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Abstract

We consider general hidden Markov models that may include exogenous co-
variates and whose discrete-state-space regime sequence has transition prob-
abilities that are functions of observable variables. We show that the param-
eters of the observation conditional distribution are consistently estimated
by quasi-maximum-likelihood even if the Markov dependence of the hidden
regime sequence is not taken into account. Some related numerical results are
also discussed.
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1 Introduction

Consistency and asymptotic normality of least-squares estimators in regression mod-

els in the presence of potential model misspecification (e.g., misspecification of the

response function or misspecification of the dynamic structure of the errors) are well-

established facts (see, e.g., Domowitz and White (1982)). Such fundamental results,

together with the related classical work of Huber (1967), underpin a large body of

literature exploring the feasibility of drawing valid and meaningful inferences from

parametric models that need not necessarily contain the true data-generating pro-

cess (DGP). Numerous results of this kind have been established for a wide variety

of models and estimators, both in static and dynamic settings, ranging from infer-

ence procedures based on estimating equations and moment conditions (e.g., Bates

and White (1985)) to quasi-maximum-likelihood (QML) procedures for conditional

mean and/or conditional variance models (e.g., White (1982, 1994), Levine (1983),

Gourieroux et al. (1984), Newey and Steigerwald (1997)).

This paper adds to the literature by presenting another example of robustness

with respect to misspecification. Specifically, we consider the case of Hidden Markov

Models (HMMs), where observable variables exhibit conditional independence given

an underlying unobservable regime sequence (and, possibly, an exogenous covariate

sequence), focusing on situations where the dependence structure of the regime se-

quence is misspecified. In our set-up, the DGP is taken to be a generalized HMM

that may include covariates and has a finite number of Markov regimes, but the

postulated probability model is a finite mixture model, that is, an HMM with in-

dependent, identically distributed (i.i.d.) regimes. By considering the pseudo-true

parameter set for the QML estimator in the (misspecified) mixture model, it is shown

that the parameters of the conditional distribution of the observable response vari-

ables are consistently estimable even if the dependence of the unobservable regime

sequence is not taken into account. An important distinguishing feature of our anal-

ysis is that it allows the true regime sequence to be a temporally inhomogeneous

Markov chain whose transition probabilities are functions of observable variables.
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This case holds practical significance given the widespread use of both HMMs

and mixture models. HMMs with temporally inhomogeneous regime sequences have

found applications in diverse areas such as biology (e.g., Ghavidel et al. (2015)), eco-

nomics (e.g., Diebold et al. (1994), Engel and Hakkio (1996)), earth sciences (e.g.,

Hughes et al. (1999)) and engineering (e.g., Ramesh and Wilpon (1992)). Tempo-

rally homogenous variants of HMMs and of Markov-switching regression models are

also used extensively in economics and finance (e.g., Engel and Hamilton (1990),

Rydén et al. (1998), Jeanne and Masson (2000), Bollen et al. (2008)), as well as in

biology, computing, engineering and statistics (see Ephraim and Merhav (2002) and

references therein). Statistical inference in such models is typically likelihood-based

and the properties of QML procedures are, naturally, of much interest. Nevertheless,

HMMs are inherently intricate and computationally demanding due to the need to

account for the underlying correlated regime sequence and for the dependence of the

conditional distribution on the current hidden regime. By demonstrating that it is

feasible to use a mixture model — a simpler and computationally less demanding

framework — while still estimating consistently the parameters of the conditional

distribution of the observations, this paper offers a more accessible avenue for prac-

titioners to follow without sacrificing the accuracy of parameter estimates.

In related recent work, Pouzo et al. (2022) considered the asymptotic proper-

ties of the QML estimator in a rich class of models with Markov regimes under

general conditions which allow for autoregressive dynamics in the observation se-

quence, covariate-dependence in the transition probabilities of the hidden regime

sequence, and potential model misspecification. The QML estimator was shown

to be consistent for the pseudo-true parameter (set) that minimizes the Kullback–

Leibler information measure. Unsurprisingly, identifying the possible limit of the

QML estimator when the true probability structure of the data does not necessarily

lie within the parametric family of distributions specified by the model is not al-

ways a feasible task within such a general set-up. This paper provides an answer in

the simpler case of switching-regression models, HMMs and related mixture models.
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Consistency results for misspecified HMMs (without covariates in the outcome equa-

tion) can also be found in Mevel and Finesso (2004) and Douc and Moulines (2012).

