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Abstract. In this paper we study the problem of optimally paying out div-

idends from an insurance portfolio, when the criterion is to maximize the ex-
pected discounted dividends over the lifetime of the company and the portfolio

contains claims due to natural catastrophes, modelled by a shot-noise Cox claim

number process. The optimal value function of the resulting two-dimensional
stochastic control problem is shown to be the smallest viscosity supersolution of

a corresponding Hamilton-Jacobi-Bellman equation, and we prove that it can

be uniformly approximated through a discretization of the space of the free
surplus of the portfolio and the current claim intensity level. We implement

the resulting numerical scheme to identify optimal dividend strategies for such
a natural catastrophe insurer, and it is shown that the nature of the barrier and

band strategies known from the classical models with constant Poisson claim

intensity carry over in a certain way to this more general situation, leading
to action and non-action regions for the dividend payments as a function of

the current surplus and intensity level. We also discuss some interpretations in

terms of upward potential for shareholders when including a catastrophe sector
in the portfolio.

1. Introduction. Optimal strategies for dividend payout from a surplus process
of an insurance portfolio is a classical object of study in risk theory, starting with
de Finetti [16] and Gerber [17]. Many of the existing results in the literature study
variations of this problem (in terms of objective functions and constraints) under
the assumption that the underlying risk process is a Brownian motion or a classical
Cramér-Lundberg process, see e.g. [7, 8] for an overview. Over the years, it has been
noted that the compound Poisson assumption of the Cramér-Lundberg process is
too restrictive, and that claim number processes of doubly stochastic Poisson type
(Poisson processes with stochastic intensity) are a more natural choice for certain
application areas. The resulting Cox process can lead to tractable models, particu-
larly under the assumption of a Poisson shot-noise intensity, see e.g. Dassios & Jang
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[14] and Albrecher & Asmussen [1]. Such a shot-noise dynamic is for instance a nat-
ural model for claim arrivals in the presence of catastrophes, where at Poissonian
times a sudden jump of random size increases the intensity, leading to more claims
for a certain period, and that additional intensity level then decreases over time
as claims due to that catastrophe get reported and settled. In recent years, such
models have been studied for various purposes, see e.g. Dassios & Zhao [15], Macci
& Torrisi [22], Jang & Oh [20] and Pojer & Thonhauser [24, 25] in an insurance
context, Boxma & Mandjes [13] for a related model in queueing and Schmidt [28]
for applications in finance.

Stochastic control problems for such compound shot-noise Cox processes have,
however, to the best of our knowledge not been addressed in the respective literature,
with the notable recent exception of Liu & Cadenillas [21], who study a problem
of optimal premiums, retention and prevention strategies which maximize expected
utility of the insurer and policyholders in a certain way.

In this paper we will study the problem of maximizing expected aggregate dis-
counted dividend payments up to ruin for an insurance risk process of compound
shot-noise Cox type. In addition to the mathematical interest in studying such a
problem, this allows to some extent to assess and establish profitable strategies for
investors of an insurance company which cover catastrophic risks, such as floods and
storms, where one exogenous event leads to a sudden and time-transient increase
of the claim arrival intensity. The latter is likely to become a more prominent topic
in the future, not the least because of climate change and an increased frequency
of catastrophes. While the setup of this paper is stationary, it may serve as a
benchmark for future studies where also an anticipated increase of the frequency of
catastrophes during the period of consideration and its effects on optimal strategies
can be considered. Methodologically, the problem studied in this paper is a sto-
chastic control problem in two dimensions. Due to the Markovian structure of the
shot-noise process, the risk process is Markovian as a function of the current surplus
and the current intensity level. Two-dimensional control problems have recently re-
ceived quite some attention in risk theory, see e.g. [3, 4, 18] and [19]. However, the
actual techniques needed in the present paper are somewhat different from the ones
in the aforementioned papers, since the second dimension affects the dynamics of
the process differently, and a substantial amount of technicalities will be needed to
tackle the posed optimization problem in a rigorous way.

We will prove that the optimal value function of this stochastic control problem
is the smallest viscosity supersolution of a Hamilton-Jacobi-Bellman equation and
we will also show that it can be approximated uniformly by a sufficiently fine dis-
cretization of the surplus process and the intensity process. This will then allow
us to determine numerically the value function of this optimal dividend problem
together with the optimal dividend payment strategies. It will turn out that the
additional variability of the claim intensity process leads to an upward potential for
the shareholders of the insurance company. Under the assumption that the inten-
sity process can be observed (which we tacitly assume here, but it is not unrealistic,
as the jumps in the shot-noise process of the intensity are the documented catas-
trophes and the used decay function may be assumed known as a consequence of a
modelling approach on past claim settlement experiences), the company can in fact
steer the dividend streams according to the present situation of claim intensity and
surplus level, and benefit from the already received premiums from the underlying
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policyholders. The numerical results in this paper allow to quantify this effect,
under the albeit somewhat simplistic model assumptions.

The structure of the remaining paper is as follows. Section 2 introduces the un-
derlying insurance model and the concrete formulation of the considered stochastic
control problem. Section 3 derives some basic properties of the optimal value func-
tion. Section 4 formulates the corresponding Hamilton-Jacobi-Bellman equation
and shows that the optimal value function can be identified as its smallest viscos-
ity supersolution, and Section 5 briefly discusses some asymptotic properties of the
latter. Subsequently, in Section 6 we show that one can uniformly approximate
the optimal value function through admissible strategies defined on a discretization
grid of the surplus values. In Section 7 we then pave the way for actual numerical
solutions of the control problem by discretizing also the intensity space and showing
that the optimal value function can be approximated uniformly that way. In Section
8 we first describe how to set up the numerical scheme concretely, and afterwards
we apply the procedure to a number of parameter settings from classical compound
Poisson examples, so that we can study the deviations of the optimal strategies
when introducing the shot-noise process for the claim number intensity. Section 9
concludes and gives some practical interpretations of the obtained results as well
as possible directions for future research. All proofs are delegated to an extensive
appendix.

2. The model. Consider a free surplus process of an insurance portfolio given by

Xt = x+ pt−
Nt∑
j=1

Uj , (1)

where x is the initial surplus, p is the premium rate and Ui is the size of the i-th
claim (arriving at time τi). All claims are assumed to be i.i.d. positive random
variables with distribution function FU and finite expectation. Let the process

Nt = #{j : τj ≤ t}

be an inhomogeneous Poisson process with intensity λt, corresponding to the num-
ber of claims up to time t. The process Nt and the random variables Ui are inde-
pendent of each other. We assume that the intensity λt is a shot-noise process, that
is

λt = λct +

Ñt∑
k=1

Yk e
−d(t−Tk), (2)

where

λct = λ+ e−dt (λ− λ) . (3)

Here λ ≥ λ is the initial intensity and Ñt = #{k : Tk ≤ t} is a Poisson process of
constant intensity β. Note that λt ≥ λ for all t ≥ 0 and if the initial intensity is
λ > λ, then λt > λ for all t ≥ 0. See Figure 2.1 for an illustration of a sample path of
λt for λ = λ. Tk corresponds to the arrival times of catastrophes that produce jumps
in the intensity λt and the upward jumps Yk are assumed to be i.i.d. positive random
variables with distribution function FY and finite expectation. In this context, λ can
also be interpreted as a base intensity for incoming claim occurrences, for instance
also a ‘regular’ non-catastrophic policies part in the portfolio.

Following Dassios and Jang [14], we can describe this model in a rigorous way
by defining first the compound Cox filtered space. Given any intensity-filtered
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Figure 2.1. Sample path of λt

probability space (Ω0,F0,
(
F0

t

)
t≥0

,P0) and any intensity random process λ =

(λt)t≥0 adapted to
(
F0

t

)
t≥0

, let us define the compound Cox filtered space (Ωλ,Fλ,(
Fλ

t

)
t≥0

,Pλ) conditional on the process λ in the following way. The sample set is

Ωλ = Ω0 × Ω,

where

Ω = {(τn, Un)n≥1 ∈ [0,∞)× (0,∞) : τn < τn+1 and lim
n→∞

τn = ∞}; (4)

Fλ is the complete σ-field generated by the σ-field F0 and the random variables
τn : Ωλ → [0,∞) and Un : Ωλ → (0,∞); the filtration

(
Fλ

t

)
t≥0

, where Fλ
t is the

complete σ-field generated by the σ-field F0
t and the random variables τn : Ωλ →

[0,∞) and Un : Ωλ → (0,∞) for τn ≤ t; and Pλ the probability measure defined in
Fλ which satisfies

1. (Un)n≥1 is a sequence of i.i.d. random variables with Pλ(Un ≤ x) = FU (x);
2. the counting process Nλ

t : Ωλ → N0 defined by Nλ
t = #{n : τn ≤ t} satisfies

Pλ(Nλ
t2 −Nλ

t1 = k
∣∣λs, t1 ≤ s ≤ t2) = e−

∫ t2
t1

λsds 1

k!
(

∫ t2

t1

λsds)
k

for t1 < t2;
3. the random variables Un are independent of the counting process Nλ

t .

The shot-noise intensity filtered probability space is then defined as

(ΩSN ,FSN ,
(
FSN

t

)
t≥0

,PSN ),

where

ΩSN =

{
(Tk, Yk)k≥1 ∈ [0,∞)× (0,∞) : Tk < Tk+1 and lim

k→∞
Tk = ∞

}
and FSN

t is the σ-field generated by the set {(Tk, Yk)k≥1 : Tk ≤ t}. The Poisson
process

Ñt = #{k : Tk ≤ t}
of constant intensity β is independent of the random variables Yk. The intensity
shot-noise process λt with initial intensity λ is given by (2).

Given any λ ≥ λ, we consider in this paper the compound Cox filtered space
(Ω,F , (Ft)t≥0 ,P) conditional on the intensity shot-noise process (λt)t≥0 with ini-

tial intensity λ given by (2). Here the intensity filtered probability space (Ω0,F0,
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F0

t

)
t≥0

,P0) = (ΩSN ,FSN ,
(
FSN

t

)
t≥0

,PSN ), the counting process Nt : Ω → N0 is

called the Cox process conditional on the intensity shot-noise process λt and the
surplus given in (1) is called the compound Cox process with drift p generated by
the shot-noise process λt with initial intensity λ and initial surplus x.

Let us define

Λt =

∫ t

0

λsds. (5)

Then,

P(τj+1 − τj ≤ t| Fτj ) = E
[
1− e−

∫ t
0
λs+τj

ds
∣∣∣Fτj

]
= E

[
1− e−(Λ(t+τj)−Λ(τj))

∣∣∣Fτj

]
and in particular

P(τ1 ≤ t) = E
[
1− e−Λt

]
.

The insurance company uses part of the surplus to pay dividends to the share-
holders. Let us define the dividend strategy L = (Lt)t≥0 where Lt denote the

cumulative dividends paid up to time t. The strategy (Lt)t≥0 is admissible if it is

non-decreasing, càdlàg (right continuous with left limits), adapted with respect to
the (Ft)t≥0, and if it satisfies L0 ≥ 0 and Lt ≤ Xt for t < τL, where the ruin time

τL is defined as
τL = inf {t ≥ 0 : Xt − Lt− < 0} . (6)

This last condition means that the ruin time can only occur at the arrival of a claim
and that no lump dividend payment can be made at the ruin time. We define the
controlled surplus process as

XL
t = Xt − Lt. (7)

Denote by Πx,λ the set of admissible dividend strategies starting with initial surplus
level x ≥ 0 and initial intensity λ ≥ λ. For any initial surplus level x ≥ 0 and initial
intensity λ ≥ λ, we can write the optimal value function as

V (x, λ) = sup
L∈Πx,λ

J(L;x, λ), (8)

where

J(L;x, λ) = E(
∫ τL

0−
e−qtdLt). (9)

Here q > 0 is a constant discount factor. We assume that the premium rate p is
determined using an expected value principle w.r.t. the asymptotic distribution of
λt. That is,

p = (1 + η)E(U1) lim
t→∞

E(
Λt

t
) := (1 + η)E(U1)λav, (10)

where η > 0 is the relative safety loading.
Adapting results of [14, Cor.2.4], one can derive the following explicit expressions

(we delegate the proof to Appendix A.1).

Proposition 2.1. We have that

E(λt) = λ(1− e−dt) + λe−dt +
(1− e−dt)

d
β E(Y1),

E(Λt) = λt− λ

(
1− e−dt

d

)
+

(1− e−dt)

d
λ+

(e−dt − 1 + dt)

d2
β E(Y1)

and

λav = λ+
β E(Y1)

d
.
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3. Basic results. The proofs of the propositions in this section are in Appendix
A.2. First, we show that V (x, ·) is non-increasing on λ and uniformly continuous.

