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Abstract

Climate econometrics is a new �eld which is providing a fruitful approach to give a rig-

orous basis for many hypotheses related to climate change. With this aim, this chapter

illustrates how econometrics can help understand the e�ects of climate change on the time

behavior of crop yields at a country-level scale. We discuss di�erent issues which empir-

ical studies should address such as the non-stationarity nature of climate variables, the

exogeneity of the variables used for modelling crop yields, the existence of non-linearities,

the presence of extreme events, disentangling short and dealing with long-run e�ects of

climate change, and collinearities in a multivariate framework. The incorporation of new

lands to production or the rise of crop yields on existing lands to meet increasing demand

for food and energy may be threatened by global climate change. However, there are sev-

eral factors that have reduced the harmful impacts of climate change: adaptation, trade,

the declining share over time of agriculture in the economy and carbon fertilization. In

particular, the CO2 fertilization e�ect should be taken into account for certain crops. As

an example, we focus on soybeans in the main producer and exporter countries: Brazil

and United States, and particularly in Argentina, as an interesting case of mitigation

and adaptation processes due to global and local climate changes.
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1. Introduction

Worldwide population growth is expected to increase by over a third �or 2.2 billion people�

by 2050 according to the 2017 United Nations World Population Prospects revision. This

projection poses an urgent need to increase agricultural production to meet global needs for

food, animal feed and biofuel, by increasing the amount of agricultural land to grow crops,

enhancing productivity on existing agricultural lands or both. The main challenge would be

how to meet the increasing demand for food while protecting our natural resources.

Although the e�ects of climate change may imply incorporating new areas devoted to

di�erent crops, the possibility of extending lands to production or increasing crop yields on

existing lands may be threatened by global climate change too. Crop production and yield

are highly dependent on climate. Increases in temperature and changing patterns of rainfall

associated to global and local climate changes may lead to a considerable decline in crop

production. Also, extreme weather events such as droughts, heat or cold waves, and heavy

rainfall leading to �oods have increased since 1950 according to the Fifth Assessment Report

of the Intergovernmental Panel on Climate Change (IPCC). An analysis of long-term and

short-term weather events is needed in order to measure the e�ects of climate change on crop

yields.

Agricultural production needs to adopt more e�cient and sustainable production methods

to lessen the negative e�ects of climate change and to better tailor policies seeking to promote

sustainable growth in the agricultural sector.

Adaptation to climate variability and extreme events can help for reducing vulnerability to

long-term climate change. However, the e�ects of climate change also need to be considered

along with other evolving factors that a�ect agricultural production, such as changes in

farming practices and technology as well as commodity or input prices. Quantifying these

e�ects will provide important insights into how much to spend on mitigation and adaptation.

Furthermore, understanding and estimating the e�ects of climate change will also help policy-

makers to develop mitigation and adaptation strategies.

Therefore, the aim of this chapter is to suggest how econometrics can help understand the

e�ects of climate change on the time behavior of crop yields at a country-level scale. Indeed,

climate econometrics provides an approach to give a rigorous basis for many hypotheses

related to climate change. In this line, an accurate econometric strategy to model the e�ects

of climate change on crop yields should be able to deal with, at least:

(i) the non-stationarity nature of climate variables;

(ii) exogeneity;

(iii) the existence of non-linearities;

(iv) the presence of extreme events;

(v) disentangling short and long-run e�ects of climate change;

(vi) collinearities in a multivariate framework.
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We focus on soybeans in the main producer and exporter countries: Brazil and United

States, and particularly in Argentina, as an interesting case of mitigation and adaptation

processes due to global and local climate changes.

The chapter is organized as follows. Section 2 reviews the empirical literature of the

e�ects of climate change on crop yields. Section 3 describes the case of soybeans. Section 4

discusses the di�erent empirical issues that should be accounted by an accurate econometric

model. Finally, Section 5 concludes.

2. The e�ects of climate change on crop yields

Di�erent approaches have been followed to study the e�ects of climate change on crop

yields, many of them based on agronomic analysis. However, results are not conclusive about

the e�ects of climate change, mainly due to the adaptation and mitigation strategies in

agriculture that have been also implemented to alleviate its potential negative e�ects.

