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Abstract

For infectious diseases, characterizing symptom duration is of clinical and public health
importance. Symptom duration may be assessed by surveying infected individuals and
querying symptom status at the time of survey response. For example, in a SARS-
CoV-2 testing program at the University of Washington, participants were surveyed at
least 28 days after testing positive and asked to report current symptom status. This
study design yielded current status data: Outcome measurements for each respondent
consisted only of the time of survey response and a binary indicator of whether symp-
toms had resolved by that time. Such study design benefits from limited risk of recall
bias, but analyzing the resulting data necessitates specialized statistical tools. Here,
we review methods for current status data and describe a novel application of modern
nonparametric techniques to this setting. The proposed approach is valid under weaker
assumptions compared to existing methods, allows use of flexible machine learning tools,
and handles potential survey nonresponse. From the university study, we estimate that
19% of participants experienced ongoing symptoms 30 days after testing positive, de-
creasing to 7% at 90 days. Female sex, history of seasonal allergies, fatigue during acute
infection, and higher viral load were associated with slower symptom resolution.

Keywords: Interval censoring, long COVID, machine learning, nonparametric, survival
analysis
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Introduction

The persistence of COVID-19 symptoms is a feature of the natural history of SARS-CoV-2 infection.

Early in the COVID-19 pandemic, it became clear that many infected individuals suffered symp-

toms continuing beyond the acute phase of the disease [1–3]. Post-acute sequelae are not unique to

SARS-CoV-2; many viruses, including the Ebola, Epstein-Barr, chikungunya, dengue, polio, and

SARS viruses, among others, have been linked to post-acute infection syndromes [4]. There is now a

substantial body of literature on the post-acute sequelae of COVID-19 (PASC), colloquially known

as long COVID, but there is no universally agreed upon case definition for PASC. Recently, the

National Academies proposed defining PASC as an infection-associated chronic condition persisting

for at least three months after acute SARS-CoV-2 infection [5]. The World Health Organization

instead suggests that a patient can be considered to experience PASC if, three months after infec-

tion, they have experienced symptoms lasting at least two months that are not explainable by an

alternative diagnosis [6].

Since there is no consensus on the duration of symptoms warranting a PASC diagnosis, it

may be informative to study the distribution of time from SARS-CoV-2 infection — or, more

feasibly, a suitable proxy such as onset of symptoms or confirmation of infection by testing — until

symptom resolution. In this article, we are motivated by the problem of studying the duration

of COVID-19 symptoms using data collected as part of the Husky Coronavirus Testing (HCT)

initiative. From September 2020 to June 2023, the HCT study enrolled 40,000 participants at the

University of Washington (UW) in Washington state [7]. Beginning in December 2021, roughly

at the beginning of the initial wave of Omicron variant infections, participants who reported a

SARS-CoV-2 infection confirmed by either polymerase chain reaction (PCR) test or at-home rapid

antigen test were invited to complete a follow-up survey regarding the persistence of symptoms in

the months following infection. The aim of this survey was to estimate how common persistent

post-acute COVID-19 symptoms are, and to identify risk factors for persistence in a population

of university affiliates. Notably, this population is predominantly young and highly vaccinated,

with relatively few preexisting comorbidities. In the survey, participants were asked whether, at

the time of survey completion, they continued to experience symptoms associated with their recent

infection.
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The exact time from infection until symptom resolution was not observed for any participant in

the HCT long COVID study. Instead, for each survey respondent, in addition to baseline covariate

information collected at or before the test date, the available data consist of the time elapsed from

positive SARS-CoV-2 test until survey response — referred to as the survey response time — and

a binary variable indicating whether the respondent’s symptoms had resolved as of the survey

response time — referred to as the event indicator. Each participant was observed only at a single

survey response time. Response times in this study ranged from 28 days (the earliest time after

a positive test at which surveys were sent) to 286 days. Because by design investigators recorded

only the current status of a participant’s symptom persistence at their response time, this sampling

scheme is referred to as current status sampling. Current status data, which represent an extreme

form of interval censoring, arise in a number of epidemiological settings, including partner studies

of HIV infection and cross-sectional studies for estimating the age of onset of non-fatal diseases,

and require the use of specialized statistical techniques [8]. Study designs analogous to that of the

HCT long COVID survey may be attractive because they are simple to implement, economical, and

most importantly, less susceptible to recall bias than retrospective designs in which participants

are asked to recall symptom status at a specific date in the past [9]. As with other survey designs,

nonresponse is a potential concern: When the study concluded in June 2023, a large fraction of

participants had not yet responded to the long COVID survey.

Interest lies in (1) estimating the distribution of the time-to-symptom-resolution variable and (2)

identifying baseline patient characteristics associated with time to resolution, that is, risk factors for

delayed symptom resolution. To achieve (1), we show here that recent methodological advances we

have made in causal inference under shape constraints can be adapted to make statistical inference

on the time-to-symptom-resolution distribution. In particular, this approach allows us to use flexible

machine learning tools and thereby minimize the need for restrictive modeling assumptions. To

our knowledge, the link between the methodology we build upon here, termed causal isotonic

regression (CIR), and the analysis of current status data has not been made before; we aim to

highlight the utility of this approach. To achieve (2), we make use of existing regression methods

for current status data, which we briefly describe in the Methods section below, with further

details given in the Supplementary Material. Our chosen approaches to both (1) and (2) rely on

identical assumptions regarding the survey response process, namely, that survey response times are
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uninformative for symptom resolution within strata of measured baseline covariates. In addition to

illustrating statistical tools tailored to the analysis of current status data, we provide substantive

results regarding persistent COVID-19 symptoms in the HCT population during the early Omicron

period of the SARS-CoV-2 pandemic.