Proposition 3.1. (1) If λ1 < λ2, then V (x, λ1) ≥ V (x, λ2).(2) Given ε > 0,
there exists δ > 0 (independent of x, λ1 and λ2) such that if λ2 − λ1 < δ, then
V (x, λ1)− V (x, λ2) ≤ ε. So V is uniformly continuous in λ.

Next, we prove that V (·, λ) : [0,∞) → (0,∞) is locally Lipschitz.

Proposition 3.2. Take x2 > x1, then

0 ≤ V (x2, λ)− V (x1, λ) ≤ V (x2, λ)
βλ+ q

p
(x2 − x1).

In the next proposition, we show a locally Lipschitz result for V (x, ·) in the
open set (λ,∞). At the lower boundary λ we only have the uniformly continuity
result given in Proposition 3.1, because the Lipschitz constant obtained in the next
proposition blows up at λ = λ.

Proposition 3.3. Consider λ < λ1 < λ2, then

0 ≤ V (x, λ1)− V (x, λ2) ≤ V (x, λ1)
βλ2 + q

d(λ1 − λ)
(λ2 − λ1) .

Remark 3.4. The dividend optimization problem with constant intensity was stud-
ied intensively in the literature (see e.g. Schmidli [27, Sec.2.4] and Azcue and Muler
[9]). Unlike the shot-noise optimization problem, this constant-intensity problem is
one-dimensional. Let us denote by vλ(x) the optimal value function with constant
intensity λ and premium rate p; it is known that vλ is non-decreasing with vλ(x)−x
positive, non-decreasing and bounded. Moreover, limλ→∞ vλ(x) = x.

Remark 3.5. From Proposition 3.1, we obtain that V (x, λ) ≤ vλ(x) for all x ≥ 0
and λ ∈ [λ,∞). So, the optimal value function V satisfies V (x, λ) ≤ vλ(x) ≤ x+K
for some K > 0.

We now state the so-called Dynamic Programming Principle (DPP). The proof
is similar to the one given in Lemma 1.2 of [10].

Lemma 3.6. For any initial surplus x ≥ 0 and any stopping time τ , we can write

V (x, λ) = supL∈Πx,λ

(
E(
∫ τ∧τL

0−
e−qsdLs + e−q(τ∧τL)I{τ∧τL<τL}V (XL

τ∧τL , λτ∧τL)
)
.

Finally, the asymptotic behavior of V as λ goes to infinity can be determined.

Proposition 3.7. It holds that for all x ≥ 0, limλ→∞ V (x, λ) = x.

4. Hamilton-Jacobi-Bellman equation. In this section we obtain the Hamilton-
Jacobi-Bellman (HJB) equation associated to the optimization problem (8). These
results are a generalization to the two-dimensional case of the ones given in [10,
Sec.3] for the one-dimensional case. The proofs of the results of this section and
the auxiliary results are deferred to Appendix A.3.

The HJB equation of this optimization problem is given by

max{L(V )(x, λ), 1− Vx(x, λ)} = 0, (11)

where

L(V )(x, λ) = pVx(x, λ)− d (λ− λ)Vλ(x, λ)− (q + λ+ β)V (x, λ)

+λ
∫ x

0
V (x− α, λ)dFU (α) + β

∫∞
0
V (x, λ+ γ)dFY (γ).

(12)
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Since the optimal value function V is locally Lipschitz but could be not differ-
entiable at some points, we cannot say that V is a solution of the HJB equation,
we prove instead that V is a viscosity solution of the corresponding HJB equation.
Let us define this notion.

Definition 4.1. A uniformly continuous function u : [0,∞)× [λ,∞) → R, that is
locally Lipschitz in (0,∞) × [λ,∞), is a viscosity supersolution of (11) at (x, λ) ∈
(0,∞) × (λ,∞) if any continuously differentiable function φ : (0,∞) × [λ,∞) →
R such that φ (y, ·) is bounded for any y ≥ 0, φ(x, λ) = u(x, λ) and such that u−φ
reaches the minimum at (x, λ) satisfies

max {L(φ)(x, λ), 1− φx(x, λ)} ≤ 0.

A uniformly continuous function u : [0,∞) × [λ,∞) → R, that is locally Lipschitz
in (0,∞)× [λ,∞), is a viscosity subsolution of (11) at (x, λ) ∈ (0,∞)× (λ,∞) if any
continuously differentiable function ψ : (0,∞) × (λ,∞) → R such that ψ (y, ·) is
bounded for any y ≥ 0, ψ(x, λ) = u(x, λ) and such that u−ψ reaches the maximum
at (x, λ) satisfies

max {L(ψ)(x, λ), 1− ψx(x, λ)} ≥ 0.

A function u : (0,∞)× (λ,∞) → R which is both supersolution and subsolution at
(x, λ) ∈ (0,∞)× (λ,∞) is called a viscosity solution of (11) at (x, λ).

Proposition 4.1. V is a viscosity solution of the HJB equation (11) at any (x, λ) ∈
(0,∞)× (λ,∞).

From Remark 3.5, the function V satisfies the growth condition

u(x, λ) ≤ K + x for all (x, λ) ∈ (0,∞)× (λ,∞). (13)

We have the following characterization of the optimal value function.

Proposition 4.2. The optimal value function V is the smallest viscosity super-
solution of (11) among those that are non-increasing in λ and satisfy the growth
condition (13).

From the previous proposition we deduce the usual viscosity verification result:

Corollary 4.3. Consider a family of admissible strategies {Lx,λ ∈ Πx,λ : (x, λ) ∈
(0,∞)×(λ,∞)}. If the functionW (x, λ) := J(Lx,λ;x, λ) is a viscosity supersolution
of (11), then W (x, λ) is the optimal value function. Also, if for each k ≥ 1 there

exists a family of strategies {Lx,λ
k ∈ Πx,λ : (x, λ) ∈ (0,∞) × (λ,∞)} such that

W (x, λ) := limk→∞ J(Lx,λ
k ;x, λ) is a viscosity supersolution of the HJB equation

(11) in (0,∞)× (λ,∞), then W is the optimal value function V .

As it is usual for these type of problems, the way in which the optimal value
function V (x, λ) solves the HJB equation suggests that the state space [0,∞) ×
[λ,∞) is partitioned into two regions: a no-action region NA in which no dividends
are paid and an action region A in which dividends are paid. Roughly speaking,
the points in the NA region satisfy L(V ) = 0 and 1− Vx < 0 and the points in A
satisfy L(V ) ≤ 0 and 1− Vx = 0.
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5. Asymptotic properties of the optimal value function. In the following
proposition, we use Corollary 4.3 in order to prove that there exists an explicit
threshold p/q, such that if the surplus is above this explicit threshold, then one
should pay at least the exceeding surplus as dividends, regardless of the current
intensity of the shot-noise process. Hence [p/q,∞)× [λ,∞) ⊂ A but this inclusion
is strict.

The proofs of the results of this section and the auxiliary results are deferred to
Appendix A.4.

Proposition 5.1. V (x, λ) = x− p/q + V (p/q, λ) for x ≥ p/q.

We have the following uniform convergence when the current intensity of the
shot-noise process goes to infinity.

Proposition 5.2. limλ→∞
(
supx≥0 V (x, λ)− x

)
= 0.

Remark 5.3. For technical reasons, we will also define an extension of admissible
strategies in which the insurance company can pay all the surplus immediately as
dividends and finish the insurance business at any time. More precisely, let us
consider (as before) Lt as the cumulative dividend payment strategy up to time t
and τF is a stopping (finite or infinite) time at which the company pays all the
surplus immediately as dividends and finishes the insurance business. We say that
the strategy π̃ =

(
L, τF

)
is admissible if L is non-decreasing, càdlàg, adapted with

respect to the filtration generated by the process (Xt, λt), satisfies Lt ≤ Xt up to
ruin time and τF is a stopping time with respect to the filtration generated by the

process (Xt, λt). We define Π̃x,λ as the set of all π̃-admissible strategies. Take any

L ∈ Πx,λ then π̃ = (L,∞) ∈ Π̃x,λ so we can think that Πx,λ is contained in Π̃x,λ.

Let us define the value function of any strategy π̃ ∈ Π̃x,λ as

J(π̃;x, λ) = E(
∫ τL∧τF

0−
e−qtdLt + I{τF<τL}e

−qτF

XL
τF ).

It is straightforward to see that the optimal value function defined in (8) satisfies

V (x, λ) = sup
π̃∈Π̃x,λ

J(π̃;x, λ) (14)

because it is never optimal to pay all the current surplus and finish the business.

6. Approximation of the value function by a discretization of the surplus.
In this section we show that it is possible to approximate uniformly the optimal
value function V with value functions of admissible strategies that are constructed
through a discrete set on the surplus level. These strategies are stationary in the
sense that they only depend on the current surplus and intensity. Moreover, the
only possible options are to either pay a lump sum of dividends or not paying any
dividends. The result of this section follows closely the ones in [11]; in that paper,
the intensity of the arrival of claims was constant and so this approach makes it
possible to approximate numerically the optimal value function. However, in the
model of the present paper, the situation is more complicated since the intensity of
the arrival of claims changes over time. In contrast to [11], in this section we will
only obtain a semi-discrete result that is not sufficient for the numerical results.
In the next section, we will also discretize the intensity process arrivals in order to
obtain a numerical scheme. The proofs of the results of this section can be found
in Appendix A.5.
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More precisely, we construct in this section a family of admissible strategies
for any point in a subset of [0,∞) × [λ,∞) and then extend it to the whole set
[0,∞) × [λ,∞). We will show that the value functions of these strategies approxi-
mate uniformly the optimal value function V .

Given any approximation parameter δ > 0, we define the grid domain

Gδ :=
{
xδn = npδ : n ≥ 0

}
(15)

in the surplus state space [0,∞); we construct first a subfamily of admissible strate-

gies Π̃δ
xδ
n,λ

⊂ Π̃xδ
n,λ

for any point
(
xδn, λ

)
∈ Gδ × [λ,∞), and afterwards a subfamily

of admissible strategies Π̃δ
x,λ ⊂ Π̃x,λ for any point (x, λ) ∈ [0,∞).

Let us define the subfamily Π̃δ
x,λ ⊂ Π̃x,λ for any point (x, λ) ∈ [0,∞)× [λ,∞) in

a precise way.
Consider first the case in which (x, λ) ∈ Gδ × [λ,∞), so x = xδn for some n ≥ 0.

The idea of this construction is to find, at each point in Gδ × [λ,∞), the best local
strategy among the ones suggested by the operators of the HJB equation (11).
These possible local strategies are: either the company pays no dividends or pays
immediately a lump sum pδ as dividends; moreover, the company can finish the
insurance activity at any time. We modify these local strategies in such a way that
the controlled surplus always lies in Gδ immediately after the arrival of a claim.
Let τ and U be the arrival time and the size of the next claim, and T and Y be
the arrival time and the size of the next intensity upward jump. We introduce the
auxiliary function

ρδ(x) := max{xδn : xδn ≤ x} (16)

which gives the closest point of the grid Gδ below x.We first define the three possible
control actions at any point of Gδ × [λ,∞) as follows:

• Control action E0: Pay no dividends up to the time δ ∧ τ ∧ T .
1. In the case that δ < τ ∧ T , the surplus at time δ is xδn+1 ∈ Gδ.

2. If δ ∧ T ≥ τ , the uncontrolled surplus at time τ is xδn + τp − U ; if this
value is positive, the company pays immediately the minimum amount
of dividends in such a way that the controlled surplus lies in the closest
point of the grid below xδn + τp − U ; this end surplus can be written
ρδ(xδn + τp− U) and the amount paid as dividends is equal to xδn + τp−
U − ρδ(xδn + τp− U); ruin occurs in case the surplus xδn + τp− U < 0 at
time τ ≤ δ ∧ T .

3. If T < δ ∧ τ, the end surplus is ρδ(xδn + Tp) and the amount paid as
dividends is xδn + Tp− ρδ(xδn + Tp).

• Control actions E1: The company pays immediately pδ as dividends, so the
controlled surplus becomes xδn−1 ∈ Gδ. The control action E1 can only be

applied for current surplus xδn > 0.
• Control action EF : The manager opts to pay the current surplus xδn as divi-
dends and to close the company.

We denote the space of control actions as

E = {EF ,E1,E0}. (17)

Consider Π̃δ
xδ
n,λ

⊂ Π̃xδ
n,λ

as the set of all the admissible strategies with initial surplus

xδn ∈ Gδ which can be obtained by a sequence of control actions in E . Note that if
E0 is chosen, the next control action depends on the end surplus and intensity. The
length of this sequence could be finite or infinite, in the case that is finite the last
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control action is either E0 in the case that ruin occurs, or EF because the control
action EF finishes the sequence.