The negative e�ects of climate change are mainly associated to extreme high temperatures

which are found to be harmful for crop growth (e.g. Chen et al. 2013). Crop yield losses

on the hottest days drive much of the e�ect of temperature (Schlenker and Roberts 2009).

In fact, many recent studies found that changes in temperature are more important than

changes in rainfall, at least at the national and regional levels (Reilly and Schimmelpfennig

2000; Schlenker and Lobell 2010). Furthermore, crops are more sensitive to extremely high

temperatures during the phases of the plant growth cycle (Au�hammer et al. 2012; Welch

et al. 2010). Temperature extremes can be critical for reducing yields, especially if they

coincide with the �owering stage of the crop (Wheeler et al. 2000). Burke and Emerick

(2016) examine the e�ect of long-term changes in climate variables on yields using county-

level data in the United States. Their results indicate that the main crops in the U.S. �corn

and soybeans� are signi�cantly and negatively a�ected by long-term changes in extreme heat

temperatures.

Nevertheless, there would be several factors that have reduced the harmful impacts of

climate change: adaptation, trade, the declining share over time of agriculture in the economy

and carbon fertilization. As stated by Nordhaus (2013, p.84) �one important mitigation

factor for agriculture is carbon fertilization�. The carbon (or CO2) fertilization e�ect is the

phenomenon by which the increase of carbon dioxide in the atmosphere increases the rate

of photosynthesis in plants. That is, the largest amount of carbon dioxide (CO2) in the

atmosphere, that has resulted from rising anthropogenic emissions, may have positive e�ects

on the plants growth as they use carbon dioxide during photosynthesis. Carbon fertilization

has a greater e�ect on plants with C4 and C3 photosynthesis systems (such as corn and

soybeans, respectively), which can concentrate carbon dioxide onto reaction sites.

According to Nordhaus (2013) multiple �eld studies found that doubling atmospheric

concentrations of CO2 would increase yields of rice, wheat and soybeans about 10-15 percent.

For the Argentine case, Magrin et al. (2005), by using agronomic models, found that increases

in yields corresponding to climate changes between 1930-60 and 1970-2000 were 38% in the

case of soybeans. In a recent paper, Ahumada and Cornejo (2018) found that the median
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variations on CO2 concentrations in the atmosphere could have increased soybeans yields

about 14% during 1973-2015, all else equal. However, the carbon fertilization e�ect may not

take place if other plant growth factors are severely limiting. Nutrient levels, soil moisture,

water availability and other conditions must also be met. Gray et al. (2016) found that the

intensi�cation of drought eliminates the potential bene�ts of elevated dioxide for soybean.

Empirical studies should not ignore or underestimate the e�ects of adaptation measures

as means for diminishing the adverse e�ects of climate change. Several adaptation measures

such as shifting planting dates, rotating crops or developing new crop varieties have also

been suggested and implemented for reducing the vulnerability from the potential negative

impacts of climate change on crop yield and production (Lobell et al. 2008; Cohn et al. 2016).

Even if the focus is on studying the e�ects of climate change on crop yields, an econo-

metric model should be developed within a multivariate framework. That is, other potential

determinants of crop yields apart from climate (e.g. technological factors) should be also

considered in the analysis.

3. The case of soybeans

In this section, we describe the case of soybeans as an interesting example of mitigation

and adaptation processes to climate change, particularly in Argentina, the third worldwide

producer and exporter.

The demand for oilseeds, and particularly for soybeans, is derived primarily from the

commercial utilization of its sub-products, high-protein soybean meal for animal feed and

soybean oil for edible and inedible uses. Non-traditional soybean uses such as bio-energy and

bio-products are expected to increase rapidly and promise to boost prices due to increased

global demand and higher value-added. Moreover, not only most renewable energy sources

have minimal contributions to global warming emissions, in contrast to fossil fuels, but they

also provide an alternative to the eventually reserves depletion.

Over the last decades, Brazil and Argentina's combined total soybean production has been

greater than that of the United States (the world's top producer). According to the 2016/17

World Agricultural Supply and Demand Estimates of the U.S. Department of Agriculture,

Brazil and Argentina account for almost 49% of the worldwide soybean production compared

to the 34% of the U.S. production. Figure 1 shows the evolution of soybeans yield from 1961

to 2016 in Argentina, Brazil and United States.
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Figure 1. Soybeans yield (in kg/ha)

Source: Own elaboration using data from FAOSTAT.