Methods

Current status data structure

We begin by describing in general the current status data structure we are considering, using the

HCT study for concreteness. For each recipient of the long COVID survey, a collectionW of baseline

covariates, observed at or before the time of a positive SARS-CoV-2 test, were recorded. Estimating

the distribution of symptom duration T , the time elapsed between infection and symptom resolu-

tion, is challenging because (1) T is never observed directly and (2) the study is terminated before

all participants have responded to the survey.

In an ideal study with unlimited follow-up, we would observe for each participant the survey

response time Y∗ — the time elapsed between positive SARS-CoV-2 test and survey response —

and the event indicator ∆∗ — a participant’s symptom status at the time of survey response —

with ∆∗ = 1 representing symptom resolution by time Y∗ and ∆∗ = 0 otherwise. We denote

by c0 the investigator-determined time (since the positive test) at which follow-up ends for a

participant, and consider as a nonrespondent any participant without a response by time c0. We set

Y = min(Y∗, c0) as the smaller of the survey response time and c0, and denote by ∆ = 1(Y∗ < c0)∆∗

the observed response indicator, which equals 1 if a participant responded and reported resolution

and 0 otherwise. The available data are considered to be n independent and identically distributed

observations (W1, Y1,∆1), (W2, Y2,∆2), . . . , (Wn, Yn,∆n).

The two primary goals of our analysis, as described earlier, can be stated symbolically as using

the available data to:

1. estimate the survival function of T ;

2. estimate the association between baseline covariates W and symptom duration T .

Below, we describe how these two goals may be achieved.
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Statistical procedure

For a given time t, we denote by ψ(t) = P (T > t) the survival function of T evaluated at t. This

quantity represents the proportion of individuals testing positive for SARS-CoV-2 who experience

symptom persistence beyond time t days. Our aim is to estimate ψ(t) over an interval [t0, t1] strictly

contained in (b0, c0), where b0 = 28 days is the smallest observable response time. Estimating this

function using current status data requires dedicated statistical tools, since failure to account for

the sampling scheme can lead to misleading conclusions.

Traditionally, under current status sampling, the survival function has been estimated based

on the nonparametric maximum likelihood estimator (NPMLE), which can be computed using the

pool adjacent violators algorithm used for isotonic (i.e., monotone) regression [10]. The key idea

behind this approach is that estimation of the survival function can be reframed as a regression

problem under a monotonicity constraint: the probability of symptom resolution by time t is simply

the proportion of individuals who have resolved symptoms among those with survey response time

t, and this probability is necessarily nondecreasing as a function of survey response time. This

estimator has the advantage of being distribution-free, in the sense that its validity does not rely

on any assumption about the underlying shape of the true survival function, and of enabling the

construction of valid confidence intervals derived from its large-sample properties [11]. Nevertheless,

an important limitation of the NPMLE approach is that it requires the survey response process

to be entirely uninformative, in the sense that the response time itself does not carry information

about the event time. This condition may fail to hold in practical settings, as there may exist

baseline covariates — analogous to confounders in a causal inference setting — that inform the

relationship between the event indicator and the survey response time. For example, participants

with substantial comorbidities may be more likely to respond promptly to the survey and to have

greater symptom persistence. We argue here that the framework of CIR introduced inWestling et al.

[12], which was developed to estimate a monotone causal dose-response curve, can be directly used

to estimate the survival function with current status data under weaker conditions. Specifically, as

opposed to the traditional NPMLE approach, this method only requires independence between the

survey response and event times within strata defined by the recorded baseline covariates. Such

independence condition is typically much more realistic, and thereby makes the analysis less likely
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to yield misleading conclusions due to assumption violations.

To describe how CIR can be used to analyze current status data, we introduce the potential

outcome notation ∆∗(t) to denote the value that ∆∗ would take were Y∗ set to value t, e.g.,

in a hypothetical setting where the investigator controlled the survey response time. We note

that, among survey respondents, the observed event indicator ∆ corresponds to ∆∗(Y ), since by

definition Y < c0 for respondents. The survival function evaluated at time t can then be written

as ψ(t) = 1 − E{∆∗(t)}. This function is necessarily monotone since the probability of symptom

persistence at survey response time Y∗ = t cannot increase in t. If ∆∗(t) and Y∗ are conditionally

independent given W , then the target parameter evaluated at any t in [t0, t1] can be written as

ψ(t) = 1− E{∆∗(t)} (by definition)

= 1− E[E{∆∗(t) |W}] (by law of total expectation)

= 1− E[E{∆∗(t) |W,Y∗ = t}] (by conditional independence)

= 1− E[E{∆∗(t) |W,Y = t}] (since Y∗ = t if and only if Y = t for t < c0)

= 1− E {E (∆ |W,Y = t)} (since ∆ = ∆∗(Y )) .

Therefore, under this conditional independence assumption, the task of estimating ψ(t) is equivalent

to estimation of what may be viewed as a monotone causal dose-response curve, where the exposure

and potential outcomes are assumed to be independent conditional on measured covariates.

Computation of the NPMLE involves performing an isotonic regression of ∆1,∆2, . . . ,∆n on

Y1, Y2, . . . , Yn over the domain [t0, t1]. Computation of the CIR estimator is more complex since

it includes a step to disentangle the dependence between event and survey response times. This

step involves estimation of two functions depending on baseline covariates and survey response

times: (1) µ(y, w) = E(∆ |Y = y,W = w), the conditional mean of ∆ given Y and W ; and (2)

g(y, w) = π(y |w)/E{π(y |W )}, a standardization of the conditional density π of Y givenW . These

functions play a role akin to those of the outcome regression and (standardized) propensity score in

causal inference for continuous exposures. To implement the CIR procedure, estimates µn and gn

of µ and g, respectively, are first constructed; this task can be accomplished with any off-the-shelf

machine learning algorithm. Pseudo-outcomes Γn(∆1, Y1,W1),Γn(∆2, Y2,W2), . . . ,Γn(∆n, Yn,Wn),
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defined pointwise as

Γn(δ, y, w) =
δ − µn(y, w)

gn(y, w)
+

n∑
j=1

µn(y,Wj) ,

are then obtained and regressed against Y1, Y2, . . . , Yn over the domain [t0, t1] using isotonic re-

gression (see Supplementary Material for technical details). We denote the resulting estimator of

ψ(t) as ψn(t). Use of these pseudo-outcomes rather than the simple event indicators accounts for

possible dependence between ∆∗(t) and Y∗, as long as this dependence is explained entirely by W .