Unlike our analysis, however, which allows the regime transition probabilities to be

time-dependent and driven by observable variables, these papers restrict attention

to the case of time-invariant transition mechanisms.

In the next section, we introduce the DGP and statistical model of interest, and

consider QML estimation of the parameters of the outcome equation of a misspecified

HMM. Section 3 discusses numerical results from a simulation study. Section 4

summarizes and concludes.

2 Framework, Results and Discussion

2.1 DGP and Model

Consider a discrete-time stochastic process {(Xt, St)}t≥0 such that Xt = (Yt, Zt,Wt)
′

is an observable variable with values in X ⊂ R3 and St is a latent variable with values

in S := {s1, . . . , sd} ⊂ R, d ≥ 2. The variable St is viewed as the hidden regime

(or state) associated with index t, which is “observable” only indirectly through its

effect on Xt. The following assumptions are made about the DGP:

(i) For each t ≥ 1, the conditional distribution of St given X t−1
0 := (X0, . . . , Xt−1)

and St−1
0 := (S0, . . . , St−1), denoted by Q∗(Zt−1, St−1, ·), depends only on (Zt−1, St−1)

and is such that Q∗(z, s, s
′) > 0 for all (z, s, s′) ∈ Z × S2, where Z ⊂ R is the state

space of {Zt}t≥0.

(ii) For each t ≥ 1, the conditional distribution of (Yt, Zt) given (X t−1
0 , St0,Wt),

denoted by P∗(Wt, St, Zt−1, ·), depends only on (Wt, St, Zt−1) and is specified via the

equations

Yt = µ∗1(St) + γ∗(St)Wt + σ∗1(St)U1,t, (1)

Zt = µ∗2 + ψ∗Zt−1 + σ∗2U2,t, (2)

where µ∗1, γ∗ and σ∗1 are known real functions on S, σ∗1(s), σ∗2(s) ∈ (0,∞) for all

s ∈ S, and ψ ∈ (−1, 1). The noise variables {(U1,t, U2,t)}t≥0 are i.i.d., independent of
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{(St,Wt)}t≥0, and have mean zero, covariance matrix (ωij)
2
i,j=1, with ω11 = ω22 = 1

and ω12 = ρ∗ ∈ (−1, 1), and distribution which is absolutely continuous with respect

to some σ-finite Borel measure. In addition, {(Zt, St)}t≥0 is strictly stationary with

invariant distribution νZS.

(iii) For each t ≥ 1, the conditional distribution of Wt given (X t−1
0 , St0) depends

only on Wt−1; moreover, {Wt}t≥0 is strictly stationary.

Instead of the Markov-switching structure of the DGP, the researcher’s postu-

lated parametric model is a family of finite mixture models (without Markov depen-

dence). Specifically, the model is specified by assuming that the regime variables

{St}t≥1 are i.i.d. with common distribution

Qϑ̄(s) = ϑ̄s ∈ (0, 1), s ∈ S. (3)

In addition, the observable variables {Yt}t≥1 are assumed to satisfy the equations

Yt = µ(St) + γ(St)Wt + σ(St)εt, t ≥ 1, (4)

where µ, γ and σ are known real functions on S (such that σ(s) > 0 for all s ∈ S) and

{εt}t≥1 are i.i.d. random variables, independent of {(St,Wt)}t≥1, with ε1 having the

same distribution as U1,1. The mixture model defined by (3) and (4) is parameterized

by θ := (µ(s), γ(s), σ(s), ϑ̄s)s∈S, which is assumed to take values in a compact set

Θ ⊂ Rq, q > 1. We denote by Pθ(Wt, St, ·) the conditional distribution of Yt given

(Wt, St) that is implied by (4) under each θ ∈ Θ; the corresponding conditional

density is denoted by pθ(Wt, St, ·).

