⊆ ∪k+1
i=1 Ii and so we can define w∗

k+3 as the natural extension of w∗
k+2. Choose

bk+3 > max{ay0 + w∗
k+2(y0), max({w∗

k+3(ŷ) : ŷ ∈ ∪k+1
i=1 Ii})} for any y0 ∈ Ik+2. Then, let

ay := bk+3 − w∗
k+3(y). Thus, ay > 0 and ay + w∗

k+3(y) is constant on Ii : i ∈ {1, ..., k + 3}.

This establishes the desired representation, setting U(y) := ay + w∗
n(y) for any y ∈ Y .
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