A rigorous empirical approach should be able to deal with the upward behavior of soybean

yields and, thus, with their potential non-stationarity (see Section 4.1 for a deeper analysis)

to identify which variables are the long-run determinants responsible of their observed trend.

Soybeans are an interesting case to study the e�ect of climate change on crop yields. Crop

production and yields are highly dependent on climate and, in fact, global climate change

may threaten the incorporation of new lands to production or the increase of crop yields on

existing lands. Climate changes and technological advances have shifted the main worldwide

production areas to nowadays warmer latitudes (to the north in the Southern hemisphere

and to the south in the Northern hemisphere).

Furthermore, new managerial practices have been introduced to increase crop yields and

to adapt to climate change. For instance, no till practices have gained ground quickly in

Argentina as an e�ective solution to the problem of soil erosion and the loss of nutrients and,

thereby, it increases carbon sequestration, reduces costs and boosts productivity. The fastest

adoption rates have been experienced in Argentina. According to AAPRESID, the Argentine

No till Farmers Association, 93% of the soybean area adopted the no-till system in the season

2016/17. The worldwide recognition of no-tillage farming as an e�ective sustainable system

has spread no-till technology and other practices (e.g. crop rotation) to other areas and

countries.

Other technological innovations include the use of genetically modi�ed (GM) seeds. Soy-

bean remains as the most adopted GM crop. According to the International Service for

the Acquisition of Agri-biotech Applications (ISAAA)1 biotech soybean accounted for 50%

of all the biotech crop area in the world in 2016. Commercially grown GM soybeans are

concentrated in a few countries, mainly USA, Brazil and Argentina.

1ISAAA. 2016. Global Status of Commercialized Biotech/GM Crops: 2016. ISAAA Brief No. 52. ISAAA:
Ithaca, New York.
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Therefore, given the technological advances experienced by this sector, empirical stud-

ies focused on studying the e�ect of climate change on crop yields should also control for

mitigation and adaptation processes that are actually taking place in the agricultural sector.

4. On the econometric modelling of soybean yields

In this section, we discuss the di�erent empirical issues that an econometric model of

soybean yield determination should consider in order to measure the e�ects of climate change.

Hsiang (2016) o�ers a wide revision of the di�erent econometric methods that can be used

to study the e�ect of climate change on social and economic outcomes, in general.

4.1. Non-stationarity

Variables may be classi�ed according to their degree of time persistence into non-stationary

or stationary. Non-stationarity is associated with the idea of long memory (high persistence)

of past shocks on the behavior of a time series (e.g. crop yields). Such series could be sta-

tionary with a short time dependence �that is, they could exhibit a signi�cant tendency to

mean reversion� after �rst-di�erencing. In those cases, the series under study is said to have

a unit root (a stochastic trend) or be integrated of �rst order, I(1).

This kind of behavior is generally compared with a typical model of deterministic trend

to approximate the long run behavior of a series. As stated by Lobell (2009), the trend in

crop yields results largely from improvements in technology and, thus, for most crops the

technology trend can be approximated with a �rst order polynomial (a linear trend).

For the series of our interest, di�erent unit root tests, as reported in Table 1, show that

soybean yields can be represented as stationary around a deterministic linear trend. This

trending behavior was also observed in Figure 1. Because of that, many studies remove

deterministic trends before studying the e�ects of climate factors on yields (see for example

Thomasz et al. (2016) in the Argentine case or Tao et al. (2008) in the Chinese case).

Furthermore, given the non-linear and non-stationary nature of crop yields, many de-

trending methods have been suggested to model them (see the comparison of detrending

crop yield data techniques in Lu et al. 2017).