The DGP has a (generalized) HMM structure in which {Yt}t≥0 are independent,

conditionally on the regime sequence {St}t≥0 and an exogenous covariate sequence

{Wt}t≥0 (having the Markov property), so that the conditional distribution of Yt

given the regime and covariate sequences depends only on (St,Wt). The standard

HMM formulation is a special case in which Wt is absent from the outcome equation

(1). The inclusion of the exogenous covariate Wt in (1) and (4) allows the study of

the causal effect of W on Y under different regimes; these causal effects are captured

by γ∗ and are estimable via the mixture specification (3)–(4). It is worth noting
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that, although we focus on scalar responses and covariates for the sake of simplicity,

all our results can be extended straightforwardly to cases where Xt ∈ X ⊂ Rh with

h > 3. For example, Wt may be a vector of covariates, which may include lagged

values of Wt in cases where dynamic causal effects are of interest.

The two most important features of our set-up are that: (a) the true hidden

regimes {St}t≥0 are a temporally inhomogeneous Markov chain whose transition

probabilities depend on the lagged value of the observable variable Zt; (b) the sta-

tistical model is misspecified, in the sense that (P∗, Q∗) is not a member of the

family {(Pθ, Qϑ̄) : θ ∈ Θ}; this is because the dependence structure of the regime

sequence is misspecified. As already discussed in Section 1, this relatively simple

set-up is of much practical interest since HMMs with temporally inhomogeneous

regime sequences have found many applications. Mixture models with i.i.d. regimes

are also popular in many different fields (see McLachlan and Peel (2000), Frühwirth-

Schnatter (2006)).

2.2 QML Estimation

Given observations (X1, . . . , XT ), T ≥ 1, the quasi-log-likelihood function for the

parameter θ is

θ 7→ `T (θ) := T−1

T∑
t=1

ln

(∑
s∈S

ϑ̄spθ(Wt, s, Yt)

)
. (5)

The QML estimator θ̂T of θ is defined as an approximate maximizer of `T (θ) over

Θ, so that

`T (θ̂T ) ≥ sup
θ∈Θ

`T (θ)− ηT ,

for some sequence {ηT}T≥1 ⊂ [0,∞) converging to zero.

It is not too onerous to verify that, under assumptions about (U1,1, U2,1) and Q∗

that are common in the literature (e.g., (U1,1, U2,1) being Gaussian and Q∗(z, s, s
′) =

F (αs,s′ + βs,s′z) for some continuous distribution function F on R whose support is

all of R), the conditions of Pouzo et al. (2022) required for convergence of the QML
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estimator of θ to a well-defined limit are satisfied. Specifically, let

θ 7→ H∗(θ) := EP̄∗

(
ln

p∗(Y1|W1)

p(Y1|W1, θ)

)
,

be the Kullback–Leibler information function, where p(Y1|W1, θ) denotes the condi-

tional density of Y1 given W1 induced by (Pθ, Qϑ̄) for each θ ∈ Θ, p∗(Y1|W1) denotes

the conditional density of Y1 given W1 induced by (P∗, Q∗), and the expectation

EP̄∗(·) is with respect to the distribution P̄∗ of {(Xt, St)}t≥0 induced by (P∗, Q∗).

Then, we have

inf
θ∈Θ∗
||θ̂T − θ|| → 0 as T →∞, (6)

in P̄∗-probability, where

Θ∗ := arg min
θ∈Θ

H∗(θ), (7)

is the pseudo-true parameter (set) and ‖·‖ denotes the Euclidean norm on Rq (cf.

Theorem 1 of Pouzo et al. (2022)).

A sharper result can be established by considering the pseudo-true parameter

Θ∗ under the specified DGP. Together with (6)–(7), the following theorem shows,

that despite the erroneous treatment of hidden regimes as independent, QML based

on the (misspecified) mixture model provides consistent estimators of the true pa-

rameters of the outcome equation.

