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SUMMARY 

The pos�ibility of application of the van Neumann model 

was hamperf'd by the ncn existence of an effieient algo

ri th.rn for i tf', solutio::1. The essential difficulty lies 

in the fact that in general there is no solution in the 

ratio�al field, solutions are related to high degree P2 

lyn.omial roots. Thr-:·rPfore, an iterative method is pro

p-Jsea permitti:.1.g a rapid approximation to the solution 

by mee.ns of rei tera tee. solutions of linear programming 

prnblf-ms. 

UsL1g the simpl1cx method it is possible tc solve rapidly 

the linear progra7l in each step, thus obtaining the max

imu.rn rate of i:;rowth by a. false position method. 



Since the translation of Von Neumann's paper,[2] the

model there presented has received considerable attention in the 

literature. Much is knoi,1 about its properties: the existence of 

proportional 7rowth solutions un0er less restrictive assumptions 

than those of the orif'.·inal model, the "turnpike" property of ef

ficient growth paths, the dual relationship between activity 

levels and ,o-rowth rate with prices and interest rate, all have 

been extensively considered. Nevertheless, the possibility of its 

application to development planning has found a great obstacle in 

the difficulties of computing an actual solution. Algorithms for 

finding a solution in a finite number of steps are know (Well),[ 3]

but the computional effort is �reat.1 The essential difficulty 

resides in the fact that in general there is no solution in the 

rational field. At every step it is necessary to compute all the 

roots of a high degree polynomial, and solve a large quantity of 

systems of equations. In what follows we shall give � more effec

tive procedure, which approxima.tes the solution efficiently. 

1 At the time of writing this note, another article[ll

was unknoi,m to me. Even thou.t?;h cast in the lanr,,uage of game 
theory, the algorithm presents some similarities �ith the one 
here proposed. The present version is more efficient. 
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We �hall limit ourRelves to present an algorithm for the 

computa.tio11 of a proportioY1.al �rowth solution at a maximal rate. 

Once the so called Von Neumann ra.y (or facet, when the solution 

iR not uniaue) is known, further computational efforts can be dras

tically reduced, sincP due to the turnpike property most of the 

activities used durine a lon ,..,. time interval will be those used in 

the proportional .Q"rowth solution. 

The Von Neumac1n model, for the case of a finite number 

of basic activitief', can be summarized as follo�s. There are m

12:oods in the eco 11<,my, which are produced by means of themselves. 

Production is carried out by!! linear processes, each using up a 

certain aniount of the commodities to produce certain quantities, 

'Which will be avallable one period later. Thus the productive 

process is to be understood as a transformation of given stocks 

of commonities into new ones, with a gestation lag of one period, 

including the oriQ'inal capital stock at a later stage of wear and 

tear. 

All the information about the technology ca..n be presented 

in two� x !! matricesr the input matrix A and the output matr:ix 

]. The 1
th 

row of both matrices corresponds to the 1
th 

commodity,

whereas the j
th 

column corref'ponds to the j
th 

activity; the columns

of!. 1?ive the cost structure, and those of� indicate how mueh is 

produced by each procesf' operated at unit level. 
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If the elements of the non-negative n - vector_! stand 

for the levels at which each activity is operated during a given 

period, Bx will give us the quantities which will be available at 

the end of the period, whereas Ax gives the amounts of commodities 

used up. Since we are interested in proportional growth solutions, 

we do not need to know the scale of the system, so that we may 

normalize the activity levels requiring, for simplicity, that they 

add up to unity; as a eonsequence � will be a probability vector. 

Proportional growth means that one period later the ac

tivity levels� ·will be multiplied by some positive factor of 

proportionalityµ (we do not exclude shrinking economies, so that 

µmaybe less tha� unity). The relation that obviously must hold 

between the outp11ts of one period and the inputs to the next is 

qiven by the inequality 

(1) Bx � A (µ. x)

indicatirn; that all inputs must have been produced before using 

them (we a.re speakin� of a closed economy) thoue-h there may be 

possibly some waste. 

In a competitive market there will exist some prices, 

given by the probability vector� (only relati�e prices interest 

us, so that normalization of the price system will not affect our 

results), ana some interest rate r, such that no activity pricing 



out at a loss will be operated! furthermore, those activities 

which are used will break even in a'1 equilibrium situation, since 

otherwise, new firms would enter or leave the market. Thus we 

have the condition 

(2) pB � (1 + r) pA

which states that proflts should be non-positive. 