Table 1: Unit root tests, 1961-2016

Variable trend k ADF b PP b KPSS

ln yieldARG yes 0 -5.49∗∗∗ 4 -5.77∗∗∗ 5 0.18∗∗

ln yieldBRA yes 0 -5.53∗∗∗ 5 -5.45∗∗∗ 2 0.08
ln yieldUSA yes 0 -7.66∗∗∗ 8 -8.03∗∗∗ 9 0.09

∆ ln yieldARG no 0 -14.29∗∗∗ 14 -23.52∗∗∗ 54 0.50∗∗

∆ ln yieldBRA no 2 -7.93∗∗∗ 23 -21.34∗∗∗ 20 0.20
∆ ln yieldUSA no 2 -7.48∗∗∗ 26 -30.83∗∗∗ 22 0.35∗

Note: k is the lag length selected by SIC, b is the bandwidth using Bartlett kernel.
∗
,

∗∗
y

∗∗∗
indicate signi�cance at the 10%, 5% and 1% level, respectively. ADF

= Augmented Dickey Fuller, PP = Phillips-Perron, KPSS = Kwiatkowski-Phillips-

Schmidt-Shin. A constant and a trend were included for level variables, otherwise

only a constant was considered.
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Nonetheless, it should be noted that if the aim of an empirical study is to understand

which drivers could be behind these observed trending behaviors, the long-run relationships

between crop yields and their potential determinants should be studied assuming them as I(1)

(the simplest long memory process) and testing their cointegration (if the linear combination

of those I(1) variables is stationary). Cointegration implies that two or several variables with

a persistent behavior have common stochastic trends and that they will show a tendency to

move together in the long run. As stated by Juselius (2006, p.18) �the order of integration

of a variable is not in general a property of an economic variable but a convenient statistical

approximation to distinguish between the short run, medium run and long run variation in

the data�.

Moreover, a cointegration analysis could also be useful because it allows us to identify

which variables move the equilibrium (the pushing forces) and which correct deviations from

equilibrium (the pulling forces), that is, testing weak exogeneity as shown in sub-section 4.2.

We will also be back on the long-run and short-run e�ects on crop yields in sub-section 4.5.

4.2. Exogeneity

Typically, in the literature, climate variables (e.g. temperature, rainfall, humidity, storms,

among others) are considered exogenous when studying their e�ect on agriculture, that is,

they are considered as given for explaining crop yields. Due to the assumption about exo-

geneity and randomness of climate in many economic applications, climate variables act as

a �natural experiment� and, therefore, would allow the researcher to statistically identify the

causal e�ect of a variable on an economic outcome of interest.

However, as Pretis (2017) warns, human activity (say, through deforestation) a�ects local

and global climate and climate change, in turn, a�ects human activity (say, crop production

or yields). Empirically, this implies that if we want to estimate the e�ect of humanity (in

its multiple dimensions) on climate change and vice versa, it is necessary to evaluate the

exogeneity of the variables within the economic-climate system to understand these inter-

relations in the long-run. The analysis of exogeneity is crucial to obtain rigorous empirical

estimates before proposing a model on economic variables or on climate variables. That is,

the estimates from a single equation model or a system model would be di�erent depending

on the variables exogeneity assumptions.

To estimate a model in which climate variables a�ect Argentine soybeans yields as ex-

pressed in Equation (1), that is, climate variables as explanatory variables (also known as

conditioning variables) in a single equation model, the exogeneity assumption is crucial.

However, once cointegration is found it is possible to evaluate exogeneity (see subsection

4.5 for the cointegration analysis). A weak exogenous variable in�uences the long-run path

of other variables in the system and, at the same time, it is not in�uence by them. That

is, the weak exogenous variable pushes to move the long-run relationship while the endoge-

nous variable adjusts to maintain the equilibrium. To consistently estimate Equation (1) as

a single-equation model, we need to assume that yields are the endogenous variable while

global temperature anomalies (temp) and CO2 concentrations in the atmosphere (CO2) are

weakly exogenous.
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ln yield = β0 + β1temp + β2 lnCO2 + u (1)

Furthermore, if those climate variables are found to be weakly exogenous, we can test for

non Granger causality.2 A variable will Granger-cause (GC) another variable if past values

of a variable (say, global temperature or CO2) contain information that helps predict another

variable (say, soybeans yields). Thus, Granger causality is a statistical concept of causality

based on the anticipation of variables.

Using data from 1973 to 2015, we estimated a climate system based on Argentine soybeans

yields, global temperature anomalies and global CO2 concentrations in the atmosphere using

two lags. Results, as shown in Table 2, indicate that both climate variables GC soybeans

yields.