Finally, we introduce Π̃δ
x,λ ⊂ Π̃x,λ for any point (x, λ) ∈ [0,∞) in the case

that x /∈ Gδ. Indeed, Π̃δ
x,λ is the subfamily of admissible strategies π̃ which pays

x − ρδ(x) as dividends immediately and then follows any strategy π̃1 in Π̃δ
ρδ(x),λ

with ρδ(x) ∈ Gδ, so we have that

J(π̃;x, λ) = J(π̃1; ρ
δ(x), λ) + x− ρδ(x).

We define

V δ(x, λ) = sup
π̃∈Π̃δ

x,λ

J(π̃;x, λ) = V δ(ρδ(x), λ) + x− ρδ(x). (18)

We will show that, in a certain sense, limδ→0 V
δ = V uniformly.

It is straightforward that V δ(x, λ) is non-decreasing in x and non-increasing in
λ. In the next proposition, we find a bound on the variations of V δ, which show in
particular that V δ(x, ·) is locally Lipschitz.

Proposition 6.1. The function V δ(x, λ) satisfies

V δ(x2, λ)− V δ(x1, λ) ≤ V δ(x2, λ)
e(β+q)δ+

∫ δ
0
λc
udu − 1

pδ

(
ρδ(x2)− ρδ(x1)

)
+ δp

for x2 ≥ x1 ≥ 0. Also

0 ≤ V δ(x, λ1)− V δ(x, λ2) ≤ V δ(x, λ1)
βλ2 + q

d(λ1 − λ)
(λ2 − λ1)

for λ2 ≥ λ1 > λ and λ2 − λ1 ≤ d(λ1 − λ).

As in [11], we will show that the function V δ restricted to Gδ×[λ,∞) is a solution
of a discrete version of the HJB equation (11), given in (23). In order to define
this discrete HJB equation, let us introduce the operators related to the control
actions in E . Consider the operators T0, T1 and TF in the set of functions Wδ =
{w : Gδ × [λ,∞) → [0,∞) which are Lebesgue measurable} defined as follows

T0(w)(xδn, λ) := P(δ ∧ T ∧ τ = δ)e−qδw(xδn+1, λ
c
δ) + Iδ(w)(xδn, λ), (19)

T1(w)(xδn, λ) := w(xδn−1, λ) + δp and TF (w)(xδn, λ) := xδn. (20)

Here,

Iδ(w)(x, λ)
:= E(Iδ∧T∧τ=τe

−qτw(ρδ(xδn + pτ − U), λcτ ))

+E(Iδ∧T∧τ=T e
−qTw(xδn, λ

c
T + Y ))

+E(Iδ∧T∧τ=τe
−qτ (x+ pτ − U − ρδ(xδn + pτ − U)))

+E(Iδ∧T∧τ=T e
−qT pT ),

(21)

where τ and U are the arrival time and the size of the next claim, and T and Y are
the arrival time and the size of the next intensity upward jump. We also introduce
the operator T in Wδ as

T := max{T0, T1, TF }. (22)

Given any family of admissible strategies

π̃ =
{
π̃xδ

n,λ
∈ Π̃δ

xδ
n,λ

for
(
xδn, λ

)
∈ Gδ × [λ,∞)

}
,
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we define the value function W : Gδ × [λ,∞) → R of π̃ as

W (xδn, λ) := J(π̃xδ
n,λ

;xδn, λ).

W ∈ Wδ, T0(W )(xδn, λ) and T1(W )(xδn, λ) are the values of the strategies with initial
surplus xδn ∈ Gδ and initial intensity λ which consist of applying first the control
actions E0 and E1 ∈ E respectively, and afterwards applying the strategy in the
family π̃ corresponding to the end surplus and intensity. Also, TF (W )(xδn, λ) is the
value function of the control action EF ∈ E .

We define the discrete HJB equation in Gδ × [λ,∞) as

T (W )−W = 0. (23)

Assume that there exists π̃xδ
n,λ

∈ Π̃δ
xδ
n,λ

such that V δ(xδn, λ) = J(π̃xδ
n,λ

;xδn, λ) for all(
xδn, λ

)
∈ Gδ× [λ,∞). Then, since V δ ∈ Wδ by Proposition 6.1, it is straightforward

to see that T (V δ)(xδn, λ) = V δ(xδn, λ). Also we can find which is the optimal control
action in E at each

(
xδn, λ

)
∈ Gδ × [λ,∞). In Proposition 6.4, we will show that

T (V δ) = V δ without the former assumption. In Proposition 6.8, we will show that

indeed, V δ(xδn, λ) is the value function of an optimal strategy within Π̃δ
xδ
n,λ

and this

strategy is stationary.
By definitions (19), (20), (21) and (22), we obtain immediately the following

result.

Proposition 6.2. The operators T0, T1, TF and T are non-decreasing and T sat-
isfies

sup(xδ
n,λ)∈Gδ×[λ,∞)

∣∣T (W1)(x
δ
n, λ)− T (W2)(x

δ
n, λ)

∣∣
≤ sup(xδ

n,λ)∈Gδ×[λ,∞)

∣∣W1(x
δ
n, λ)−W2(x

δ
n, λ)

∣∣
for any W1 and W2 in Wδ.

Given l ≥ 1, let us define Π̃δ,l
xδ
n,λ

as the set of all the admissible strategies in Π̃δ
xδ
n,λ

with initial surplus xδn ∈ Gδ and initial intensity λ ≥ λ which can be obtained by a
sequence of exactly l local control actions in E .

We define

V δ
l (x, λ) = supπ̃∈Π̃δ,l

x,λ
J(π̃;x, λ). (24)

Since Π̃δ,1
xδ
n,λ

= {EF } then V δ
1 (x, λ) = x. By Proposition 6.2, we have that V δ

1 ∈
Wδ and V δ

2 (x, λ) = T (V δ
l )(x

δ
n, λ) ≥ T (V δ

l )(x
δ
n, λ). So, we can conclude, by a

recursive argument, the following result.

Proposition 6.3. It holds that V δ ≥ V δ
l+1 ≥ V δ

l , V
δ
l ∈ Wδ and T (V δ

l )(x
δ
n, λ) =

V δ
l+1(x

δ
n, λ) for l ≥ 1.

In the next proposition, we show that V δ : Gδ × [λ,∞) → [0,∞] is a solution of
the discrete HJB equation (23).

Proposition 6.4. It holds that liml→∞ V δ
l = V δ and T (V δ)(xδn, λ) = V δ(xδn, λ).

Remark 6.5. Since TF (V δ)(xδn, λ) = xδn < V δ(xδn, λ), we can write the discrete
HJB equation (23) as

max{T0(W )−W, T1(W )−W} = 0,

disregarding the operator TF .
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Proposition 6.6. Given any π̃ ∈ Π̃δ
xδ
n,λ

and any supersolutionW : Gδ×[λ,∞) → R

of (23), we have that J(π̃;xδn, λ) ≤W (xδn, λ).

From the previous proposition, we deduce the next corollary.

Corollary 6.7. The Gδ-optimal value function V δ : Gδ×[λ,∞) → R can be charac-
terized as the smallest supersolution of the discrete HJB equation (23) with growth
condition (13).

Definition 6.1. Given any partition the set Gδ × [λ,∞) into three measurable
subsets P = (A,NA,B), we define for any point (xδn, λ) ∈ Gδ × [λ,∞) the local
control action S(xδn, λ) ∈ E in the following way:

• If (xδn, λ) ∈ B, take SP(x
δ
n, λ) = EF . B is called finish-the-business set.

• If (xδn, λ) ∈ NA, take SP(x
δ
n, λ) = E0. NA is called the non-action set.

• And if (xδn, λ) ∈ A, take SP(x
δ
n, λ) = E1. Note that (xδ0, λ) = (0, λ) /∈ A. A

is called the action set.

The Gδ- strategy π
P
xδ
n,λ

∈ Πδ
xδ
n,λ

associated to P in the initial surplus and intensity

(xδn, λ) ∈ Gδ × [λ,∞) is defined inductively as follows: Let us call m1 = (xδn, λ) and
s1 = SP(x

δ
n, λ); assuming that m1,m2, ..,mk−1 ∈ Gδ× [λ,∞) and s1, s2, .., sk−1 ∈ E

are defined and the process does not stop at step k− 1, we define mk ∈ Gδ × [λ,∞)
as the end surplus of sk−1 and sk = SP(mk) ∈ E .

Note that the family πP =
(
πP
xδ
n,λ

)
(xδ

n,λ)∈Gδ×[λ,∞)
is stationary in Gδ × [λ,∞) in

the sense that the local control actions depend only on the point of the grid at which
the current surplus lies and also on the current intensity. Moreover, if we define
the associated value function WP(x

δ
n, λ) = J(πP

xδ
n,λ

;xδn, λ), then TF (WP) = WP in

B, T1(WP) =WP in A and T0(WP) =WP in NA. We extend the definition of the
value function WP : [0,∞)× [λ,∞) → [0,∞) as

WP(x, λ) =WP(ρ
δ(x), λ) + x− ρδ(x), (25)

this corresponds to pay the minimum amount of dividends so the surplus lies in Gδ.
Given the function V δ, since V δ = T (V δ) and V δ is Lebesgue measurable, we

define the Gδ-partition P∗
δ =

(
A∗

δ , (NA)
∗
δ ,B∗

δ

)
as

A∗
δ =

{(
xδ
n, λ

)
∈ Gδ × [λ,∞) : T1(V

δ)(xδ
n, λ) = V δ(xδ

n, λ)
}
,

(NA)∗δ =
{(

xδ
n, λ

)
∈ (Gδ × [λ,∞))−A∗

δ : T0(V
δ)(xδ

n, λ) = V δ(xδ
n, λ)

}
,

B∗
δ =

{(
xδ
n, λ

)
∈ (Gδ × [λ,∞))−

(
A∗

δ ∪ (NA)∗δ
)
: TF (V

δ)(xδ
n, λ) = V δ(xδ

n, λ)
}
.

(26)

Note that, by Remark 6.5, B∗
δ is empty, so (xδ0, λ) = (0, λ) ∈ (NA)

∗
δ . Since the

value function WP∗
δ
(xδn, λ) is a supersolution of the discrete HJB equation (23) with

growth condition (13), we deduce from Corollary 6.7, the following result.

Proposition 6.8. We have that V δ = WP∗
δ

in Gδ × [λ,∞), and so πP∗
δ

=
(
π
P∗

δ

xδ
n,λ

)
(xδ

n,λ)∈Gδ×[λ,∞)
is the Gδ-optimal strategy. P∗

δ is called the optimal Gδ-

partition.

Let us prove now that the optimal value function V can be approximated uni-
formly by V δ for some δ small enough. Since we have a monotonicity condition on

the embedded grids Gδ/2 ⊂ Gδ, so x
δ
n = x

δ/2
2n , Π̃δ

xδ
n,λ

⊂ Π̃
δ/2

x
δ/2
2n ,λ

, and this implies that

V δ(xδn, λ) ≤ V δ/2(x
δ/2
2n , λ). Take δk := δ/2k for k ≥ 0. We will see that V δk ↗ V
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locally uniformly as k goes to infinity. Consider the dense set in Rn
+, G :=

⋃
k≥0 Gδk .

Note that Gδk ⊂ Gδk+1
, so

V δk ≤ V δk+1 ≤ V.

Now we conclude the main result of the paper. The proof is in Appendix A.5.

Theorem 6.9. For any δ > 0, the functions V δk ↗ V uniformly as k goes to
infinity.

7. Discretization on the intensity process. As we pointed out before, the
construction of V δ given in the previous section only uses a discretization on the
surplus space. In this section, we propose a numerical scheme using a discretization
on the intensity space as well. We will find a partition into an action set, a non-
action set and a finish-the-business set as introduced in Definition 6.1, depending on
both the discretization in the surplus space and the discretization in the intensity
space, whose value function approximates the value function V uniformly. The
proofs of the results of this section are deferred to Appendix A.6.

For any parameter ∆ > 0, let us introduce the following discretization on the
intensity space,

H∆ =
{
λ∆0 = λ, λ∆1 , λ

∆
2 , λ

∆
3 , ...

}
⊂ [λ,∞). (27)

where λ∆m = λ+m∆, and consider the function

σ∆ (λ) = min
{
λ∆m ∈ H∆ : λ∆m ≥ λ

}
∈ H∆. (28)

Definition 7.1. Given δ > 0 and ∆ > 0, we say that P = (A,NA,B) is a
(δ,∆)-partition if the three subsets A, NA and B satisfy the following condition:
if (xδn, λ

∆
m) is in a subset for m ≥ 1, then

{
xδn
}
× (λ∆m−1, λ

∆
m] is also in this subset.

So, the (δ,∆)-partitions only depend on the discrete grid Gδ ×H∆.