We need two further conditions. The first one, that over

produced goods are free, can be writeen, takinq, (1) into account, 

as 

(3) pB-Y = p A (µ. x).

The second has been already stated: no activity will be operated 

at a loss; tof!Pther with (2) we may express this in the equation 

(4) pBx = (1 + r) pAx

It has been Von Neumann's achievement to show for the 

first time that, under suitable conditions, a simultaneous solution 

to eguation8 (1) - (4) exists, with the additional result that 

(5) µ.=l+r



He has also shown that u is the maximal attainable pro

portional .crrowth factor, and at the same timer is the minimal in

terest rate which sustains profitless production . 

In what follows we shall need the following assumptions, 

which are usual in the moder:'.1 treatment of the subject, about the 

i'1pu.t and output matrice� 

(6) 

a) 

b) 

c) 

A � O, B � 0 

x � O, Ax= 0 

p � O, pB = 0 

implies x = 0 

implies p = 0 

Their i•1terpretation in economic terms is immediate. The 

first condition means that there are no ne1sative quantities, either 

of inputs or of outputs, for any of the activities. Condition b) 

states that, whenever there is no commodity used as input, no 

activity can be operated at a positive levelr in other words, it 

is impossible to engage in a productive process without using some 

amount of the existin� stocks. Condition c) means that the value 

of the output of all activities can be zero only when all commodities 

8.re free� this is the same as sayinP: that any good can be produced

by s0me procesR, leavin� out the case of non-reproducible commodities

2 Althou7.h these assumptions are sufficient to guarantee 
the existence of a maximal �rowth factor, further restrictions are 
needed to insure equality (5).
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because of which the economy, if it needs them as inputs, would 

run down in one period. Note tha.t storat?e activities can be con

sidered as productive processes, so tha.t we are leaving out only 

those non-reproducible resources wM.ch when not used up in one 

period will be wasted. 

Our problem becomes that of finding probability vectors 

�and� and a positive numberµ satisfying relations (1) - (4). 

Because of the maximality of the growth factor u, we may try to 

compute it by solving the problem 

max µ, subject to 

(7) (µ A - B) x � 0

-e X < -1

X � 0 

where f is a vector (i=nun vector) whose coordinates are all equal 

to unity. The first restriction corresponds to inequality (1), 

whereas the others exclude the cases of no production and negative 

activity levels. 

This problem reminds us of a linear program, except for 

the variable u which enters ir:i. �" non-linear way. Thus an algorithm 

for linear programminz. such a� the simplex procedure canr:i.ot be 

applied rUrectly. Nevertheless, we shall solve a linearized version 

of problem (7) in order to improve any pair of estimates giving a 

lower and upper bound for u, and so that these estimates converge 
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rapidly to the common solution. At the same time, we will obtain 

a proof of the existence of a solution. 

The first step is to find an interval containing the 

optimum growth factor uQ. Any initial bounds could do; a simple 

way of obtainin� them is to consider any pair of positive vectors 

� ano 12, for example the sum vector.£, and defining the lower and 

upper bounds such that (1) and (2) are sati:e:fied. In other words, 

for the lower bound we have 

� b 

(8) f j
ij 

1 
sl = min � aij 

> 0
i � a .. j 

lJ 

so that 

satisfies (1), and of course 

The existence of s
1 

is P.Uaranteed by assumption (6b), which implies 

that the matrix! is not zero, so that some of its row Rum� is 

positive. 

For the upper bound we may take 

(9) 111 = max
j 
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so that 

� eA � eB, 

which satisfies (2), with 

Aqain by assumption (6b), the column sums of� must all be positive; 

hence u1 is well defined.

These are then the two bounds on uQ needed to start the 

al,rnri tbm. We shall proceed by describing thP iseneral step in the 

procedure, letting the index 1 indicate the iteration, so that s1

and u1 �ive the bounds for the first trial, with 1 = 1.

Given the bo,mds :\ and ut for the t
th iteration, compute 

the new trial value forµ. by taking their average 

(10) 

(11) 

u =

t 2 

Solve the auxiliary linear proitrammin? probJ.Am

maximize A subject to 

(u
t 

A - B) x + "- e � O 

e X = 1 

X) 0 ,

where ut is now given by (10), and its dual



minimize p subject to 

(12) p (ut A - B) + p e � 0

p e = 1 

P2 0 • 

By the duality theorem of linear programminis, since both 

problems are feasible both have ana optimal solution, (xt , \t) and

(pt , pt), with the same value for the objective function. That is,

\t = Pt • 

We have to consider two distinct cases 

a. If \t 2 O, we see that

so that a new lower bound can be found for µ,Q by increasing µ.t .