Table 2: Granger causality test, 1973-2015

Hypothesis Statistic p-value

ln yield does not GC temp 5.31 0.07
ln temp does not GC yield 9.20 0.01
ln yield does not GC CO2 5.87 0.05
lnCO2 does not GC yield 7.27 0.03
ln temp does not GC CO2 6.31 0.04
lnCO2 does not GC temp 0.05 0.97

Using a signi�cance level of 5%, the test rejects the null hypothesis that global temperature

and CO2 do not GC soybeans yields, but not vice versa. That is, on annual basis, climate

variables (global temperature anomalies and CO2 concentrations) anticipate soybeans yields.

However, as a long run concept, weak exogeneity can give di�erent results from those

obtained analysis Granger causality. Ahumada and Cornejo (2018) found that all variables

adjust to deviations from the long-run equilibria. This �nding implies that climate variables

are not weak exogenous which indicates that a system approach should be followed instead

of estimating a single equation model.

Although this result may be unexpected at �rst sight, it may be properly interpreted when

we take into account the e�ect of deforestation. The soybeans upward trend in Argentina,

a behavior also shown by other soybean producers such as Brazil (see Figure 1), could have

given incentives to the expansion of agriculture through the use of new lands coming from de-

forestation. Using data from NASA's Moderate Resolution Imaging Spectrometer (MODIS)

on the Terra and Aqua satellites, Morton et al. (2006) have shown that in 2003, the peak year

of deforestation in Matto Grosso (Brazilian state with the highest deforestation and soybean

production rates), more than 20 percent of the state's forests were converted to cropland.

Deforestation contributes to global climate warming since it is responsible for not com-

pensating the anthropogenic emissions of carbon dioxide to the atmosphere. Therefore, in

this sense, we could think that global temperature anomalies and CO2 emissions may also

adjust to deviations from the long-run in our estimated climate system.

2It should be noted that Granger causality is a di�erent statistical concept which is not a necessary
condition for weak exogeneity, but for strong exogeneity (Engle et al. 1983).
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4.3. Non-linearities

Linearity is usually a starting functional form of many econometric models although

there are several routes to relax this assumption by including polynomial terms, asymmetries,

thresholds, etc. Di�erent climate variables may have non-linear relationships with crop yields.

Using di�erent spatial panel econometric techniques, Chen et al. (2013) found non-

linearities and asymmetric relationships between yields and weather variables as it has been

suggested in the literature. It is usually considered that the best predictor of crop yield is

some measure of extreme heat during the growth period of the plant, considering a tempera-

ture threshold above 29◦C or 30◦C (Schlenker and Roberts 2009), depending on the analyzed

crop. Furthermore, extreme high temperatures are harmful for crop growth, particularly dur-

ing the phases of the growth cycle (Au�hammer et al. 2012; Welch et al. 2010). Therefore,

the e�ect of temperature could be non-linear but with a threshold at certain high levels.

Using daily data of maximum temperature from 54 meteorological stations of the Argen-

tine soybean production area from 1973 to 2015, Ahumada and Cornejo (2018) constructed

di�erent variables that measure the number of days in a year, during the growing phase of the

crop (from December to April) in which the temperature exceeded a threshold of 28◦C, 29◦C,

30◦C or 31◦C. The maximum temperature of each meteorological station was weighted by its

share in the total soybean planted area. Those weights were annually updated to account for

the displacement of crop areas over time. The construction of those variables allow them to

capture non-linearities in the relationships between yield and local temperature as it has been

suggested in the literature. They found that 10 additional days of maximum temperature

above 30◦C during the growing season produce a decrease of 5% in soybean yields.

For the Chinese case, Tao et al. (2008) also found a negative relation between growing

season maximum temperature and soybean yield. Although they do not address the possi-

bility of a non-linear e�ect, soybean yield signi�cantly decreased by 11.1% to 22.7% in the

Shanxi province for each degree increase in growing season maximum temperature from 1979

to 2002.