In order to find a (δ,∆)-partition whose associated value function approximates
the optimal value function, we modify the intensity process, defining a new intensity
process in the grid domain Gδ ×H∆.

Given the process λt from (2) with initial value λ0 = λ, let us define the auxiliary

intensity process λ̂t for given parameters δ, ∆ and initial λ̂0 = σ∆ (λ) = λ∆m ∈ H∆

for some m ≥ 0 as
λ̂t := σ∆ (λt) ∈ H∆. (29)

By definition, ∆ ≥ λ̂t − λt ≥ 0. We define Π̂δ,∆
xδ
n,λ

∆
m

as the set of all the admissible

strategies with initial surplus xδn ∈ Gδ, initial intensity λ̂0 = λ∆m ∈ H∆ and discrete

intensity process λ̂t which can be obtained by a sequence of control actions in E as
in (17).

We can replicate the construction of V δ in the previous section, but considering

the compound Cox filtered space of the auxiliary intensity process λ̂t ∈ H∆ instead
of the process λt. Consider for any (xδn, λ

∆
m) ∈ Gδ ×H∆,

V̂ δ,∆(xδn, λ
∆
m) = sup

π∈Π̂δ,∆

xδ
n,λm

Jλ̂(π;x
δ
n, λ

∆
m), (30)

where

Jλ̂(π;x
δ
n, λ

∆
m) = E(

∫ τL

0−
e−qtdLt + Iτ<τF e

−qτF X̂L
τF ) (31)

and
X̂L

t = X̂t − Lt (32)
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with

X̂t = xδn + pt−
N̂t∑
j=1

Uj , (33)

and N̂t has intensity λ̂t.

One can extend the definition of V̂ δ,∆ to [0,∞)× [λ,∞) as

V̂ δ,∆(x, λ) = (x− ρδ(x)) + V̂ δ,∆(ρδ(x), σ∆ (λ))

for all x ≥ 0 and λ ≥ λ, where ρδ is defined in (16).

Let us show now that V̂ δ,∆ converges uniformly to V δ as ∆ → 0. The proof is
in Appendix A.6.

Proposition 7.1. It holds that V̂ δ,∆ ≤ V δ and

lim
∆→0

(
sup

x≥0,λ≥λ
V δ(x, λ)− V̂ δ,∆(x, λ)

)
= 0.

As in Section 6, but considering λ̂t instead of λt, we introduce the following
operators in Wδ,∆ = {w : Gδ ×H∆ → [0,∞)}: T1 and TF as defined in (20); the
operator

T̂0(w)(xδn, λ∆m) := P(δ ∧ T ∧ τ = δ)e−qδw(xδn+1, σ
∆(λcδ)) + Î(w)(xδn, λ∆m),

where
Î(w)(xδn, λ∆m)

:= E(Iδ∧T∧τ=τIx+pτ−U≥0e
−qτw(ρδ(xδn + pτ − U), λ̂τ ))

+E(Iδ∧T∧τ=T e−qTw(xδn, λ̂T ))

+E(Iδ∧T∧τ=τe
−qτ (xδn + pτ − U − ρδ(xδn + pτ − U)))

+E(Iδ∧T∧τ=T e
−qT pT );

and the operator

T̂ := max{T̂0, T1, TF }.
In the next two propositions, we obtain the mirror results of Propositions 6.4

and 6.8, with similar proofs.

Proposition 7.2. It holds that T̂ (V̂ δ,∆) = V̂ δ,∆ in Gδ ×H∆.

Since V̂ δ,∆ = T (V̂ δ,∆), we can define, as in (26), the following partition P̂δ,∆ in
the grid Gδ ×H∆:

Âδ,∆ =
{(

xδ
n, λ

∆
m

)
∈ Gδ ×H∆ : T1(V̂

δ,∆)(xδ
n, λ

∆
m) = V̂ δ,∆(xδ

n, λ
∆
m)

}
,

N̂Aδ,∆ =
{(

xδ
n, λ

∆
m

)
∈ (Gδ ×H∆)− Âδ,∆ : T̂0(V̂

δ,∆)(xδ
n, λ

∆
m) = V̂ δ,∆(xδ

n, λ
∆
m)

}
,

B̂δ,∆ =
{(

xδ
n, λ

∆
m

)
∈ (Gδ ×H∆)−

(
Âδ,∆ ∪ N̂Aδ,∆

)
: TF (V̂

δ,∆)(xδ
n, λ

∆
m) = V̂ δ,∆(xδ

n, λ
∆
m)

}
.

(34)

Moreover, B̂δ,∆ = ∅ and
(
xδ0, λ

∆
m

)
∈ N̂Aδ,∆. And, as in Definition 6.1, we can

define from this partition, a family of strategies

π̂δ,∆ =
{
π̂δ,∆
xδ
n,λ

∆
m
∈ Π̂δ,∆

xδ
n,λm

for (xδn, λ
∆
m) ∈ Gδ ×H∆

}
.

These strategies are stationary in Gδ×H∆ in the sense that the local control actions
depend only on the point of the grid at which the current surplus and current

intensity lie. We obtain the existence of the optimal strategy in Π̂δ,∆
xδ
n,λm

.
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Proposition 7.3. V̂ δ,∆(xδn, λ
∆
m) = Jλ̂(π̂

δ,∆
xδ
n,λ

∆
m
;xδn, λ

∆
m) for any (xδn, λ

∆
m) ∈ Gδ×H∆.

Now we use the partition given in (26), to find a (δ,∆)-partition in Gδ × [λ,∞)
as defined in Definition 7.1 whose value function approximates the value function
V uniformly. This is the main result of the section.

Definition 7.2. Given the partition (34) in Gδ × H∆, we extend to the partition
Pδ,∆ = (Aδ,∆, (NA)δ,∆ ,Bδ,∆) in Gδ × [λ,∞) as

Aδ,∆ =
(⋃

{(n,m):(xδ
n,λ

∆
m)∈Âδ,∆, m≥1}

({
xδn
}
× (λ∆m−1, λ

∆
m]
))

∪
(⋃

{n: (xδ
n,λ)∈Âδ,∆}

{(
xδn, λ

)})
(NA)δ,∆ =

(⋃
{(n,m):(xδ

n,λ
∆
m)∈N̂Aδ,∆, m≥1}

({
xδn
}
× (λ∆m−1, λ

∆
m]
))

∪
(⋃

{n: (xδ
n,λ)∈N̂Aδ,∆}

{(
xδn, λ

)})
Bδ,∆ = ∅.

Let us consider the Gδ- strategy πPδ,∆

xδ
n,λ

∈ Π̃δ
xδ
n,λ

associated to Pδ,∆ for each

(xδn, λ) ∈ Gδ × [λ,∞) and the associated function WPδ,∆ : [0,∞)× [λ,∞) → [0,∞)
defined in (25).

The next theorem states that V can be approximated uniformly by WPδ,∆ for
some δ and ∆ small enough. In Section 8, we use this result in order to obtain nu-
merically (δ,∆)-partitions whose associated value functions approximate uniformly
the optimal value function V .

Theorem 7.4. For any ε > 0 there exists δ and ∆ small enough so that 0 ≤
V −WPδ,∆ ≤ V − V̂ δ,∆ ≤ ε in [0,∞)× [λ,∞).

8. Numerical results. In this section, we show some numerical results. Propo-
sition 5.2 suggests that we can approximate the optimal value function with a
value function of a partition with (xδn, λ

∆
m) ∈ Bδ,∆ for m ≤ m1 with m1 large

enough and n ≥ 0. From Proposition 5.1, we can assume that the partition satisfies
(xδn, λ

∆
m) ∈ (NA)δ,∆ for xδn > p/q . This allows to make a numerical computation

because we stay in a finite grid.
So, given δ, ∆ small enough and m1 large enough, we proceed in the following

way: The numerical scheme should choose if the local action in each of the points
in the grid

Gδ ×H∆ =
{
(xδn, λ

∆
m) : xδn ≤ p/q and m ≤ m1

}
is either E0 or E1 or EF . In order to do that, we proceed inductively, as follows:

1. We define the initial partition P̂1 as B1 = Gδ ×H∆, N̂A1 = Â1 = ∅ for the

sake of simplicity. So, the value function is ŴP̂1
(xδn, λ

∆
m) = xδn.

2. If the partition P̂l and the associated value function ŴP̂l
are given, we define

the next partition P̂l+1 as

Âl+1 = {(xδn, λ∆m) ∈ Gδ ×H∆ : T̂ (ŴP̂l
)(xδn, λ

∆
m) = T̂1(ŴP̂l

)(xδn, λ
∆
m)},

N̂Al+1 = {(xδn, λ∆m) ∈ Gδ ×H∆ − Âl+1 : T̂ (ŴP̂l
)(xδn, λ

∆
m)= T̂0(ŴP̂l

)(xδn, λ
∆
m)},

and we put B̂l+1 = ∅, because EF is never optimal.

We have, as in Propositions 6.3 and 6.4, that ŴP̂l+1
= T̂ (ŴP̂l

) ≥ ŴP̂l
in Gδ×H∆;

that P̂l+1 = P̂l = P̂ for l large enough because here the grid Gδ ×H∆ is finite; that
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liml→∞ ŴP̂l
= ŴP̂ and that T̂ (ŴP̂) = ŴP̂ in Gδ ×H∆. In our numerical scheme,

we also check that the limit action region of P̂ does not change when m1 is enlarged.
By Definition 7.2 and Theorem 7.4, we know that when δ and ∆ are small

enough we obtain a near-optimal value function and Gδ- strategy. We check in our
numerical scheme that δ and ∆ are small enough by comparing the value functions

ŴP̂ for (δ,∆) with the one of (δ/2,∆/2). In the following examples, we show in
gray the non-action region and in black the change region of the partition P in

Gδ × [λ, λ∆m1
] associated to the partition P̂ in Gδ ×H∆ as in Definition 7.2. We also

show the approximation of the optimal value function V (using the value function

of the partition P̂ in Gδ × H∆) and finally, we compare the approximation of our
optimal value function with one of the classical dividend optimization problem with
constant intensity, i.e. the situation without jumps in the claim arrival intensity.

8.1. Example 1: Exponential claim sizes. Let us first consider λ = 1/4, the
intensity jump distribution being exponential with cdf FY (x) = 1 − e−x/2, the
intensity of jump intensity arrivals being β = 1/2 (so we expect a catastrophe
every two years), d = 7/10 (so that the additional claim arrival intensity due to a
catastrophe is halved after one year), the claim size distribution being exponential
with cdf FU (x) = 1 − e−10x, the discount rate being q = 2/10 and the insurance
safety loading applied in the policies equal to η = 2/10. We then obtain from
(10) that p = 141/700. For the grid parameters, it turns out that δ = 28/423,
∆ = 23/240 and m1 = 60 is appropriate here.

Figure 8.1a depicts the action and non-action region and Figure 8.1b the approx-
imation of the optimal value function V as a function of initial surplus x and claim
initial intensity level λ. In the absence of catastrophe jumps in the intensity pro-
cess (that is, for the classical Cramér-Lundberg process with a compound Poisson
claim process), it is well-known that for exponential claim sizes, a barrier strategy
is optimal (cf. Gerber [17]). With the additional presence of a shot-noise compo-
nent in the intensity process, one observes from Figure 8.1a that a barrier strategy
is still optimal, but its value changes dynamically as a function of current claim
intensity λ. Concretely, for small values of λ, a barrier strategy is optimal that
pays all the surplus above the barrier as dividends, and this barrier first increases
with λ and eventually decreases for larger values of λ. Finally, there is a critical
value of λ, above which the situation becomes too risky, and the barrier level goes
down to zero, i.e. all surplus is paid out as dividends. For comparison, in Figure
8.1a we also depict the optimal barrier level of the classical risk model for the same
premium income p, but varying actual (constant in time) level λ (blue solid line),
and one sees that there the optimal barrier level already goes down to zero for a
considerably smaller value of λ. One can nicely see from this comparison how the
dynamic change of the level of λ through time allows to be more adaptive in the
strategy.