Roughly speaking, if at least one of µ and g is estimated consistently, then ψn(t) is itself consistent

for ψ(t), and if both µ and g are estimated consistently, n1/3{ψn(t) − ψ(t)} tends in distribution

to a random variable with a scaled Chernoff distribution [13]. This well-characterized large-sample

distribution allows for construction of confidence intervals with correct coverage. A key strength of

the CIR approach is that it allows for flexible estimation of µ and g — using machine learning, for

example — without sacrificing statistical inference. This reduces the risk of systematic bias due to

the use of misspecified parametric models.

We note that performing the CIR procedure using data from survey respondents alone — in

other words, performing a complete case analysis — could result in bias, since whether a participant

is considered a respondent is determined by their value of Y∗, which may depend on W and thus

be informative for ∆∗. Symbolically, the estimand in a complete case analysis would be 1 −

E{E(∆ |W,Y = y) |Y < c0} rather than 1 − E{E(∆ |W,Y = y)}. Therefore, fully removing

nonrespondents — that is, participants with Y∗ ≥ c0 —may induce selection bias, as the distribution

of W may differ among survey respondents and nonrespondents. To emphasize the difference

between the complete case CIR and our proposed method, which includes all survey recipients, we

refer to the latter as extended CIR.

It is also of interest to understand the association between baseline covariates W and symptom

duration T in order to identify potential predictors of delayed symptom resolution. In the Supple-

mentary Material, we review regression models that have been adapted for use with current status

data and discuss the difficulties that arise in making inference using these models. Focusing on

the Cox model, we conduct a simulation study to evaluate the performance of the nonparametric

bootstrap for making inference, finding that Wald-type bootstrap confidence intervals based on a
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normal approximation demonstrate good performance in modest sample sizes. The Cox model re-

quires no special adaptation to account for nonresponse, as long as the regression model is correctly

specified and includes all covariates that inform the response mechanism [14].

Analysis of HCT data

Study setting and participants

The HCT study was conducted at UW, a large public university in Washington state with a

population composed of approximately 60,000 students and 32,000 faculty and staff. Beginning

in autumn 2020, the HCT program provided free, voluntary PCR testing for SARS-CoV-2 and

symptom surveillance for university affiliates. Individuals were sent daily messages via text or

email to ask about new symptoms, exposures, and high-risk behaviors, any of which would trigger

an invitation for PCR testing. Study participants were also able to walk-in for testing at any

time, and for any reason, without an invitation. Once antigen testing became widely available

in March 2022, individuals were asked on their daily messages to report any antigen test results.

The inclusion criteria for HCT eligibility are described in the Supplementary Material. Informed

consent was signed electronically at the time of enrollment.

For this analysis, we used data collected from December 2021 to June 2023. During this time

period, participants who had a positive or inconclusive PCR test or who reported a positive rapid

antigen test for SARS-CoV-2 were invited to participate in a follow-up survey to assess for ongoing

symptoms of COVID-19 a minimum of four weeks after the positive test.

Data collection

All data were collected electronically by sending participants an email or text notification with a

link to a questionnaire. The surveys included:

(a) Enrollment questionnaire and quarterly update survey : The enrollment questionnaire included

demographics, COVID-19 vaccination information, and current pre-existing medical condi-

tions, which were captured by selecting zero or more options from the list given in Table 1.

A quarterly survey was used to update eligibility and vaccination status.
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Category Pre-existing conditions

Cardiometabolic Diabetes, heart disease, high blood pressure
Respiratory Asthma/reactive airway disease, chronic bronchitis, COPD/emphysema
Immunological Cancer, immunosuppression
Seasonal allergies —

Table 1: Pre-existing medical conditions on which baseline information was collected.

Category Symptoms

Upper respiratory Cough, ear pain/discharge, eye pain, loss of smell or taste, rash, run-
ny/stuffy nose, sore/itchy/scratchy throat, trouble breathing

Systemic Chills or shivering, feeling feverish, headache, muscle or body aches,
sweats

Gastrointestinal Diarrhea, nausea/vomiting
Fatigue —

Table 2: List of symptoms during the acute infection phase.

(b) Daily attestation survey and symptom attestation survey at the time of SARS-CoV-2 test :

Participants were prompted to fill out a daily attestation survey that collected information

on date of known exposures to COVID-19, and date(s) and results of rapid antigen test(s)

performed at home. New or worsening symptoms in the past 24 hours were captured by

selecting zero or more items from the list given in Table 2.

(c) Long COVID survey : Starting in December 2021, all participants who tested positive or

inconclusive for SARS-CoV-2 by PCR testing or those who attested to having had a positive

rapid antigen test were contacted a minimum of 28 days after their first positive test date

and invited to participate in the long COVID survey. Each participant was allowed to fill out

the survey only once per academic year. For participants with multiple responses, only the

first is included in this analysis. The survey included the question “Are you still experiencing

symptoms related to your COVID-19 illness (e.g., brain fog, fatigue, headaches, etc.)?” Each

participant was free to choose when to complete the survey. Data collection was terminated

on June 23, 2023.
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Risk factors

For the statistical analyses, a subset of baseline covariates collected on participants was used.