Furthermore, as shown in Figure 2, the relationship between soybean yields and CO2

concentration in the atmosphere (to measure the carbon fertilization e�ect) may not be

always linear as in the Argentine case suggesting a second degree polynomial functional

form. Data on atmospheric CO2 at Mauna Loa Observatory were obtained from the NOAA

Earth System Research Laboratory.3

3The carbon dioxide data on Mauna Loa constitute the longest record of direct measurements of CO2 in
the atmosphere.
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Figure 2. Soybeans yield and CO2 concentration relationship from 1961 to 2016.
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However, the �gures and analysis were based on bivariate comparisons. In a multivariate

framework, where other variables apart from yields and CO2 are also considered, the inclusion

of other controls may capture the possible non-linearities and, consequently, a linear or log-

linear functional form may be appropriate.

Many simulated crop yield responses studies evaluate crop yield response to elevated CO2

assuming hyperbolic behavior. Long et al. (2006) review the CO2 fertilization e�ects for the

major C3 and C4 crops derived from enclosures, such as controlled environmental chambers,

transparent �eld enclosures, or open-top chambers. The fertilization factors averaged across

the C3 crops (rice, wheat and soybeans) are 24% for yield.

4.4. Extreme events

According to the Fifth Assessment Report of the Intergovernmental Panel on Climate

Change (IPCC), extreme weather events such as droughts, heat or cold waves, and heavy

rainfall leading to �oods have increased since 1950. In this sense, variables that measure

extreme weather events are of interest to include in the econometric models.

El Niño and La Niña are opposite phases that occur when the interaction between the

Paci�c Ocean and the atmosphere above it change from their neutral state in a cycle known as

the El Niño-Southern Oscillation (ENSO). El Niño and La Niña events in the Paci�c Ocean

can be identi�ed through the Southern Oscillation Index (SOI). The SOI, obtained from

the Australian Bureau of Meteorology (BOM), is calculated using the pressure di�erences

between Tahiti and Darwin. Sustained negatives values of SOI below -7 indicate El Niño

episodes, while sustained positives values of SOI above +7 indicate La Niña episodes.

For the Argentine case, Ahumada and Cornejo (2018) found that an extreme event asso-

ciated with La Niña episodes (droughts) decreases soybean yields between 1% and 2% during

1973-2015.
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Tack and Ubilava (2013) estimate the impact of both El Niño and La Niña on average

corn yields using a U.S. county level panel spanning 55 years (1950-2005). They estimate the

impact of El Niño (La Niña) on mean corn yields as the percentage change in the mean of

the El Niño (La Niña) regime relative to the mean of the Neutral regime. The county-level

impacts range from -24 to 33 percent for El Niño and from -25 to 36 for La Niña. The

negative e�ect of El Niño is found for the corn belt region and, as a result, the impact turns

positive as one migrates both to the East and West.

The e�ects of El Niño and La Niña on crop yields may be accentuated if global warming

leads to an increase in the frequency and intensity of this type of events.

As Powell and Reinhard (2016) warn, extreme weather events are expected to increase

worldwide and, given the local nature of some climate variables (particularly precipitations),

the e�ects can also be measured at a local level. Using an unbalanced panel of 334 farms from

2002 to 2013, they analyze extreme weather events in the case of winter wheat throughout the

Netherlands. They found that high temperature events and precipitation events signi�cantly

decrease yields.

4.5. Disentangling short and long-run e�ects of climate change

For series with persistent behavior, both stationary or integrated, which do not change

much from period to period, it is possible to distinguish short run and long run e�ects.

For integrated variables (as explained in section 4.1), to obtain the long run e�ects we

can test if the variables are cointegrated. Cointegration implies the existence of a linear

combination of variables which is stationary when the variables in the relationship are non-

stationary and integrated of equal order. Cointegrated variables are driven by the same

persistent shocks and, thus, those variables have a common stochastic (and deterministic)

trend, showing a tendency to move together in the long-run. As indicated by Juselius (2006),

in multivariate cointegration analysis, all variables are represented as stochastic and a shock

to one variable is transmitted to all other variables via the dynamics of the system until the

system �nds its new equilibrium position.

Once cointegration is found, an equilibrium correction model (ECM) can be estimated.