In Figure 8.1c we depict the resulting value function as a function of initial capital
x, where we choose λ = λ = 1/4 as the initial level (solid line, which is in fact just
the cross-section V (x, 1/4) from Figure 8.1b) and compare it to the value function
VCL(x, λ) for the classical risk model with homogeneous intensity λ throughout
(dashed line), which corresponds to the case β = 0 of the shot-noise case here. Note
that the same relative safety loading η is applied in the two cases, so the absolute
value of p does not coincide for the two models (i.e., VCL(x, λ) does not correspond
to vλ(x), for which that was the case). In other words, Figure 8.1c compares the
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economic value of the insurance company for the shareholders with and without
additional catastrophe insurance business, and the plot shows that including that
business line is an advantage. This can be interpreted as follows: the additional
insurance business linked to catastrophe claims (above the baseline intensity λ)
leads to additional premium income, which is upfront (as potential claims will only
appear later when the intensity indeed jumped up), so that one has additional
degrees of freedom to steer the dividend streams according to the current level of
intensity and surplus. In fact, the additional variability in the intensity process stays
advantageous even when starting at higher levels of the initial intensity (and the
comparison then is whether a volatile claim intensity can be preferable to a constant
one, for the same number of policies). To see this, Figure 8.1d compares the two
value functions for the long-term average value λav = 1/4 + 2/(2 · 0.7) = 1.679 as
the initial intensity level (solid line) or as homogeneous intensity level throughout
(dashed line), respectively (again with safety loading η = 0.2 for both, which now
also leads to the same p, so here VCL(x, λav) = vλav(x)). Clearly, the additional
variability of the claim intensity process (accompanied by the optimal associated
dividend strategy) leads still to a significantly larger value function.

If one replaces the exponential intensity jump distribution by a deterministic
jump of the same expected value (i.e. FY (x) = I[2,∞)), the modified action/non-
action regions are shown in Figure 8.2, which shows that the results are not really
sensitive to the choice of the concrete intensity jump distribution (as long as the
expected jump size is maintained). The resulting value function is even visually
indistinguishable from Figure 8.1b, so that we do not include it here.

In order to assess the sensitivity of the action region with respect to changes of
other parameters, we depict in Figure 8.3 the counterpart of Figure 8.1a for slight
changes of the parameters in either direction. We also plot the optimal barrier of
the classical Cramér-Lundberg model for the same premium level p for each case.
One can see that increasing or decreasing the intensity β of catastrophe arrivals has
a considerable effect on the optimal barrier as a function of x and λ. A smaller value
of the decay rate d in the intensity function leads to a more dangerous situation,
enlarging the barrier levels, whereas for increasing d the intensity growth due to a
catastrophe disappears quicker and we get closer to the classical barrier level (in
blue), which would be reached for d→ ∞. A higher safety loading η leads to larger
barrier levels (one may interpret that this is due to the fact that one wants to
benefit from the positive drift longer, exceeding the advantage of paying out profits
early). Finally, an increased discount rate makes earlier payments more important
and attractive, leading to lower barrier levels.

8.2. Example 2: Erlang(2) claim sizes. Next, we consider a situation of a
certain Erlang(2) claim size distribution, for which we know from [10] that a two-
band strategy maximizes the expected discounted dividend payments in the absence
of shot-noise jumps in the Poisson intensity. Consider therefore the parameters
choices of [10] λ = 10, FU (x) = 1− (1 + x)e−x, q = 1/10 and η = 7/100, to which
we add now a catastrophe shot-noise component with exponential intensity jumps
with cdf FY (x) = 1 − e−x/2, β = 2/10 and d = 2/10. We obtain from (10) that
p = 642/25.

For the grid parameters, the values δ = 25/963, ∆ = 1/2 and m1 = 60 turn
out to be appropriate here. Figure 8.4a depicts the action and non-action region.
One observes that the optimality of the two-band regime is in fact retained here
also, but only for a small strip of λ-values, and in that region the corresponding
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(a) Action regions (dark) and non-action
regions (light) of the optimal strategy as
a function of λ and x (b) Value function V (x, λ)

(c) Comparison of the value functions
V (x, λ)
(solid) and VCL(x, λ) (dashed)

(d) Comparison of the value functions
V (x, λav)
(solid) and VCL(x, λav) (dashed)

Figure 8.1. Optimal dividends for a compound shot-noise Cox process
with exponential claim sizes

Figure 8.2. Counterpart of Figure 8.1a for deterministic intensity

jumps of size 2

band values vary with λ also. For values of λ below that regime, the two-band
strategy collapses to a barrier strategy (the fact that this band strategy is very
sensitive to the particular model assumptions is well-known, see e.g. also [5] for
such an effect under discrete surplus observations). For values of λ above that
regime, the optimal strategy is again of take-the-money-and-run type, i.e. pay all
the surplus as dividends immediately (as the risk of facing many claims in the near
future diminishing the surplus is too high). Figure 8.4b depicts the resulting value
function as a function of current levels of x and λ. Finally, Figure 8.4c compares
V (x, λav) to the value function of the classical risk model with constant intensity λav
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(a) β = 0.4 (b) β = 0.6

(c) d = 0.6 (d) d = 0.8

(e) η = 0.15 (f) η = 0.25

(g) q = 0.15 (h) q = 0.25

Figure 8.3. Counterpart of Figure 8.1a for modified β (first row),
modified d (second row), modified η (third row) and modified q (last
row)

and the same premium income. Again, we observe that the additional variability
introduced in the portfolio by having catastrophe insurance business (rather than
only non-catastrophic one with constant claim intensity) is in fact an advantage for
the expected discounted dividend payments until ruin.

8.3. Example 3: Deterministic claim sizes. In addition to a fine interplay of
many factors, one intuitive reason for the optimality of band (rather than barrier)
strategies can be attributed to the presence of modes in the claim size density
(see e.g. [12, 6] where in the latter reference even a situation with an optimal
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(a) Action regions (dark)
and non-action regions
(light) of the optimal strat-
egy as a function of λ and x (b) Value function V (x, λ)

(c) Comparison of the value
functions V (x, λav) (solid)
and VCL(x, λav) (dashed)

Figure 8.4. Optimal dividends for a compound shot-noise Cox process
with Erlang(2) claim sizes

(a) Action regions (dark)
and non-action regions
(light) of the optimal strat-
egy as a function of λ and x (b) Value function V (x, λ)

(c) Comparison of the value
functions V (x, λav) (solid)
and VCL(x, λav) (dashed)

Figure 8.5. Optimal dividends for a compound shot-noise Cox process
with deterministic claim sizes for the parameters of Example 2

strategy consisting of 4 bands was identified). Following that line of thinking, one
might expect a 2-band strategy to remain optimal when replacing the Erlang claim
size distribution by a deterministic claim size equal to its expected value. We
therefore reconsider the situation of Example 2, solely changing the cdf of the claim
size distribution to FU (x) = I[2,∞). We use the same grid parameters as above:
δ = 25/963, ∆ = 1/2 and m1 = 60. Figure 8.5a depicts the action and non-action
region. Indeed, the result is very similar to Figure 8.4a, so for a certain range of
λ-values, a two-band strategy is optimal. Yet, the lack of variability of the claim
size is reflected in different numerical values of the λ-dependent bands. Figure 8.5b
depicts the resulting value function as a function of current levels of x and λ, which
again has a very similar shape, but different absolute values. As before, Figure
8.5c compares V (x, λav) to the value function of the model without a catastrophe
component.

If instead we replace the exponential claim size distribution in Example 1 above
by its deterministic counterpart equal to the expected value 1/10 (i.e. FU (x) =
I[1/10,∞)), but keep all other parameters as in Example 1, we arrive at Figure 8.6a.
In this example one can nicely see the signature of the deterministic claim size equal
to 0.1 in the shape of the action/non-action regions. For fixed λ, one can also see
how multiple bands can appear here, leading to a surprisingly aesthetic butterfly
shape. Note, however, that when the optimal strategy is applied dynamically, both
the values of x and λ change instantaneously, so that one will in fact not literally
apply a band strategy in the classical sense. Figure 8.6b gives the corresponding
value function as a function of initial x and λ, and Figure 8.6c compares it for
λ = λav with the one of the classical risk model with homogeneous intensity. Notice
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(a) Action regions (dark)
and non-action regions
(light) of the optimal strat-
egy as a function of λ and x (b) Value function V (x, λ)

(c) Comparison of the value
functions V (x, λav) (solid)
and VCL(x, λav) (dashed)

Figure 8.6. Optimal dividends for a compound shot-noise Cox process
with deterministic claim sizes for the parameters of Example 1

that in all the examples of this section the additional variability due to the shot-noise
component is in fact advantageous for the shareholders.

9. Conclusion and outlook. In this paper we solved the two-dimensional sto-
chastic control problem of optimizing expected discounted dividends until ruin of
an insurance portfolio, when the claim number process is a Cox process with shot-
noise intensity function. We identified the optimal value function as the smallest
viscosity supersolution of a Hamilton-Jacobi-Bellman equation and provided a nu-
merical scheme to uniformly approximate it via a discretization of the surplus space
and the intensity space. In the numerical implementations, we then investigated to
what extent the optimal dividend strategies deviate from the classical ones where
the Poisson intensity is constant. As it turns out, the additional variability of the
claim occurrence pattern can be used to the advantage of the insurer as far as a
valuation of the company in terms of expected discounted future dividends is con-
cerned. Concerning the concrete dividend strategies, the nature of barrier and band
strategies remains in principle valid, although with barrier and band levels that now
depend on the current level of the claim occurrence intensity λ, so that one needs
to react adaptively to its change over time.

The fact that additional insurance business linked to catastrophe claims can be
beneficial is somewhat promising in times when even reinsurers become more reluc-
tant to include natural catastrophe claims in their portfolio and risk structure, and
reinsurance premiums increase globally, see e.g. [29]. While the model assumptions
employed in this paper are clearly somewhat too simple for practical implemen-
tation in catastrophe insurance practice, the results still demonstrate that a good
understanding of the underlying actuarial risks in the catastrophe lines of business
also has upward potential. Clearly, the present paper is only one first step into this
direction, and many generalizations are possible and desirable. As already men-
tioned in the introduction, a prominent one is to go beyond the stationary model
world and allow for risk factors that change over time, a feature that will allow to
more explicitly model the effects of climate change on the profitability of an insur-
ance portfolio. Also, the profitability criterion of maximizing dividends over the
lifetime of the company should be accompanied by some constraints on solvency,
for instance along approaches that have been pursued in the classical optimal div-
idend literature already. Also, with respect to regulation, a more refined model as
to when received and unused premiums can be paid out as company profits may
be pursued. Moreover, other interpretations of the reason and nature of the shot
noise Cox feature of the claim number model are naturally possible, and each one
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will lead to different or additional features of the model to be studied. Finally, it
may be possible to apply and extend some features of the techniques developed in
this paper to the problem of optimizing dividends for a cyber risk insurer, where in
addition to the shot-noise feature one typically also has a self-exciting component
in the intensity process, see e.g. Zeller & Scherer [31].

Appendix A..

A.1. Proofs of Section 1. Proof of Proposition 2.1. Let us define λ0t and Λ0
t as

the processes defined in (2) and (5) in the particular case of λ = 0, then we have

λt = λ(1− e−dt) + λ0t , Λt = λ

∫ t

0

(1− e−ds)ds+ E(Λ0
t ).

From [14, Cor.2.4],we get

E(e−v Λ0
t ) = e−

v λ
d (1−e−dt)e−β

∫ t
0
(1−g( v

d (1−e−d (t−s))))ds,

where
g(u) = E(e−uY1).

So we get

E(e−v Λt) = E(e−v Λ0
t ) · e−vλ

∫ t
0
(1−e−ds)ds

= e−
v λ
d (1−e−dt) · e−β

∫ t
0
(1−g( v

d (1−e−d (t−s))))ds · e−v(λt−λ
(

1−e−dt

d

)
)
.

We also have

E(Λ0
t ) = − ∂vE(e−vΛ0

t )
∣∣∣
v=0

=
1− e−dt

d
λ+

e−dt − 1 + dt

d2
β E(Y1),

so

E(e−v Λt) = E(e−v Λ0
t ) · e−vλ

∫ t
0
(1−e−ds)ds

= e−
v λ
d (1−e−dt) · e−β

∫ t
0
(1−g( v

d (1−e−d (t−s))))ds · e−v(λt−λ
(

1−e−dt

d

)
)
.

In addition,
E(λ0t ) = ∂tE(Λt)

= λe−dt +
(1− e−dt)

d
β E(Y1),

and we conclude that

E(e−v Λt) = E(e−v Λ0
t ) · e−vλ

∫ t
0
(1−e−ds)ds

= e−
v λ
d (1−e−dt) · e−β

∫ t
0
(1−g( v

d (1−e−d (t−s))))ds · e−v(λt−λ
(

1−e−dt

d

)
)

and
E(λt) = λ(1− e−dt) + E(λ0t )

= λ(1− e−dt) + λe−dt +
(1− e−dt)

d
β E(Y1),

as well as

E(Λt) = λ
∫ t

0
(1− e−ds)ds+ E(Λ0

t )

= λ
∫ t

0
(1− e−ds)ds+

(1− e−dt)

d
λ+

(e−dt − 1 + dt)

d2
β E(Y1)

= λt− λ
(

1−e−dt

d

)
+

(1− e−dt)

d
λ+

(e−dt − 1 + dt)

d2
β E(Y1)
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A.2. Proofs of Section 3. In order to prove Propositions 3.1, 3.2 and 3.3, we
need to make a definition and give two lemmas.