Demographic risk factors included self-reported sex (male or female) and age (categorized as 25

years and under, 26 to 40 years, 41 to 60 years, and over 60 years). Baseline comorbidities were

categorized as cardiometabolic, respiratory, immunological, and/or seasonal allergies (see Table

1). Symptoms at baseline were categorized as upper respiratory symptoms, systemic symptoms,

gastrointestinal symptoms, and/or fatigue (see Table 2). Baseline comorbidities and symptoms

were included in analyses as binary (presence/absence). As a proxy for viral load, participants

were categorized according to the manner in which they tested positive for SARS-CoV-2 (rapid

antigen test versus PCR), and among those who tested positive via PCR, according to the cycle

threshold (Ct) value. Higher Ct values correspond to a lower viral load. The categories used were

rapid antigen test, PCR with Ct below 30, and PCR with Ct greater than 30. Participants were

also categorized according to the time elapsed between most recent vaccination and positive test:

less than three months, between three and six months, and more than six months. We restricted

our analysis to vaccinated participants because there were few unvaccinated participants — less

than 2% of the study cohort — and because vaccination was required by UW policy during the

data collection period, rendering unvaccinated individuals possibly different from most of the UW

population in important ways beyond vaccination status.

Implementation

We implemented the extended CIR method using flexible machine learning tools to estimate µ and

g. To estimate µ, we used the Super Learner [15, 16], a form of stacked regression, with the optimal

linear combination of learners selected to minimize 10-fold cross-validated mean squared error —

see Supplementary Material for algorithm library. To estimate π, we used the haldensify software

package [17] with 10-fold cross-validation used to select optimal tuning parameters. The derivative

of the survival curve, which is required for confidence interval construction, was estimated by nu-

merical differentiation of a monotone Hermite spline approximation of the estimated survival curve.

Confidence intervals with nominal 95% pointwise coverage were constructed using the quantiles of

the Chernoff distribution.
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We aimed to estimate the survival function for symptom resolution between t0 = 30 and t1 = 90

days after the positive test. We therefore chose the maximum follow-up time to be c0 = 120;

participants with positive tests after February 24, 2023 were excluded to ensure all individuals in

the analysis cohort had at least 120 days of follow-up. On one hand, large values of c0 result in

more individuals excluded from the study period but make t1 further away from the largest possible

observed survey response times, where the statistical performance of isotonic regression and related

procedures is known to degrade. On the other hand, small values of c0 result in fewer individuals

excluded from the study period but make t1 closer to the largest possible observed survey response

times. Our choice of c0 was meant to achieve a balance between these competing considerations,

and resulted in t1 lying at approximately the 97.5th percentile of observed survey response times;

such choice performed well in a simulation study — see Supplementary Material for details.

To investigate the association between baseline risk factors and time from infection to symp-

tom resolution, we fit a Cox proportional hazards regression model accounting for current status

sampling using the icenReg software package [18]. Main terms were included in the model for

each baseline covariate described above. Standard error estimates were calculated using a nonpara-

metric bootstrap with 1000 bootstrap replicates, and used to construct 95% Wald-type confidence

intervals and perform two-sided tests of the null regression coefficient hypothesis at a 0.05 level.

For categorical risk factors, multivariate Wald tests were used to test the joint null hypothesis that

all of the corresponding regression coefficients were zero.

Results

After the removal of 284 individuals due to missing covariate information, the analysis cohort

consisted of 3434 HCT study participants with positive SARS-CoV-2 tests prior to February 24,

2023. Of these, 1432 (41.7%) responded to the survey. Characteristics of the analysis cohort are

summarized in Table 3. The median age was 23 years (IQR: 20–36), and approximately 64% of the

participants reported female sex. Slightly over 33% of participants reported at least one baseline

comorbidity, and roughly 52% were symptomatic at the time of testing. Most participants were not

recently vaccinated. Survey respondents tended to be older than nonrespondents, with markedly

higher prevalence of symptoms during the acute infection phase.

Figure 1 shows the estimated proportion of participants with persistent COVID-19 symptoms at
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Respondents Nonrespondents Overall analysis cohort
n = 1432 n = 2002 n = 3434

Age, years
25 and under 597 (41.7%) 1385 (69.2%) 1982 (57.7%)
26–40 361 (25.2%) 379 (18.9%) 740 (21.5%)
41–60 375 (26.2%) 183 (9.1%) 558 (16.2%)
61 and over 99 (6.9%) 55 (2.7%) 154 (4.5%)

Male 494 (34.5%) 746 (37.3%) 1240 (36.1%)
Symptoms, upper respiratory 1027 (71.7%) 685 (34.2%) 1712 (49.9%)
Symptoms, systemic 715 (49.9%) 473 (23.6%) 1188 (34.6%)
Symptoms, gastrointestinal 122 (8.5%) 107 (5.3%) 229 (6.7%)
Symptoms, fatigue 465 (32.5%) 324 (16.2%) 789 (23.0%)
Comorbidities, cardiometabolic 96 (6.7%) 49 (2.4%) 145 (4.2%)
Comorbidities, respiratory 147 (10.3%) 193 (9.6%) 340 (9.9%)
Comorbidities, immunological 29 (2.0%) 26 (1.3%) 55 (1.6%)
Comorbidities, seasonal allergy 433 (30.2%) 439 (21.9%) 872 (25.4%)
Time since last vaccination

Under 3 months 307 (21.4%) 27 (1.3%) 334 (9.7%)
3–6 months 204 (14.2%) 123 (6.1%) 327 (9.5%)
More than 6 months 921 (64.3%) 1852 (92.5%) 2773 (80.8%)

Viral load
PCR, over 30 Ct 273 (19.1%) 438 (21.9%) 711 (20.7%)
PCR, under 30 Ct 545 (38.1%) 897 (44.8%) 1442 (42.0%)
Rapid antigen test 614 (42.9%) 667 (33.3%) 1281 (37.3%)

Table 3: Baseline characteristics of the analysis cohort.
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Figure 1: Covariate-adjusted survival curves for time from positive test until symptom resolution, estimated using
the proposed extended causal isotonic regression method (top panel), along with the distribution of survey response
times between 28 and 95 days (bottom panel). The solid black line shows the estimated proportion with ongoing
symptoms at times from 30 days to 90 days after the positive test. The black points show the estimated proportion
with ongoing symptoms at 30, 60, and 90 days. The dashed lines represent a pointwise 95% confidence interval. The
gray vertical lines denote 30, 60, and 90 days.

times from 30 to 90 days following the positive test, along with the distribution of survey response

times. From the extended CIR method, estimated symptom persistence proportions at 30, 60,

and 90 days after the positive test were 19.0% (95% CI: 13.6–25.0), 13.0% (9.4–16.7), and 6.9%

(2.9–10.9), respectively.