This model encompasses di�erenced variables as well as the deviations from the long run

or cointegrated relationship for integrated variables as expressed in Equation (3). There are

several advantages of this formulation associated not only with avoiding multicollinearity typ-

ically present in time-series data (see also sub-section 4.6) but also allowing a more intuitive

interpretation of the estimates disentangling short and long run e�ects.

Moreover, another advantage of using this approach is the invariance of the cointegration

property to the extension of the information set (Juselius 2006). This property implies that

once cointegration is found among a set of variables, the cointegration results will remain

valid if more variables are added to the partial system, as the one we estimate below. In this

sense, there would be no omitted variable e�ects present for cointegration when adopting this

speci�c-to-general strategy.

Because of that, for the Argentine case, we start by estimating a partial system through
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a Vector Autoregressive (VAR)4 model between 1973 and 2015 among soybean yields, global

temperature anomalies and CO2 concentrations in the atmosphere. This climate system

also controls for two variables5: La Niña Events and the number of days with maximum

temperatures above 30◦ during the growing season of the plant. Both variables negatively

a�ect soybeans yields.6

Therefore, there is evidence from the climate system that one long-run relationship exists,

as shown in Equation (2), in which all variables adjust to reach the long-run equilibrium.

Equation (3) shows the climate ECM derived from Equation (2). Standard errors are reported

in parentheses. ̂ln yield = 11.94
(2.75)

ln CO2 − 2.34
(0.75)

temp (2)

̂∆ ln yield = −15.97
(3.82)

− 0.27
(0.06)

[ln yieldt−2 − 11.94
(2.75)

ln CO2,t−2 − 2.34
(0.75)

tempt−2]

− 0.01
(0.004)

Niñat−1 − 0.008
(0.002)

max30t − 0.61
(0.09)

∆ ln yieldt−1
(3)

Equation (2) shows that global temperature anomalies (temp) and CO2 concentrations

in the atmosphere are long-run determinants of Argentine soybean yields. To analyze the

magnitude of estimated coe�cients we can note that in this sample period, if the temper-

ature changes as its median value during the sample (0.06◦C) soybean yields will decrease

about 14% in the long run. However, as a possible mitigation e�ect due to that fertilization

properties of CO2, yields will increase near 6% as a consequence of the median percentage

variations of CO2 concentrations in the sample (0.47%). This last result is known as the CO2

fertilization e�ect, as it has been previously described.

The estimated ECM indicates that 27% of the deviations from the long run equilibrium

is corrected in two year.

As regards the climate variables short run e�ects, Equation (1) shows that apart from

an autoregressive behavior of soybean yields, there are negative e�ects of La Niña events �

associated with droughts periods� and cumulated days of high temperature (above 30◦C). An

extreme event associated with La Niña episodes decreases yields in 1%, while 10 additional

days of maximum temperatures above 30◦ during the growing season produce a decrease of

8%.

The estimated system in Equations (2) and (3) can be also used for prediction purposes.

In this case, the constancy of the parameter estimates is a key issue. We can evaluate if

parameters are unchanged by observing the recursive estimates of the coe�cients. From an

initial sample, the observations are added one by one until the last observation is included.

Figure 3 shows that the coe�cient estimates are inside the 95% con�dence interval. Thus,

for this simple model (from the partial system), parameter stability is not rejected.7

4A VAR model is a multivariate stochastic process model that can be used to capture the linear interde-
pendences among the variables analyzed in the system. It generalizes the time series AR model.

5These variables were included unrestrictedly in the system, that is, outside the cointegration vector.
6The VAR model passes all diagnostic tests at traditional levels and included a linear trend in the long

run since the variables can cointegrate but may have di�erent deterministic trends. These results are not
reported but can be obtained from the authors upon request.

7Given the goodness of �t that has been obtained.
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the agricultural sector. According to these results, the potential negative e�ect of climate

change on agricultural could have led producers to invest on technology in order increase their

productions and crop yields. Moreover, the changes in managerial practices experienced in

Argentina through the adoption of no till practices has also a positive e�ect on the use

of new seeds. The incorporation of no-till technology does not only protect the soil from

erosion caused by plowing, but it also requires new genetically modi�ed (GM) seeds (such as

herbicide-tolerant crops).