Definition A.1. Given two sequences (τ1i , U
1
i )i≥1 ∈ Ω and (τ2j , U

2
j )j≥1 ∈ Ω intro-

duced in (4), we define the ordered union of the two sequences as

(τ1i , U
1
i )i≥1 ⨿ (τ2j , U

2
j )j≥1 = (τn, Un)n≥1 ∈ Ω,

where {(τn, Un) : n ≥ 1} =
{
(τ1i , U

1
i ) : i ≥ 1

}
∪
{
(τ2j , U

2
j ) : j ≥ 1

}
and τn ≤ τn+1.

Definition A.2. Given any intensity-filtered probability space (Ω0,F0,
(
F0

t

)
t≥0

,

P0) and two intensity random process λ1 =
(
λ1t
)
t≥0

and λ2 =
(
λ2t
)
t≥0

adapted to(
F0

t

)
t≥0

, we define the superposition

(Ωλ1⊕λ2

,Fλ1⊕λ2

,
(
Fλ1⊕λ2

t

)
t≥0

,Pλ1⊕λ2

)

of the two compound Cox filtered spaces (Ωλ1

,Fλ1

,
(
Fλ1

t

)
t≥0

,Pλ1

) and (Ωλ2

,

Fλ2

,
(
Fλ2

t

)
t≥0

,Pλ2

) in the following way:

• Ωλ1⊕λ2

=
{
(ω, τ1i , U

1
i )i≥1 ⨿ (τ2j , U

2
j )j≥1) s.t. (ω, (τ

i
n, U

i
n)n≥1) ∈ Ωλi

for i = 1,

2};
• Fλ1⊕λ2

is the complete σ-field generated by the σ-field F0 and the random
variables τ1n, U

1
n, τ

2
m, U

2
m;

• Fλ1⊕λ2

t is the complete σ-field generated by the σ-field F0
t and the random

variables τ1n, U
1
n for τ1n ≤ t and τ2m and U2

m for τ2m ≤ t;

• The probability measure Pλ1⊕λ2

is the probability which satisfies that
1. the processes Nλ1

t = #{k : τ1k ≤ t}, Nλ2
t = #{k : τ2k ≤ t} and the random

variables (U1
n)n≥1 and (U2

n)n≥1 are independent,

2. the random variables U1
n and U2

m with n,m ∈ N are i.i.d., Pλ1⊕λ2

(U i
n ≤

x) = FU (x) for i = 1, 2 and

Pλ1⊕λ2

(Nλ1
t +Nλ2

t = n) =
n∑

s=0

Pλ1

(Nλ1
t = s) · Pλ2

(Nλ2
t = n− s).

We have the following lemma (cf. for instance [23, Sec.3]).

Lemma A.1. The set Ωλ1⊕λ2

0 =
{
τ1n ̸= τ2m for any n,m ∈ N

}
∈ Fλ1⊕λ2

has full
measure. Also, the restriction of the superposition probability space
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,Fλ1⊕λ2

,
(
Fλ1⊕λ2

t

)
t≥0

,Pλ1⊕λ2

)

to Ωλ1⊕λ2

0 coincides with the compound Cox filtered space (Ωλ,Fλ,
(
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t

)
t≥0
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ditional on the intensity process λ = λ1 + λ2 =
(
λ1t + λ2t

)
t≥0

.

Moreover, if P1 : Ωλ1⊕λ2

0 → Ωλ1

and P2 : Ωλ1⊕λ2

0 → Ωλ2

are the projections
defined as

Pi

(
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1
n)n≥1 ⨿ (τ2n, U

2
n)n≥1)

)
= (ω, (τ in, U

i
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,

then

1. For any A ∈ Fλi , we have that the preimage P−1
i (A) ∈ Fλ1⊕λ2

and Pλ1⊕λ2

(P−1
i (A)) = Pλi

(A).



OPTIMAL DIVIDEND STRATEGIES FOR A CATASTROPHE INSURER 327

2. For any A ∈ Fλi
t ,we have that the preimage P−1

i (A) ∈ Fλ1⊕λ2

t .

3. Nλ1
t ◦ P1 +Nλ2

t ◦ P2 = Nλ1+λ2
t : Ωλ1⊕λ2

0 → N0.

Lemma A.2. As a consequence of the previous lemma, consider any intensity-
filtered probability space (Ω0,F0,

(
F0

t

)
t≥0

,P0) and two intensity random processes

λ1 =
(
λ1t
)
t≥0

and λ2 =
(
λ2t
)
t≥0

adapted to
(
F0

t

)
t≥0

with λ1 ≤ λ2; writing λ2 =

λ1 + (λ2 − λ1) we can consider the projections P 1 : Ωλ2 → Ωλ1

and P 2 : Ωλ2 →
Ωλ2−λ1

. Also, the processes Nλ1
t ◦P 1 and Nλ2−λ1

t ◦P 2 are independent and satisfy

Nλ1
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t ◦ P 2 = Nλ2
t . We also can write

(τ2n, U
2
n)n≥1 = (τ1n, U

1
n)n≥1 ⨿ (τ̂m, Ûm)m≥1.

Proof of Proposition 3.1. Proof of (1). Take λ1 < λ2 and consider the shot-noise

processes λi = (λit)t≥0 with initial intensity λi and the associated compound Cox
process Xi

t with drift p generated by the shot-noise process λit with initial intensity
λi and initial surplus x for i = 1, 2 as defined in (1) and (2). Since

λ2t = λ1t + e−dt (λ2 − λ1) ,

we have that λ1 ≤ λ2. We use the results of Lemma A.2, calling N1
t = Nλ1

t ◦ P 1,

N2
t = Nλ2

t and N̂t = Nλ2−λ1

t ◦ P 2, we have
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Now take (Lt)t≥0 ∈ Πx,λ2 with

V (x, λ2) ≤ J(L;x, λ2) + ε.
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{
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Proof of (2). Take λ1 < λ2 and L = (Lt)t≥0 ∈ Πx,λ1
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Take T such that e−qT
(
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1− e−dt

d

we get

E
[
Ir2>T e

−qr2V (
∑N̂r2

m=1 Ûm, λ
1
r
2
)

]
≤ E

[
Ir2>T e

−qr2

(∑N̂r2
m=1 Ûm + p

q

)]
≤ e−qTE

[(∑N̂r2
m=1 Ûm + p

q

)]
≤ e−qT

(
1
d (λ2 − λ1)E(U1)+

p
q

)
≤ e−qT

(
1
dE(U1)+

p
q

)
+ ε

2

≤ ε
2 .

Also, if N̂T = 0 then X1
r2 − Lr2 = X2

r2 − Lr2 < 0 and so V (X1
r2 − Lr2 , λ

1
r2
) = 0.

Hence, taking

λ2 − λ1 ≤
− log(1− ε

2( 1
dE(U1)+p/q)

)

T (1−e−dT )
dT

,

we have

1− P(N̂T = 0) = 1− e−(λ2−λ1)t
(1−e−dt)

dt <
ε

2
(
1
dE(U1)+p/q

)
and so

E
[
Ir2<T e

−qr2V (X1
r2 − Lr2 , λ

1
r2
)
]

≤ E
[
Ir2<T e

−qr2V (
∑N̂r2

m=1 Ûm, λ
1
r2
)I{N̂T>0}

]
≤ E

[
Ir2<TV (

∑N̂T

m=1 Ûm, λ
1
r
2
)I{N̂T>0}

]
P
[
N̂T > 0

]
≤ E

[(∑N̂T

m=1 Ûm + p/q
)]

P
[
N̂T > 0

]
≤

(
1
dE(U1)+p/q

)
P
[
N̂T > 0

]
≤ ε

2 .
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Hence, the result follows.

Proof of Proposition 3.2. It is straightforward to show that V (·, λ) is non-decreasing
because

V (x2, λ) ≥ x2 − x1 + V (x1, λ).

Let us prove the other inequality. Take t0 = (x2 − x1)/p < 1 and consider λt0 =
λ+ e−dt0 (λ− λ). Given an initial surplus x ≥ 0 and ε > 0, consider an admissible
strategy L = (Lt)t≥0 ∈ Πx2,λt0

such that J(L;x2, λt0) ≥ V (x2, λt0) − ε for any

x2 > x1. Take now the strategy L̃ ∈ Πx1,λ that starts with surplus x1, pays

no dividends if XL̃
t < x2 and follows strategy L after the current reserve reaches

(x2, λt0), that is

L̃t =

 0 if t ≤ t0 ∧ τ1 ∧ T1
Lt−t0 if t ≥ t0 and τ1 ∧ T1 > t0
0 if t > τ1 ∧ T1 and t0 ≥ τ1 ∧ T1.

The strategy L̃ is admissible, and we get

V (x1, λ) ≥ J(L̃;x1, λ)
≥ P(τ1 ∧ T1 > t0)J(L;x2, λt0)e

−qt0

≥ (V (x2, λt0)− ε) e−qt0P(τ1 ∧ T1 > t0),

and

V (x2, λ)− V (x1, λ) ≤ V (x2, λ)− (V (x2, λt0)− ε)P(τ1 ∧ T1 > t0)e
−qt0 .

So, using that V is non-increasing on λ and t0 < 1,

V (x2, λ)− V (x1, λ) ≤ V (x2, λ)− V (x2, λt0)P(τ1 ∧ T1 > t0)e
−qt0

≤ V (x2, λ)− V (x2, λ)P(τ1 ∧ T1 > t0)e
−qt0

≤ V (x2, λ)(1− P(τ1 ∧ T1 > t0)e
−qt0)

≤ V (x2, λ)
βλ2+q

p (x2 − x1)

≤ V (x2, λ)
βλ2+q

p (x2 − x1).

Proof of Proposition 3.3. From Proposition 3.1, we have 0 ≤ V (x, λ1)−V (x, λ2). Let
us prove the second inequality. Take L ∈ Πx,λ1 such that V (x, λ1) ≤ J(L;x, λ1) +
ε/2, and the associated controlled process (XL

t , λt) starting at (x, λ1). Consider

δ0 = 1
d log(

λ2−λ
λ1−λ ) so λ+ e−dδ0 (λ2 − λ) = λ1, then we have that

δ0 ≤ 1

d(λ1 − λ)
(λ2 − λ1) .

Define L̃ ∈ Πx,λ2 as

L̃t =

 pt if t ≤ δ0 ∧ τ1 ∧ T1
Lt−δ0 if t ≥ δ0 and τ1 ∧ T1 > δ0
p(τ1 ∧ T1) if t > τ1 ∧ T1 and δ0 ≥ τ1 ∧ T1.

We have that

J(L̃;x, λ2) ≥ J(L;x, λ1)e
−qδ0P(τ1 ∧ T1 > δ0)

= J(L;x, λ1)e
−qδ0(1− P(τ1 ∧ T1 ≤ δ0))

≥ J(L;x, λ1)e
−qδ0(1− (1− e−βδ0))(1− e−λ2δ0))

≥ J(L;x, λ1) (1− qδ0) (1− βλ2δ
2
0)
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because ∫ δ0

0

(
λ+ e−ds (λ2 − λ)

)
ds ≤ λ2δ0,

and so, taking λ2 and λ1 close enough so that δ0 < 1,

V (x, λ1)− V (x, λ2) ≤ J(L;x, λ1)− J(L̃, x, λ2) + ε/2

≤ J(L;x, λ1)
(
1− (1− qδ0) (1− βλ2δ

2
0)
)
+ ε/2

≤ V (x, λ1)
(
1− (1− qδ0) (1− βλ2δ

2
0)
)
+ ε/2

≤ V (x, λ1)
(βλ2+q)
d(λ1−λ) (λ2 − λ1) + ε/2,

and the result follows.

Proof of Proposition 3.7. Let us define

t∗ (λ) :=
1

d
ln(

λ− λ

ln(λ)− λ
)

so that

λ+ e−dt∗(λ) (λ− λ) = ln(λ)

and t∗ (λ) → ∞ as λ → ∞. Take a near optimal strategy L = (Lt)t≥0 ∈ Πx,λ such
that V (x, λ) ≤ J(L;x, λ) + ε, hence λt ≥ ln(λ) for t ≤ t∗ (λ). Then, using Lemma
3.6, Proposition 3.1 and Remark 3.5,

V (x, λ)− ε ≤ J(L;x, λ)

= E(
∫ t∗(λ)∧τL

0−
e−qsdLs) + e−qt∗(λ)E

(
It∗(λ)>τLV (XL

t∗(λ), λt∗(λ))
)

≤ vln(λ)(x) + e−qt∗(λ)vλ(x+ pt∗ (λ)).