Table 4 contains the results of the Cox proportional hazards regression, with hazard ratios

larger than 1 indicating faster symptom resolution. Participants identifying as male tended to

experience faster symptom resolution, with an estimated hazard ratio for resolution of 1.21 (1.04–

1.40, P = 0.018). Conversely, participants reporting fatigue at baseline and participants with

history of seasonal allergies tended to have longer lasting symptoms, with estimated hazard ratios

of 0.77 (0.65–0.92, P = 0.004) and 0.86 (0.74–1.00, P = 0.050), respectively. In terms of viral load,

participants with Ct values under 30 and participants who tested positive via rapid antigen tests

had more persistent symptoms compared to participants with Ct values over 30, with estimated

hazard ratios of 0.78 (0.64–0.96) and 0.75 (0.60–0.95), respectively (P = 0.033).
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Risk factor Hazard ratio 95% confidence interval P -value

Age, years 0.631
25 and under (ref) (ref) (ref)
26–40 0.922 (0.767, 1.109) —
41–60 0.921 (0.754, 1.124) —
61 and over 1.078 (0.785, 1.480) —

Male 1.206 (1.039, 1.401) 0.014
Symptoms, upper respiratory 1.078 (0.885, 1.314) 0.453
Symptoms, systemic 0.967 (0.803, 1.163) 0.719
Symptoms, gastrointestinal 0.887 (0.679, 1.160) 0.382
Symptoms, fatigue 0.771 (0.645, 0.921) 0.004
Comorbidities, cardiometabolic 0.808 (0.599, 1.088) 0.160
Comorbidities, respiratory 0.868 (0.694, 1.085) 0.214
Comorbidities, immunological 0.839 (0.489, 1.440) 0.525
Comorbidities, seasonal allergy 0.859 (0.737, 1.000) 0.050
Time since last vaccination 0.813

Under 3 months (ref) (ref) (ref)
3–6 months 0.953 (0.752, 1.209) —
More than 6 months 0.934 (0.759, 1.150) —

Viral load 0.033
PCR, over 30 Ct (ref) (ref) (ref)
PCR, under 30 Ct 0.783 (0.637, 0.963) —
Rapid antigen test 0.754 (0.597, 0.953) —

Table 4: Results of Cox proportional hazards regression for time to symptom resolution. Boldface font indicates
statistical significance at a 0.05 level. For categorical variables, P -values correspond to a multivariate test of null
regression coefficients. Ct: cycle threshold.
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Discussion

In this article, we presented modern methodology for the analysis of current status data arising in

epidemiological studies, with a particular focus on the novel extension and application of causal

isotonic regression to this setting. When it is of interest to estimate the distribution of disease

duration under current status sampling, CIR offers a flexible approach accommodating the use of

off-the-shelf machine learning tools. Unlike the commonly used nonparametric maximum likelihood

estimator, the validity of CIR relies only on conditional independence of survey response times and

event indicators within strata of measured baseline covariates. In addition, we have shown how

CIR can be implemented to properly account for survey nonresponse.

We demonstrated the use of CIR, along with existing survival analysis regression methods,

to analyze current status data from the long COVID survey study conducted at UW between

December 2021 and June 2023. Participants were queried at least 28 days after testing positive,

and even for those queried exactly at 28 days, many did not respond until days or weeks later. This

variation in response times motivates the use of the statistical methods described in this paper.

Using the long COVID survey data, we estimated the prevalence of persistent COVID symptoms

in the UW population to be 19% at 30 days after a positive test, dropping to 7% at 90 days.

A retrospective study in a comparable university population found that 36% of survey re-

spondents reported symptoms lasting at least 28 days from the end of the recommended 10-day

isolation period [9]. Our results provide further evidence that, even in a predominantly young and

vaccinated population, a substantial proportion of infected individuals are affected by persistent

COVID-19 symptoms. Notably, because participants were asked only about persistent symptoms

and not about new symptoms arising in the post-acute phase, our analysis may still represent an

underestimate of the frequency of PASC, which may also be characterized by symptoms that differ

from initial acute symptoms and arise after their resolution.

We also investigated potential risk factors for persistent symptoms using Cox proportional

hazards regression, and found evidence that female sex, fatigue during the acute phase, history of

seasonal allergies, and higher semi-quantitative viral load at time of testing are associated with

slower resolution of symptoms. This is in line with previous studies that have identified female

sex [19], severe fatigue during the acute infection phase [20], allergic rhinitis [21], and higher peak
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semi-quantitative viral load in the four weeks following diagnosis [22] as potential risk factors for

PASC.

The validity of extended CIR hinges on the untestable assumption that survey response times

and event indicators are conditionally independent given measured baseline covariates, which is

more likely to be satisfied through the inclusion of potential risk factors as covariates in the analysis.