Theorem 1. The choice µ = µ∗1, σ = σ∗1, γ = γ∗, and (ϑ̄s)s∈S such that Qϑ̄ =

EνZS
[Q∗(Z, S, ·)] is a pseudo-true parameter, i.e., it minimizes the function

θ 7→ EP̄∗

[
ln
∑
s∈S

Qϑ̄(s)

σ(s)
f

(
Y1 − µ(s)− γ(s)W1

σ(s)

)]
,

where f is the common density of U1,1 and ε1.

Proof. Observe that the Kullback–Leibler information function H∗ is proportional

to

θ 7→ −
∫
R2

ln

(∑
s∈SQϑ̄(s)σ(s)−1f ((y − µ(s)− γ(s)w)/σ(s))

f∗(y, w)

)
f∗ (y, w) dydw, (8)
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where

(y, w) 7→ f∗(y, w) =
∑
s∈S

Pr∗(S1 = s)σ∗1(s)−1f ((y − µ∗1(s)− γ∗(s)w)/σ∗1(s)) ,

and Pr∗ stands for the true probability over the hidden regimes, given by

s 7→ Pr∗(S1 = s) =

∫
R×S

∑
s′∈S

Q∗(z, s
′, s)νZS(dz, ds′).

The minimizers of the function in (8) are all θ such that∑
s∈S

Qϑ̄(s)σ(s)−1f ((· − µ(s)− γ(s)·)/σ(s)) = f∗(·).

It is straightforward to verify that the equality above holds for µ = µ∗1, σ = σ∗1,

γ = γ∗, and ϑ̄ such that Qϑ̄(s) = Pr∗(S1 = s).

It is worth remarking that when the minimizer θ∗ identified in Theorem 1 is

unique (and an interior point of Θ), asymptotic normality of
√
T (θ̂T − θ∗) may be

deduced from the results of Pouzo et al. (2022) under suitable differentiability and

moment conditions. These conditions are satisfied, for example, in the case where

P∗ is Gaussian and Q∗ is such that Q∗(z, s, s
′) = F (αs,s′+βs,s′z) for some continuous

distribution function F on R whose support is all of R.

2.3 Discussion

The consistency results in (6)–(7) and in Theorem 1 are quite general, in the sense

that they cover misspecified generalized HMMs with temporally inhomogeneous

regime sequences and arbitrary observation conditional densities. They imply that

dependence of the regimes in such HMMs may be safely ignored as long as the pa-

rameters of interest are those of the conditional density of the observations given

the regimes and the covariates.

Treating the regimes as an independent sequence simplifies likelihood-based in-

ference compared to the case of correlated Markov regimes. In the latter case, an

added difficulty, as demonstrated by Pouzo et al. (2022), is that consistent QML

estimation of the true parameter values in a model with Markov regimes having
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covariate-dependent transition functions typically requires joint analysis of equa-

tions such as (1) and (2) with ρ∗ 6= 0, even if the parameters of interest are only

those associated with (1). Furthermore, as pointed out by Hamilton (2016), rich

parameterizations of the transition mechanism of the regime sequence may not nec-

essarily be desirable when working with relatively short time series because of legit-

imate concerns relating to potential overfitting and inaccurate statistical inference.

In such cases, parsimonious specifications which provide good approximations to key

features of the data — and, in our setting, consistent estimates of the parameters

of interest — can be attractive and useful.