By Remark 3.4, we have that limλ→∞ vln(λ)(x) = x and

lim
λ→∞

e−qt∗(λ)vλ(x+ pt∗ (λ)) ≤ lim
λ→∞

e−qt∗(λ) (x+ pt∗ (λ) +K) = 0,

so we have the result.

A.3. Proofs of Section 4 . Proof of Proposition 4.1. Let us prove first that V is a
viscosity supersolution. Given initial values (x, λ) ∈ (0,∞)× (λ,∞) and any l ≥ 0,
let us consider the admissible strategy L ∈ Πx,λ where the company pays dividends
with constant rate l and consider τL defined as in (6). Let φ be a test function for
supersolution of (11) at (x, λ).We have XL

t = x+(p− l) t and λt = λ+e−dt (λ− λ)
for t < τ1 ∧ T1. Applying Lemma 3.6 with stopping time τ1 ∧ T1 ∧ h, we obtain

0 = V (x, λ)− φ(x, λ)

≥ E
(∫ τ1∧T1∧h

0
e−qtldt

)
+E

(
Iτ1<T1∧he

−qτ1V (x+ (p− l)τ1 − U1, λ+ e−dτ1 (λ− λ))
)

+E
(
IT1<τ1∧he

−qT1V (x+ (p− l)T1, λ+ e−dT1 (λ− λ) + Y1))
)

+E
(
Ih<τ1∧T1

e−qhV (x+ (p− l)h, λ+ e−dh (λ− λ))
)
− φ(x, λ)

≥ E(
∫ τ1∧T1∧h

0
e−qtldt)

+E
(
Iτ1<T1∧he

−qτ1φ(x+ (p− l)τ1 − U1, λ+ e−dτ1 (λ− λ))
)

+E
(
IT1<τ1∧he

−qT1φ(x+ (p− l)T1, λ+ e−dT1 (λ− λ) + Y1))
)

+E
(
Ih<τ1∧T1

e−qhφ(x+ (p− l)h, λ+ e−dh (λ− λ))
)
− φ(x, λ).
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So, dividing by h and taking h→ 0+, we obtain

L(φ)(x, λ) + l(1− φx(x, λ)) ≤ 0.

For l → ∞, we obtain

max{L(φ)(x, λ), 1− φx(x, λ)} ≤ 0.

Hence V is a viscosity supersolution at (x, λ).
Let us prove now that V is a viscosity subsolution. Arguing by contradiction,

we assume that V is not a subsolution of (11) at (x0, λ0) ∈ (0,∞)× (λ,∞). As in
the proof of Proposition 3.8 of [9] but extended to two variables as in Proposition
3.2 in [2], we can find a continuously differentiable function ψ : (0,∞)× (λ,∞) → R
such that ψ is a test function for subsolution of equation (11) at (x0, λ0) , for
h < x0 ∧ (λ0 − λ) small enough so

ψx(x, λ) ≥ 1 (35)

for (x, λ) ∈ [0, x0 + h]× (λ,∞),

L (ψ) (x, λ) ≤ −εq (36)

for (x, λ) ∈ [x0 − h, x0 + h]× [λ0 − h, λ0 + h], and

V (x, λ) ≤ ψ(x, λ)− ε (37)

for (x, λ) ∈ [0, x0 + h]× (λ,∞)− [x0 − h, x0 + h]× [λ0 − h, λ0 + h].
Let us take any admissible strategy L ∈ Πx0,λ0

. Consider the corresponding
controlled risk process

(
XL

t , λt
)
starting at (x0, λ0), and define the stopping time

τ∗ = inf{t > 0 :
(
XL

t , λt
)
∈ (0,∞)× (λ,∞)− [x0 − h, x0 + h]× [λ0 − h, λ0 + h]}.

From (37), we obtain that if τ∗ < τL,

V (XL
τ∗ , λτ∗) ≤ ψ(XL

τ∗ , λτ∗)− 2ε. (38)

We can write

dλt = −d (λt − λ) + PY
t , dXL

t = pdt+ PU
t − dLt,

where PY
t =

∑
Ti
ITi=tYi and PU

t =
∑

τi
Iτi=tYi. Here we assume that PY

t and

PU
t do not jump simultaneously (because they jump at exponential times that are

independent). Using Theorem 31 of [26], we get

ψ(XL
τ∗ , λτ∗)e−qτ∗ − ψ(x0, λ0)

≤
∫ τ∗

0
L (ψ) (XL

s− , λs−)e
−qsds+M1

τ∗ +M2
τ∗ −

∫ τ∗

0
e−qsdLs,

where

M1
t =

∑
PU

s ̸=0
s≤t

(
ψ(XL

s− − PU
s , λs)− ψ(XL

s− , λs−)
)
e−qs

−
∫ t

0

λs−
∫XL

s−
0 ψ(XL

s − α, λs−)dFU (α)e
−qsds

and

M2
t =

∑
PY

s ̸=0
s≤t

(
ψ(XL

s− , λs− − PY
s )− ψ(XL

s− , λs−)
)
e−qs

−
∫ t

0

β
∫XL

s−
0 ψ(XL

s− , λs− + γ)dFY (γ)e
−qsds
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are martingales with zero expectation. Hence, we obtain

E(ψ(XL
τ∗ , λτ∗)e−qτ∗

−ψ(x0, λ0)) ≤ E(
∫ τ∗

0

L(ψ)(XL
s− , λs−)e

−qs)−E(
∫ τ∗

0−
e−qsdLs).

(39)
Using (36), we get∫ τ∗

0

L(ψ)(XL
s− , λs−)e

−qsds ≤ −εq
∫ τ∗

0

e−qsds. (40)

From (41), Lemma 3.6, (38), (39) and (40) it follows that

V (x0, λ0) = supL E
(∫ τ∗

0−
e−qsdLs + e−qτ∗

V (XL
τ∗ , λτ∗)

)
≤ supL E

(∫ τ∗

0−
e−qsdLs + e−qτ∗ (

ψ(XL
τ∗ , λτ∗)− ε

)
Iτ∗<τL

)
≤ ψ(x0, λ0) + supL E

(∫ τ∗

0
L (ψ) (XL

s− , λs−)e
−qsds− εe−qτ∗

Iτ∗<τL

)
≤ ψ(x0, λ0) + supL E

(
−ε(1− e−qτ∗

)− εe−qτ∗
Iτ∗<τL

)
≤ ψ(x0, λ0)− ε+ εE(e−q(τ1∧T1))

≤ ψ(x0, λ0)− ε+ ε (λ0 + β) / (q + λ0 + β)

< ψ(x0, λ0).
(41)

But the latter contradicts the assumption that V (x0, λ0) = ψ(x0, λ0). Hence V is a

viscosity subsolution at (x0, λ0) and this complete the proof.
The next lemma will be used to prove Proposition 4.2.

Lemma A.3. Let u be a non-negative supersolution of (11) satisfying the growth
condition (13) and non-increasing in λ. We can find a sequence of positive functions
um : (0,∞)× (λ,∞) → R such that:

(a) um is continuously differentiable.
(b) um(x, λ) ≤ K + x and um is non-increasing in λ.
(c) 1 ≤ umx (x, λ) ≤ ((q + λ+ β) /p)u(x+ 1/m, λ) for (x, λ) ∈ (0,∞)× (λ,∞).
(d) um → u uniformly on compact sets in (0,∞) × (λ,∞) and ∇um converges

to ∇u a.e. in (0,∞)× (λ,∞).
(e) There exists a sequence cm with lim

m→∞
cm = 0 such that

sup(x,λ)∈A0
L(um) (x, λ) ≤ cm,where A0 = [0, x0]× [λ0, λ1],

where x0 > 0 and λ0, λ1 ∈ (λ,∞).

Proof of Lemma A.3. Let us define the set

D = {(x, λ) ∈ (0,∞)× (λ,∞) s.t. u differentiable in (x, λ)} .

Since u is a supersolution of (11), we have that

pux(x, λ)− d (λ− λ)uλ(x, λ) ≤ (q + λ+ β)u(x, λ) (42)

and ux ≥ 1 for all (x, λ) ∈ D and so a.e. in (0,∞)× (λ,∞).
Let ϕ be a nonnegative continuously differentiable function with support included

in (0, 1) such that
∫ 1

0
ϕ(x)dx = 1, we define um : (0,∞) × (λ,∞) → R as the

convolution

um(x, λ) = m2

∫ ∞

−∞

∫ ∞

−∞
u(x+ s, λ+ t)ϕ(ms)ϕ(mt)dsdt. (43)
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By definition, um(x, λ) is a weighted average of values of u in Am = [x, x+ 1/m]×
[λ, λ+1/m]; (a), (b) and (d) follow by standard techniques, because um ≥ u and u
is absolutely continuous in (0,∞) × (λ,∞) and satisfies the growth condition (13)
(see for instance [30]). From Equation (11) we have that ux ≥ 1 a.e., also since for
all (x, λ) ∈ D, L(u) (x, λ) ≤ 0 we have

−(q + λ+ β)u(x, λ) ≤ pux(x, λ)− d (λ− λ)uλ(x, λ) ≤ (q + λ+ β)u(x, λ),

so that we conclude (c).
Let us define for (x, λ) ∈ A0 the function

ξm(x, λ) = sup
(x,λ)∈Am∩D

(pux(x, λ)− d (λ− λ)uλ(x, λ)) . (44)

We have that for all (x, λ) ∈ D

pux(x, λ)− d (λ− λ)uλ(x, λ) ≤ ξm(x, λ) ≤ (q + λ+ β)u(x+ 1/m, λ). (45)

From (44), for any (x, λ) ∈ A0 there exists (xm, λm) ∈ Am ∩D such that

pux(xm, λm)− d (λ− λ)uλ(xm, λm) ≥ ξm(x, λ)− 1

m
. (46)

So,

pumx (x, λ)− d (λ− λ)umλ (x, λ)− (pux(xm, λm)− d (λ− λ)uλ(xm, λm))

= m2
∫∫

D
(pux(x+ s, λ+ t)− d (λ+ t− λ)uλ(x+ s, λ+ t))ϕ(ms)ϕ(mt)dsdt

−(pux(xm, λm)− d (λm − λ)uλ(xm, λm))

≤ ξm(x, λ)− (ξm(x, λ)− 1
m )

≤ 1
m .

From (42), (45), (46) and using that u and um are uniformly continuous in
compact sets and that it is non-decreasing in λ, we have the result.

Proof of Proposition 4.2. Let u be a non-negative supersolution of (11) satisfying
the growth condition (13) and take an admissible strategy L ∈ Πx,λ, define

(
XL

t , λt
)

as the corresponding controlled risk process starting at (x, λ). Let us consider the
function um as defined in Lemma A.3 in (0,∞) × (λ,∞) and let us extend this
function as um(x, λ) = 0 otherwise, as in (39) in the proof of Proposition 4.1, we
obtain (using umx ≥ 1),

E
(
um(XL

t∧τL , λt∧τL)e−q(t∧τL)
)
− um(x, λ)

≤ E
(∫ t∧τL

0
L(um)(XL

s− , λs−)e
−qsds

)
− E

(∫ t∧τL

0−
e−qsdLs

)
.

(47)

Since Lt is a non-decreasing process we get, by the monotone convergence theorem,
that

lim
t→∞

E

(∫ t∧τL

0−
e−qsdLs

)
= J(L;x, λ).

From Lemma A.3(c), we have

−(q+λ+β)u(x+
1

m
,λ) ≤ L(um)(x, λ) ≤ (q + λ+ β)u(x+

1

m
,λ)+βu(x, λ). (48)

But using Lemma A.3(b) and the inequalities XL
s ≤ x+ ps, λs > λ we obtain

u(XL
s , λs) ≤ K + ps. (49)



334 HANSJÖRG ALBRECHER, PABLO AZCUE AND NORA MULER

So, by the bounded convergence theorem, we get

lim
t→∞

E

(∫ t∧τL

0

L(um)(XL
s− , λs−)e

−qsds

)
= E

(∫ τL

0

L(um)(XL
s− , λs−)e

−qsds

)
.

(50)
From (47) and (50), we have

lim
t→∞

E
(
um(XL

t∧τL , λt∧τL)e−q(t∧τL)IτL<t

)
− um(x, λ)

= −um(x, λ)

≤ E
(∫ τL

0
L(um)(XL

s− , λs−)e
−qsds

)
− J(L;x, λ).

(51)

Let us prove now that

lim sup
m→∞

E

(∫ τL

0

L(um)(XL
s− , λs−)e

−qsds

)
≤ 0. (52)

Because um(x, λ) ≤ K + x, Lemma A.3(b) and Lemma A.3(b)(c) give∣∣L(um)(XL
s− , λs−)

∣∣ ≤ (q + λ+ β)u(XL
s− + 1

m , λs−) + βu(XL
s− , λs−)

≤ (q + λ+ β)u(XL
s− + 1

m , λ) + βu(XL
s− , λ)

≤ (q + λ+ 2β)
(
x+ 1

m + ps
)
.