If the survey response time depends on symptom duration even within strata defined by baseline

covariates, the extended CIR procedure could be susceptible to bias. The development of sensitivity

analysis methods for this setting is an important avenue of future research. Further work is also

needed to better understand the practical implications of the poor boundary performance of CIR

in order to provide a principled approach to choose appropriate values of t0, t1 and c0.
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Supplementary Material

S1. Causal isotonic regression for current status data

S1.1 Data structure and target of estimation

We denote by T the unobserved symptom duration after testing positive for SARS-CoV-2. For

each study participant, we observe a vector W ∈ Rp of baseline covariates. In the context of

current status sampling, the ideal data unit — that is, the data unit that would be observed given

unlimited follow-up — consists ofW , the survey response time Y∗ ∈ [b0,∞), and the event indicator

∆∗ ∈ {0, 1}. We denote by c0 the maximum follow-up time of the study. In reality, we observe

Y := min(Y, c0) and ∆ := 1(Y∗ < c0)∆∗. For individuals who have not responded to the survey by

time c0, we do not observe the event indicator. Thus, the observed data unit is Z := (W,Y,∆). In

this setting, survey non-response corresponds to having failed to respond to the survey prior to time

c0. The available data consist of n independent observations Z1, Z2, . . . , Zn draw from distribution

P0, which is assumed to lie in a nonparametric model M. Here and after, we use the subscript 0

to denote a functional of the true data-generating distribution P0, e.g., E0{f(W )} := EP0{f(W )}.

For simplicity of notation, in what follows we consider estimation of the cumulative distribution

function t 7→ ψ0(t) := P0(T ≤ t). (In the main text, ψ was used to denote the survival function,

which is simply equal to one minus the distribution function).

For a generic distribution P ∈ M, we define the mapping

θP : y0 7→ EP {EP (∆ |W,Y = y0)} . (1)

For all y0 ∈ (b0, c0), the target parameter ψ0(y0) is identified by the observed data as θ0(y0). If

y0 < c0, then the event {Y∗ = y0} is equivalent to the event {Y = y0}, and so this parameter is equal

to the distribution function of T evaluated at y0 under the conditional independence assumption

described in the main text.

We note that the outer expectation in (1) is taken with respect to the marginal distribution of

W under sampling from P0, as opposed to the distribution of W given Y < c0. This suggests that

performing a standard causal isotonic regression (CIR) procedure among survey respondents would
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not in general yield a consistent estimator, as the marginal distribution of W and the conditional

distribution of W given Y < c0 are not necessarily equal unless W and Y are independent.

S1.2 Estimation and inference

Without making strong modeling assumptions, the target regression function θ0(y0) is not pathwise

differentiable and is therefore not estimable at n
1
2 –rate. However, it is known to be monotone

as a function of y0 and can be viewed as the target of an isotonic regression procedure. Using

isotonic regression to estimate θ0(y0) allows for the application of established statistical theory

[23] to characterize the large-sample properties of the resulting estimator. We outline this isotonic

regression procedure here.

For a generic P ∈ M, we first define the outcome regression function µP : (y, w) 7→ EP (∆ |W =

w, Y = y) and density ratio gP : (y, w) 7→ πP (y |w)/fP (y) with πP the conditional density of Y

given W and fP the marginal density of Y . These nuisance functions play a key role in accounting

for the possible dependence between ∆∗ and Y∗. We use FP to denote the marginal distribution

function of Y . We use FP as a domain transformation function in the CIR procedure. While the

CIR procedure could be performed without the use of this domain transformation, its use results

in a procedure that is invariant to strictly increasing transformations of Y [12]. In other words,

changing the scale on which response times are measured will have no impact on the estimated

survival function.

We next define ψP := θP ◦ F−1
P and corresponding primitive function ΨP (t) :=

∫ t
0 ψP (u)du.

The causal isotonic regression (CIR) procedure entails estimation of the parameter ΓP := ΨP ◦FP ,

which takes the form

ΓP : y0 7→
∫∫

1(u ≤ y0)µP (u,w)FP (du)QP (dw)

with QP the marginal distribution function of W under sampling from P . Unlike θ0(y0), the pa-

rameter Γ0(y0) is pathwise differentiable relative to the nonparametric model M and can therefore

be estimated at n
1
2 –rate [24]. Per the results of Westling et al. [12], the efficient influence function
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of P 7→ ΓP (y0) relative to M evaluated at P0 is given by

D∗
0,y0 : (δ, y, w) 7→

1(y ≤ y0)

{
δ − µ0(y, w)

g0(y, w)

}
+

∫
1(u ≤ y0)µ0(u,w)F0(du) + 1(y ≤ y0)θ0(y)− 2Γ0(y0) .

Knowledge of this efficient influence functions enables standard debiasing approaches, such as the

one-step correction [25], to be used in estimation of Γ0(y0). This yields a debiased, asymptotically

linear estimator Γn(y0) of Γ0(y0), which is used in the isotonic regression procedure to construct

an estimator of θ0(y0). The procedure is as follows.

(1) Select domain bounds t0 and t1 satisfying [t0, t1] ⊂ (b0, c0).

(2) Construct an estimate Pn of P0 using estimators (µn, gn, Fn, Qn) of (µ0, g0, F0, Q0). For

example, µn and gn can be constructed using machine learning algorithms, while Fn and Qn

can be constructed using the empirical distributions of Y and W , respectively, based on the

observed data Z1, Z2, . . . , Zn.

(3) Let Rn denote the set of unique values of Y1, Y2, . . . , Yn. For each y0 ∈ Rn satisfying t0 ≤ y ≤

t1, compute the one-step debiased estimator Γn(y0) of Γ0(y0), given by Γn(y0) := ΓPn(y0) +

1
n

∑n
i=1D

∗
Pn,y0

(Zi).

(4) Compute the greatest convex minorant (GCM) of the set of points

{(0, 0)} ∪ {(Fn(Yi),Γn(Yi)) : i = 1, 2, . . . , n, t0 ≤ Yi ≤ t1}

Set ψn to be the left derivative of the GCM.

(5) Compute θn(y0) := ψn(Φn(y0)) as an estimator of θ0(y0).