4.6. Collinearities in a multivariate framework

As it has been previously stated, in order to econometrically model the e�ect of climate

change on crop yields, a multivariate framework should be used to control for and also to

integrate di�erent groups of determinants (climatic, technological or economic) that may

a�ect crop yields (see, for example, Huang and Khanna 2010). However, collinearity is

strongly present in time-series data that show trending behavior.

Au�hammer et al. (2013) indicate that many empirical studies do not take into account all

relevant climate dimensions, and many of them are di�cult to measure. Some works focus on

studying the e�ect of a single climate variable (such as temperature or rainfall). Au�hammer

and Schlenker (2014) warn that if a single climate variable is used as a regressor, this measure

will be subject to confounding variation of other climate measures that are correlated with

it and also a�ect the variable of interest. This approach can lead to a classic problem of bias

due to omitted variables.

In the case of Argentina soybeans yields, we have found that global temperature anoma-

lies and CO2 concentrations are not weakly exogenous (see sub-section 4.2). Thus, estimating

a single-equation model may also result in di�erent long-run coe�cient estimations, even if

cointegration is found. Equation (5) reports the coe�cient and standard errors (in parenthe-

ses) obtained from a single-equation estimation not controlling for other climate variables,

which are di�erent from those reported in Equation (3) corresponding to a multivariate sys-

tem estimation.

̂ln yield = 12.89
(35.62)

− 0.95
(6.17)

lnCO2 + 0.44
(0.23)

temp + 0.008
(0.03)

trend (5)

It should be noted that even controlling for a deterministic trend, when the condition-

ing variables are not weakly exogenous or, in particular, when we do not control for other

potential determinants such as Niña events or max30 as the system estimation did, global

temperature anomalies have a positive long-run coe�cient while CO2 concentrations have a

negative coe�cient. Control variables play a key role in a regression analysis as they reduce

the e�ect of confounding variables and avoid misleading conclusions. As an example, the

result obtained in Equation (5), contrary to what we have found following a multivariate

approach which also controls for other variables, will indicate that increases in global tem-

perature anomalies will rise soybeans yield while increases in CO2 concentration will decrease

soybeans yields.

In order to consistently estimate the long-run coe�cient, a partial system approach can be
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followed as discussed in Juselius (2006). To take into account di�erent potential determinants

and to avoid collinearities, sub-systems of long-run relationships due to climate, technological

and economic factors can be estimated and then evaluated by encompassing of the di�erent

ECM representations (as in Ahumada and Cornejo 2018). The aim of testing encompassing

is to address if crop yields adjust to one or several long-run relationships.

5. Final remarks

The aim of this chapter has been to illustrate how econometrics can help understand the

e�ects of climate change on the time behavior of crop yields at a country-level scale for the

main producers and exporter of soybeans. We have focused on this crop as a particular case

of adaptation and mitigation, with emphasis on the Argentine experience.

Climate econometrics provides an approach to give a rigorous basis for many hypotheses

related to climate change. In this line, we have discussed the di�erent empirical issues that

an accurate econometric strategy should address in order to model the e�ects of climate

change on crop yields: the non-stationarity nature of climate variables; the exogeneity of

the variables used for modelling crop yields; the existence of non-linearities; the presence of

extreme events; disentangling short and long-run e�ects of climate change and collinearities

in a multivariate framework.

Using data from 1973 to 2015, results obtained from a multivariate system estimation

indicate that global temperature has a long run negative e�ect of Argentine soybeans yields.

Furthermore, we have also found negative short-run e�ects associated to La Niña events and

high temperatures during the growing season of the plant. However, those global and local

warming negative e�ects are partially mitigated through the CO2 fertilization e�ect.

The estimation of this model have shown that a multivariate framework, including Niña

events and the 30◦C threshold in temperature, and adopting a partial system instead of a

single equation approach give di�erent results with a clearer interpretation of the estimates.

It is worth noting that, apart from the long run linear e�ect of global temperature anomalies,

we found a short run non-linear e�ect derived from the number of days in which the maximum

temperature exceeded 30◦C during the growing season of the plant.

So far, we have only focused on climate variables. However, when there are other potential

determinants as in the case of crop yields, the econometric model should encompass other

drivers like technology or economic factors. This appears as a future route of research in

particular when technology should be analyzed as an adaptation response to climate change

too.
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