Thus we may take for the next lower bound 

L bij 

tx. t 
(13) [ j J L o} st

+l 
= mic1 t a .. x. >

� a .. x. j lJ 

lJ J 

which satisfies 

with an equality for at least one coordinate. Therefore we 

conclude tha.t 
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aivin� us a better estimate for the lower bound. As for the upper 

bound, set 

the cycle can now be repeated, with improved bounds on µ�. 

b
.

If >..t < O
, 

we use the d1.1al res trictions in order to conclude 

that 

Hence the new upper bound will be less thru1 the trial value µt ,

and can be teken a s 

(16
) 

max 
� t b 

t i P� ij 
}

� Pi a •• i l.
J 

which will be well defined sinc e (15
) 

implies that the denominator 

o
f 

th
e 

exp res8ion in brackets is positive fo r all j
. 

Furthermor
e 

"1i t
h 

a
'1 

e qualit
y 

fo
r 

a t en
c

.- Jemt cn:"rnir.i',tP., Consequently 

an
d 

th
e 

up pe
r 

boun d has bee n improved. Takin� the sam e lower 

boun
d 

for th e nex t iteration 
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will leavP us ready fnr a DPW step. 

It is evicle11t that at Pach step the interva.l between 

thP two bo1m0P shri 11kP tci lesP than one half the previous len?th.J 

Sii1.ce 

we m,1,st havP 

1 
2 

Po that t11rAP i. teratinnP i-ri.crel'lse the accuracy by almost one 

rPcimRl place. I11 prRctice thP conver�ence will be co 11si0erably 

faster, espPcially for thP first iteratione. 

It is of c0ursP not necessary to solve each linear 

prncrramrnin� problem starti�P' at the ori9'in. In the first place, 

thP d 1 -1al prnblPm (12) will be automatically solved by the simplex 

method as (11) is s0lvea� Second, each iteration ca11 be started 

with th 0 basis at which the previous one was terminated; even 

tho11r.rh thP pr0blem will in ge11eral not be primal 11or dual feasible, 

l Compi:1.re thiP with reference [1], where the internal
shrinkP t0 PXactly tn one half the previous len�th, so that c0n
VPr�P 11ce �ill bP slowPr. 
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a few pivot steps of the duel simplex method followed by the 

primal simplex method will solve it. The computational effort 

will thus not be too �reat, except for the first few iterations. 

The source of the lar,qest amount of computatfons will be the 

rei1wersion of the basis, since at each step there will be a 

chan�e in the coefficients of the matrix. 

It is evident that the set of solutions of (1) with st 

substituted forµ converR;es to the Von NeumaD.n facet� at each 

step st is either increased or left constant, so that the set of

activity levels satisfying these inequalities will shrink, each 

c@tainin,:g- its pre<'iecessnr. Since each set is closed and their 

intersection ir non-empty, the limitinr set exists, and satisfies 

thr. Rame inequality withµ= uQ, The dual arr;ument shows that 

the s0lutioY1f' o.f (2) c()nver,9'e to the Von Neumann prices. 

It is very likely that the conver�ence of the al�orithm 

coulcl be improved by tryini:r to predict the outcome of several 

steps. This will be so particularly for the later iterations. 

The followin� linear extrapolation could be tried from time to 

time, wh 1=mever the trial value µt 1mderestimHtes the new lower

bolLnd st + 1 for some iterations prior tot= T.

Assume 
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for t � T, and assume also that uT , sT , sT + 1
, uT are known.

The11., usin"' (18) for t = T and t = T + 1, we find 

0( =
ST µT+l - sT+l UT 

µT+l - u.T 

sT+l - srr 
� =----

0°1 t.he other he.1a, by definition, for t > T 

1 (::\ + µt) LLt + 1 

1 [ c{+ uT + e ut J= 

or, if 8 < 2, letting 1 te�d to infinity 

2 - !3 

Thus we may set 

for accPlerated conver�ence. 

A �imilar device would accelerate convergence when the 
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lower bo,ma rPmained unchai1."'eo for several iterations. It would 

also be. po8sible to u0e more refined extrapolations. 
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