If both µn and gn converge to µ0 and g0, Theorem 2 of Westling et al. [12] establishes that, for

any y0 ∈ (b0, c0) with F0(y0) ∈ (0, 1), n
1
3 {θn(y0)− θ0(y0)} converges in distribution to τ0(y0)

1
3W,

where W follows a standard Chernoff distribution [13] and τ0(y0) := 4θ′0(y0)κ0(y0)/f0(y0) with

κ0(y0) :=

∫
E0[{∆− µ0(y0, w)}2 |W = w, Y = y0]

g0(y0 |w)
Q0(dw) .
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In light of the fact that ∆ is binary, we can rewrite the above display as

κ0(y0) =

∫
µ0(y0, w) {1− µ0(y0, w)}

g0(y0 |w)
Q0(dw) .

We refer to τ0 as the scale factor. Construction of confidence intervals requires estimation of

τ0. We note that both κ0 and f0 can be estimated by simply plugging in available estimates of

µ0 and g0, with the empirical distribution of W1,W2, . . . ,Wn used to estimate Q0. To estimate

θ′0(y0), the derivative of y 7→ θ0(y) evaluated at y0, there are a number of available options. In

our implementation, we construct a monotone Hermite spline approximation of θn and perform

numerical differentiation.

S2. Regression analysis

Many popular regression models used in survival analysis have been adapted for use with current

status data, including the Cox proportional hazards model [26], the proportional odds model [27],

and the accelerated failure time model [28]. These methods are generally valid under the same

assumptions on the survey response process as the adaptation of the CIR method described above.

They do, however, make additional assumptions on the relationship between T and W .

Fitting regression models using current status data is generally more complicated than with

right censored data. For the Cox model, unlike in the right-censored setting, estimation of the re-

gression coefficients cannot be completely separated from estimation of the baseline hazard function

through the partial likelihood [26]. Nonetheless, estimation and valid inference is still attainable

for the regression coefficients, with the main difficulties being computational in nature. Recent

work has focused on developing more efficient algorithms for computing estimates of the regression

coefficients via maximum likelihood [18]. Calculation of the observed Fisher information, which

is used to compute analytic standard error estimates, is generally impractical. The bootstrap has

been proposed as an alternative approach [29], although as of yet there is no theoretical proof of

its validity in this context. In Section S3, we present results of a simulation study investigating the

performance of the nonparametric bootstrap for construction of confidence intervals using current

status data for inference on regression coefficients of a Cox model. Wald-type bootstrap confidence

intervals based on a normal approximation demonstrate good performance, while percentile boot-
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strap confidence intervals tend to be slightly anticonservative. Based on these findings, we make

use of the Wald-type interval in the regression analyses we report.

As with the Cox model, the other regression models described above do not need to be altered

to account for survey nonresponse, under the assumption that the regression model is correctly

specified and includes all covariates that inform the response mechanism [14].

S3. Simulation studies

S3.1 Causal isotonic regression simulations

In this section, we describe a simulation study conducted to evaluate the performance of the pro-

posed extended CIR accounting for survey nonresponse. While we expect the complete case CIR

procedure to perform well when follow-up is unlimited, we expect decreased performance when

termination of follow-up precludes survey response for some study participants. In contrast, we

expect the extended CIR procedure to perform well in both of these scenarios.

In this experiment, the data were generated according to a proportional hazards model. We

simulated a covariate vector W = (W1,W2,W3) of three independent components, each distributed

according to a Unif({-1,1}) distribution. Given covariate vector W = w, we then simulated the

survey response time Y∗ and event time T from independent Weibull distributions with shape

parameter 0.75 and scale parameter exp
(
2
5w1 − 1

5w2

)
. For computational purposes, Y∗ was set to

the closest point on a grid of 50 values evenly spaced on the quantile scale. In other words, the

values of Y∗ were coarsened to 50 unique values.

For each simulation replicate, the aim was to estimate the distribution function of T over the

interval [t0, t1] with t0 = 0.02 (corresponding to the 5th percentile of observed response times)

and t1 = 1.5. The maximum follow-up time was set to c0 ∈ {2.1, 1.8, 1.65}. We refer to the

settings corresponding to these values of c0 as Scenarios 1, 2 and 3, respectively. Under these three

choices of c0, t1 corresponded to the 90th, 95th, or 97.5th quantile of observed survey response

times, respectively. This allowed us to explore whether performance of the complete case CIR

or extended CIR procedures would degrade if c0 was chosen such that nonresponse was more

prevalent and t1 was nearer the edge of the support of observed response times. For each value of

c0, the observed data consisted of n independent replicates of (W,Y,∆) with Y := min(Y∗, c0) and
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∆ := 1(Y∗ < c0)1(T ≤ Y ). We generated datasets of size n = {500, 1000, 1500, 2000}.

The survival function was estimated either using only complete cases (i.e., survey respondents, or

those with Y∗ < c0) with the existing CIR procedure described in [12] or using all participants with

the extended CIR procedure proposed here. Nominal 95% confidence intervals were constructed

by estimating the scale factor and using the quantiles of the Chernoff distribution. The nuisance

function µ was estimated using Super Learner [15] with a library consisting of the marginal mean,

logistic regression, multivariate adaptive regression splines [30], generalized additive models [31],

and random forests [32]. The conditional density π was estimated using haldensify [17] with 10-

fold cross-validation used to select optimal tuning parameters. The derivative of the survival curve

was estimated by numerical differentiation of a monotone Hermite spline approximation of the

estimated survival curve. For each simulation replicate, the survival function of T was estimated

at 100 time-points, evenly spaced on the quantile scale, between t0 = 0.02 and t1 = 1.5. For

each setting and method, we conducted 1000 simulation replicates. Pointwise and integrated (over

all 100 time-points) performance was quantified using the empirical bias and empirical confidence

interval coverage.