We note that, for a class of regime-switching models in which the regime se-

quence {St} is a temporally homogeneous, two-state Markov chain, an observation

analogous to that implied by Theorem 1 was made by Cho and White (2007). They

argued that the parameters of a model for the conditional distribution of the ob-

servable variable Xt, given (X t−1
0 , St0), can be consistently estimated by QML based

on a misspecified version of the model with i.i.d. regimes – and exploited this result

to construct a quasi-likelihood-ratio test of the null hypothesis of a single regime

against the alternative hypothesis of two regimes. However, as Carter and Steiger-

wald (2012) demonstrated, consistency of the QML estimator for the true parame-

ters in such a setting does not, in fact, hold if the model and the DGP contain an

autoregressive component. This observation remains true in our more general set-

up with temporally inhomogeneous hidden regime sequences. Specifically, a result

analogous to that in Theorem 1 does not hold when lagged values of Yt are present

as covariates in the outcome equations (1) and (3) (e.g., as in Markov-switching

autoregressive models). In this case, misspecification of the dependence structure

of the regimes will affect estimation of all the parameters, not just those associated

with the transition functions of the regime sequence.
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3 Numerical Examples

As a numerical illustration of the results discussed in Section 2, we report here

findings from a small Monte Carlo simulation study in which the effect on QML

estimators of ignoring Markov dependence of hidden regimes is assessed.

In the experiments, artificial data are generated according to the generalized

HMM defined by (1)–(2), with the regimes {St} forming a Markov chain on S =

{1, 2} such that

Pr(St = s|St−1 = s, Zt−1 = z) = [1 + exp(−α∗s − β∗sz)]−1, s ∈ {1, 2}, z ∈ R,

and the covariates {Wt} satisfying the autoregressive model

Wt = µ∗3 + δ∗Wt−1 + σ∗3U3,t. (9)

The noise variables {(U1,t, U2,t, U3,t)} are i.i.d, Gaussian, independent of {St}, with

mean zero and covariance matrix 1 ρ∗ ω∗

ρ∗ 1 0
ω∗ 0 1

 .
The parameter values are α∗1 = α∗2 = 2, β∗1 = −β∗2 = 0.5, µ∗1(1) = −µ∗1(2) = 1,

γ∗(1) = 0.5, γ∗(2) = 1, σ∗1(1) = σ∗1(2) = 1, µ∗2 = µ∗3 = 0.2, ψ∗ = δ∗ = 0.8,

σ∗2 = σ∗3 = 1, ρ∗ ∈ {0, 0.65}, and ω∗ ∈ {0, 0.65}.

For each of 1000 samples of size T ∈ {200, 800, 1600, 3200} from this DGP,

estimates of the parameters of the outcome equation are obtained by maximizing

the quasi-log-likelihood function (5) associated with the mixture model (3)–(4), with

Pr(St = 1) = ϑ̄ and εt ∼ N (0, 1). Monte Carlo estimates of the bias of the QML

estimators of µ(1), µ(2), γ(1), γ(2), σ(1) and σ(2) are reported in Table 1. We also

report the ratio of the sampling standard deviation of the estimators to estimated

standard errors (averaged across replications for each design point), with the latter

computed from the observed information matrix, that is, the negative Hessian of

the quasi-log-likelihood function.
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The results for ω∗ = 0 shown in the top panel of Table 1 reveal that, although

the estimators of µ(1) and µ(2) are somewhat biased in the smallest of the sample

sizes considered, finite-sample bias becomes insignificant in the rest of the cases

(regardless of the value of the correlation parameter ρ∗), as is to be expected in light

of the result in Theorem 1. Furthermore, unless the sample size is small, estimated

standard errors are very accurate as approximations to the standard deviation of

the QML estimators. This finding is perhaps somewhat surprising since the inverse

of the observed information matrix is not necessarily a consistent estimator for the

asymptotic covariance matrix of the QML estimator in a misspecified model (cf.

Theorem 5 of Pouzo et al. (2022)).

The bottom panel of Table 1 contains results for a DGP with ω∗ = 0.65. A

non-zero value for the correlation parameter ω∗ violates the exogeneity assumption

about Wt that is maintained throughout Section 2 (and it is not obvious what

the limit point of the QML estimator based on (5) might be in this case). The

simulation results show that estimators of the parameters of the outcome equation

are significantly biased, even for the largest sample size considered in the simulations.

Biases in this case are clearly a consequence of the mixture model being misspecified

beyond the assumption of i.i.d. regimes, the additional source of misspecification

being the incorrect assumption of uncorrelatedness of the covariate Wt and the noise

variable U1,t. The results relating to the accuracy of the estimated standard errors

are not substantially different from those obtained with ω∗ = 0.