From Figures S1 and S2, we see that the extended CIR generally has smaller bias compared

to the complete case CIR, although both methods have generally inflated bias near the estimation

boundaries. From Figures S3 and S4, we observe that the extended CIR demonstrates strong

confidence interval coverage across nonresponse scenarios, while the complete case CIR tends to be

somewhat anticonservative on average.

S3.2 Cox proportional hazards regressions simulations

In this section, we describe a simulation study performed to evaluate the validity of the nonparamet-

ric bootstrap for constructing confidence intervals for regression coefficients of the Cox proportional

hazards model when the data are subject to current status sampling and survey nonresponse. While

this is not meant to replace rigorous theoretical analysis, it may help inform the practical use of

the bootstrap in this setting.

Data were generated as in the previous set of experiments. To evaluate the performance of

the bootstrap, we fit a correctly specified Cox model (i.e., an additive model with only first-order

terms) on each of B bootstrap resamples of the dataset. We constructed confidence intervals for
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Figure S1: Pointwise bias of the CIR procedure for estimating the survival function under current status sampling
with nonresponse. From left to right, the columns represent nonresponse Scenarios 1, 2 and 3, ordered from smallest
to largest degree of nonresponse. The top and bottom rows denote the standard CIR method using only complete
cases and the extended CIR method accounting for nonresponse. The x-axis displays the true value of the distribution
function. The black line denotes zero bias.

each regression coefficient using either a normal approximation with standard deviation equal to

the standard deviation of the point estimates across the B replicates or a percentile bootstrap. We

repeated this procedure 1000 times and calculated the empirical confidence interval coverage for

each method of interval construction. We generated datasets of size n = {500, 1000, 1500, 2000}

and used bootstrap replicates B = {100, 250, 500, 1000}. The empirical coverage for the coefficients

corresponding to W1,W2 and W3 in each of these settings is displayed in Figures S5–S7.

From Figures S5–S7, we observe that, under all nonresponse mechanisms, the normal approxi-

mation bootstrap performs well, with empirical coverage within Monte Carlo error of the nominal

level of 0.95 across both sample sizes and number of bootstrap replicates. The percentile boot-

strap produces somewhat anticonservative confidence intervals, although its performance tends to

improve with a larger number of bootstrap replicates.
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Figure S2: Integrated absolute bias of the CIR procedure for estimating the survival function under current status
sampling with nonresponse. From left to right, the columns represent nonresponse Scenarios 1, 2 and 3, ordered from
lowest to highest nonresponse level. The top and bottom rows denote the standard CIR method using only complete
cases and the extended CIR method accounting for nonresponse. The x-axis corresponds to sample size. The black
line denotes zero bias.

S4. Supplementary information for HCT data analysis

This section contains supplementary information on the analysis of the HCT long COVID survey

data.

S4.1 Eligibility criteria for HCT enrollment

The eligibility criteria were

1. a valid university identification number;

2. age 13 years or older;

3. working or attending classes in-person at the university campus at least once per month

4. living within commuting distance of one of the three campuses

5. ability to provide consent in English.

Any individual who met the inclusion criteria could enroll in the parent HCT study.
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Figure S3: Confidence interval coverage using the CIR procedure for estimating the survival function under current
status sampling with nonresponse. From left to right, the columns represent nonresponse Scenarios 1, 2 and 3, ordered
from smallest to largest degree of nonresponse. The top and bottom rows denote the standard CIR method using
only complete cases and the extended CIR method accounting for nonresponse. The x-axis displays the true value
of the distribution function. The black line denotes the nominal 95% coverage level.

S4.2 Algorithm library for Super Learner

For data analyses and simulations Super Learner [15] was implemented with a library consisting

of the marginal mean, logistic regression, multivariate adaptive regression splines [30], generalized

additive models [31], random forests [32], and gradient boosted trees [33].

S4.3 Supplementary figures

Figure S8 shows the distribution of survey response time Y among HCT survey respondents.
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Figure S4: Confidence interval coverage using the CIR procedure for estimating the survival function under current
status sampling with nonresponse. From left to right, the columns represent nonresponse Scenarios 1, 2 and 3, ordered
from smallest to largest degree of nonresponse. The top and bottom rows denote the standard CIR method using
only complete cases and the extended CIR method accounting for nonresponse. The x-axis corresponds to sample
size. The black line denotes the nominal 95% coverage level.
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Figure S5: Performance of nonparametric bootstrap confidence intervals for the Cox model coefficients under current
status sampling and nonresponse in Scenario 1. The columns represent different numbers of bootstrap replicates, and
the rows represent the regression coefficients for the three covariates included in the model. In each plot, the solid
black line shows the confidence interval coverage of nominal 95% Wald-type confidence intervals based on a Normal
approximation, while the dashed black line shows the coverage of nominal 95% percentile confidence intervals. The
red line denotes 95% coverage.
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Figure S6: Performance of nonparametric bootstrap confidence intervals for the Cox model coefficients under current
status sampling and nonresponse in Scenario 2. The columns represent different numbers of bootstrap replicates, and
the rows represent the regression coefficients for the three covariates included in the model. In each plot, the solid
black line shows the confidence interval coverage of nominal 95% Wald-type confidence intervals based on a Normal
approximation, while the dashed black line shows the coverage of nominal 95% percentile confidence intervals. The
red line denotes 95% coverage.
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Figure S7: Performance of nonparametric bootstrap confidence intervals for the Cox model coefficients under current
status sampling and nonresponse in Scenario 3. The columns represent different numbers of bootstrap replicates, and
the rows represent the regression coefficients for the three covariates included in the model. In each plot, the solid
black line shows the confidence interval coverage of nominal 95% Wald-type confidence intervals based on a Normal
approximation, while the dashed black line shows the coverage of nominal 95% percentile confidence intervals. The
red line denotes 95% coverage.
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Figure S8: Histogram of survey response times. Surveys were sent at least 28 days after the positive test.
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