As pointed out in Section 2.3, another situation in which ignoring Markov depen-

dence of the regimes is costly involves outcome equations that contain autoregressive

dynamics. To demonstrate numerically the difficulties in such a case, 1000 artificial

samples of various sizes are generated according to the Markov-switching autore-

gression

Yt = µ∗1(St) + φ∗Yt−1 + σ∗1(St)U1,t, (10)

with φ∗ = 0.9. The remaining parameter values and the generating mechanisms of

{Zt}, {St} and {(U1,t, U2,t)} are the same as in earlier simulation experiments. For
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Table 2: Bias and Standard Deviation of QML Estimators (Markov-Switching Au-
toregressive Model)

T µ(1) µ(2) σ(1) σ(2) φ µ(1) µ(2) σ(1) σ(2) φ
ρ∗ = 0 ρ∗ = 0.8

Bias
200 0.424 -0.288 -0.209 0.008 0.060 0.244 -0.142 -0.136 -0.004 0.052
800 0.263 -0.333 -0.062 0.036 0.068 0.140 -0.240 -0.017 0.010 0.059
1600 0.186 -0.356 -0.006 0.046 0.069 0.128 -0.271 0.008 0.027 0.060
3200 0.135 -0.347 0.018 0.048 0.069 0.125 -0.285 0.015 0.033 0.061

Standard Deviation / Standard Error
200 1.320 1.469 1.445 1.461 1.025 1.422 1.527 1.429 1.441 0.975
800 1.318 1.359 1.345 1.332 0.855 1.082 1.085 1.161 1.145 0.817
1600 1.213 1.243 1.239 1.320 0.881 1.179 1.153 1.170 1.150 0.838
3200 1.165 1.220 1.093 1.224 1.003 1.126 1.119 1.089 1.167 0.831

each artificial sample, the parameters of the regime-switching autoregressive model

Yt = µ(St) + φYt−1 + σ(St)εt, (11)

are estimated by maximizing the quasi-log-likelihood function associated with it

under the assumption that the regime variables {St} are i.i.d., with Pr(St = 1) = ϑ̄,

and the noise variables {εt} are i.i.d., independent of {St}, with εt ∼ N (0, 1).

The Monte Carlo results reported in Table 2 reveal substantial finite-sample

bias in the case of the QML estimators of the intercepts µ(1) and µ(2). The QML

estimators of σ(1), σ(2) and φ generally exhibit little bias, which may be partly

due to the fact that the simulation design is such that the values of φ∗ and σ∗1

are the same regardless of the realized regime. Unlike the HMM case considered

before, estimated standard errors obtained from the observed information matrix

tend to be inaccurate as approximations to the finite-sample standard deviation of

the QML estimators in the autoregressive model, even for those parameters that are

estimated with little bias. We note that qualitatively similar results are obtained

when, in addition to Yt−1, an exogenous covariate Wt, generated as in (9), is included

in the right-hand side of both (10) and (11).
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4 Conclusion

In this paper, we have considered QML estimation of the parameters of a generalized

HMM with exogenous covariates and a finite hidden state space. A distinguishing

feature of our approach is that it allows the regime sequence to be a temporally

inhomogeneous Markov chain with covariate-dependent transition probabilities. It

has been shown that a mixture model with independent regimes is robust in the

presence of correlated Markov regimes, in the sense that the parameters of the

outcome equation can be consistently estimated by maximizing the quasi-likelihood

function associated with the misspecified mixture model.

One possible application of our main result is to exploit it to construct tests for

the number of regimes in HMMs with covariate-dependent transition probabilities,

adopting a QML-based approach analogous to that of Cho and White (2007). As is

well known, such testing problems are non-standard and typically involve unidenti-

fiable nuisance parameters, parameters that lie on the boundary of the parameter

space, singularity of the Fisher information matrix, and non-quadratic approxima-

tions to the log-likelihood function.
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