Then, given any ε > 0, we can find T such that∫ ∞

T

L(um)(XL
s− , λs−)e

−qsds <
ε

4
(53)

for any m ≥ 1. Note that for s ≤ T , we have that XL
s− ≤ x0 := x + pT , λs−

≥ λ1 := λ+ (λ− λ) e−dt. From (2), there exists M large enough such that

P(sup
s≤T

λs > M) <
ε

4 (q + λ+ 2β)
(
x+ 1

m + ps
) .

Now, take the compact set [0, x0]× [λ1,M ] and the set

AT,M =

{
(λs)s≤T : sup

s≤T
λs ≤M

}
.

From Lemma A.3(e), we can find m0 large enough such that for any m ≥ m0,

IAT,M

∫ T

0

L(um)(XL
s− , λs−)e

−qsds ≤ cm

∫ T

0

e−qsds ≤ cm
q

≤ ε

2
,

and so taking the expectation we get (52). Then, from (51) and using Lemma
A.3(d), we finally obtain

u(x, λ) = lim
m→∞

um(x, λ) ≥ J(L;x, λ). (54)

Since V is a viscosity solution of (11), the result follows.

A.4. Proofs of Section 5. Proof of Proposition 5.1. Let us define for M > 0,

VM (x, λ) =

{
V (x, λ) if x ≤M,
V (M,λ) + x−M if x > M.

VM (x, λ) is a limit of value functions of strategies. From Propositions 3.1, 3.2 and
3.3, VM is locally Lipschitz, increasing on x and non-increasing on λ. For x < M ,
VM is a viscosity supersolution of (11). For x > M , ∂xVM (x, λ) = 1. In order to
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see that VM is a viscosity supersolution of (11) for x > M and M large enough, we
need to show that L(VM )(x, λ) ≤ 0 for x > M . Indeed,

L(VM )(x, λ)

≤ p− (q + λ)VM (x, λ) + λ
∫ x

0
VM (x− α, λ)dFU (α)

+β
(∫∞

0
VM (x, λ)dFY (γ)− VM (x, λ)

)
≤ p− (q + λ)VM (x, λ) + λ

∫ x

0
VM (x− α, λ)dFU (α)

≤ p− (q + λ)(V (M,λ) + x−M) + λ
∫ x

0
(V (M,λ) + x− α−M)dFU (α)

≤ p− qV (M,λ)
≤ 0

for any M ≥ p/q because V (x, λ) ≥ x. Consider the following dense set B in
[0,∞)× [λ,∞)

B := {(x, λ) ∈ [0,∞)× [λ,∞) : V is differentiable}.
For any point (M,λ) ∈ B with M ≥ p

q , we have that ∂xVM (M,λ) = 1 and so, by

Corollary 4.3, VM coincides with V.

Proof of Proposition 5.2. From Proposition 5.1, V (x, λ) = x + A(λ) for x ≥ p/q,
where

A(λ) := V (p/q, λ)− p/q,

and since from Proposition 3.7, limλ→∞ V (p/q, λ)− p/q = 0 and V (p/q, λ) is non-
increasing on λ, this implies limλ→∞A(λ) ↘ 0 and so

lim
λ→∞

(
sup

x≥p/q

V (x, λ)− x

)
= 0.

Also, for all x ≥ 0 such that Vx(x, λ) exists, Vx(x, λ) ≥ 1 and so h(x, λ) := V (x, λ)−
x is non-decreasing on x. Hence,

V (x, λ)− x ≤ V (p/q, λ)− p/q ≤ A(λ)

and that implies the result.

A.5. Proofs of Section 6. Proof of Proposition 6.1. We have that

V δ(xδn+1, λ)− V δ(xδn, λ) ≤ V δ(xδn)e
(β+q)δ+

∫ δ
0
λc
udu − V δ(xδn).

Then, denoting xδn = ρδ(x2) and x
δ
m = ρδ(x1),

V δ(x2, λ)− V δ(x1, λ) ≤ V δ(ρδ(x2), λ)− V δ(ρδ(x1), λ) + (x2 − ρδ(x2))

≤ V δ(xδn, λ)− V δ(xδm, λ) + δp

≤
∑n−1

j=m

(
e(β+q)δ+

∫ δ
0
λc
udu − 1

)
V δ(xδj , λ) + δp

≤
(
ρδ(x2)− ρδ(x1)

) (
e(β+q)δ+

∫ δ
0 λc

udu−1
)

pδ V δ(x2, λ) + δp.

With a similar proof to the one of Proposition 3.1, we have that V δ(x, ·) is
non-increasing and so 0 ≤ V δ(x, λ1)− V δ(x, λ2). It suffices to prove

V δ(xδn, λ1)− V δ(xδn, λ2) ≤ V δ(xδn, λ1)
βλ2 + q

d(λ1 − λ)
(λ2 − λ1) (55)

for 0 < λ2 − λ1 small enough.

In order to prove (55), we modify the set of admissible strategies Π̃δ
xδ
n,λ

, adding

new local strategies which are not optimal. Let us define Π̂δ
xδ
n,λ

as the set of all
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the strategies with initial surplus xδn ∈ Gδ which can be obtained by a sequence of
control actions in

Ê = {EF ,E1,E0, Êη},
where the controls EF , E1 and E0 are defined in (17). For any time η > 0, the new

control action Êη consists of throwing away the incoming premium p up to time
η ∧ τ1 ∧ T1 (note that if η < τ1 ∧ T1 the final surplus and intensity of this local
control action is (xδn, λ + (λ − λ)e−dη) ∈ Gδ × [0,∞)). Since it is never optimal to
throw away money,

supπ∈Π̂δ

xδ
n,λ

J(π;
(
xδn, λ

)
) = supπ∈Π̃δ

xδ
n,λ

J(π;
(
xδn, λ

)
) = V δ(xδn, λ).

Given any ε > 0, take π = (L, τF ) ∈ Π̃δ
xδ
n,λ1

such that V δ(xδn, λ1) − J((L, τF );

(xδn, λ1)) < ε/2. By Remark 5.3 we can take τF = ∞, and the associated controlled
process

(XL
t , λt) =

xδn + pt−
Nt∑
i=1

Ui − Lt, λ+ e−dt (λ1 − λ) +
∑

0≤Tk≤t

Yn e
−d(t−Tk)

 .

Consider κ such that

λ+ e−dκ (λ2 − λ) = λ1, (56)

that is

κ =
1

d
log(

λ2 − λ

λ1 − λ
) =

1

d
log(1 +

λ2 − λ1
λ1 − λ

) ≤ 1

d(λ1 − λ)
(λ2 − λ1) .

Define now π̂ as the strategy to apply first the local control Êκ and then either

π = (L, τF ) ∈ Π̃δ
xδ
n,λ1

in case κ < τ1 ∧ T1, or EF otherwise. So π̂ ∈ Π̂δ
xδ
n,λ2

and

L̂t =

{
0 if t ≤ κ ∧ τ1 ∧ T1
Lt−κ if t ≥ κ and τ1 ∧ T1 > κ .

One has

J(π̂;
(
xδn, λ2

)
)

≥ J(π̂;xδn, λ1)e
−qκP(τ1 ∧ T1 ≥ κ)

≥ J(π̂;xδn, λ1))e
−qκ(1− (1− e−βκ))(1− e−

∫ κ
0 (λ+e−ds(λ2−λ))ds))

≥ J(π̂;xδn, λ1))e
−qκ(1− (1− e−βκ))(1− e−λ2κ))

≥ J(π̂;xδn, λ1)) (1− qκ) (1− βλ2κ)
because ∫ κ

0

(
λ+ e−ds (λ2 − λ)

)
ds ≤ λ2κ.

Then, using that λ2 − λ1 ≤ d(λ1 − λ), we get κ < 1. So, from (56),

V δ(xδn, λ1)− V δ(xδn, λ2)
≤ J(π;xδn, λ1)− J(π̂;xδn, λ2) + ε/2

≤ J(π;xδn, λ1)− J(π;xδn, λ1) (1− qκ) (1− βλ2κ) + ε/2

≤ V (xδn, λ1)κ (βλ2κ + q) + ε/2

≤ V (x, λ1)
(
βλ2

(λ2−λ1)
d(λ1−λ) + q

)
(λ2−λ1)
d(λ1−λ) + ε/2,

so that the result follows.
In order to prove Propositions 6.4 and 6.6, we need the following lemma.
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Lemma A.4. Given π ∈ Π̃δ
xδ
n,λ
, π can be obtained by a sequence of control actions

s = (sk)k=1,...,k̃, where k̃ could be finite or infinite. Let us define tk as the time
when the control action sk is applied. We have that limk→∞ tk = ∞ a.s. within the
subset {k̃ = ∞} ⊂ Ω.

Proof of Lemma A.4. Suppose that k̃ = ∞. Calling km = n + m, let im be the
number of control actions E0 in (s1, s2, ..., skm

), then im ≥ m. Given the two
sequences of stopping times (τi)i≥1 and (Tj)j≥1, we define the ordered union of the
two sequences as

(τi)i≥1 ⨿ (Tj)j≥1 := (rh)h≥1,

where {rh : h ≥ 1} = {τi : i ≥ 1} ∪ {Tj : j ≥ 1} and rh ≤ rh+1. We have that
limh→∞ rh = ∞ a.s. Let us consider the non-decreasing sequence (jm) defined
as jm = max{h : rh ≤ tkm}, then we have that tkm ≥ max{rjm , (im − jm − 1)δ}. If
limm→∞ im − jm = ∞, then

lim
m→∞

tkm ≥ lim
m→∞

(im − jm − 1)δ = ∞;

if not, limm→∞ jm = ∞ and so

lim
m→∞

tkm
≥ lim

m→∞
rjm

and since limm→∞ rjn = limi→∞ ri = ∞ a.s., since tk+1 ≥ tk, we have limm→∞ tk =
∞ a.s.

Proof of Proposition 6.4. Let us define W = liml→∞ V δ
l and let us show that

W (xδn, λ) = V δ(xδn, λ). Given (xδn, λ) and ε > 0, take π = (L, τF ) ∈ Π̃δ
xδ
n,λ

such

that V δ(xδn, λ) − J(π;xδn, λ) < ε/2. π can be obtained by a sequence of control

actions s = (sk)k=1,...,k̃, where k̃ could be finite or infinite. Let us define tk as
the time when the control action sk is applied. By Lemma A.4, limk→∞ tk =
∞ a.s. within the subset {k̃ = ∞} ⊂ Ω. Let us take l large enough such that

e−qtl supx≥0 (V (x, λ)− x) ≤ e−qtl p
q < ε/2 and consider πl ∈ Π̃δ,l

xδ
n,λ

, defined by the

sequence (s1, s2, s3, . . . , sl−1,EF ) if k̃ ≥ l and by s otherwise. We have that

J(π;xδn, λ)− J(πl;xδn, λ)

= E

(
E(IτL∧τF>tl

∫ τL

tl

e−qsdLs + IτL∧τF>tlI{τF<τL}e
−qτF

XL
τF )−e−qtlXL

tl
)

∣∣∣∣∣Ftl)

)
≤ e−qtlE

(
V (XL

tl
, λ)−XL

tl

)
< ε/2,

and so V δ(xδn, λ) −V δ
l (x

δ
n, λ) ≤ ε.

Finally, since V δ
l (x

δ
n, λ) ↗ V δ(xδn, λ), from Proposition 6.3, we get that

T (V δ)(xδn, λ) = V δ(xδn, λ).

Proof of Proposition 6.6. Assume that π = (L, τF ) ∈ Πδ
xδ
m,λ. For any ω =

(τi, Ui)i≥1, (Tj , Yj)j≥1, consider the sequence s = (sk)k=1,...,k̃ with sk ∈ E corre-

sponding to π. Let xδmk ∈ Gδ and λk ≥ λ be the surplus and the intensity in which
the control action sk is applied, tk be the time at which the control action sk is
chosen, and let yk be the end surplus resulting from the control action sk. Denote
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by (κl)l≥1 the indices of the sequence s = (sk)k=1,...,k̃, where sk is either EF or E0.

If the sequence stops at k̃ = κl0 <∞, we define

κl = κl0 for l ≥ l0, tκl0+j
= tκl0

+∆κl0
for j ≥ 1;

if k̃ = ∞ we put l0 = ∞. We define, for l ≥ 1,

H(l) =W (xδm1+κl
, λ1+κl)I{sκl

=E0}I{yk≥0} + xδmκl I{sκl
=EF }.

If we put H(0) =W (xδm, λ), κ0 = 0 and t0 = 0, we have, using T1(W )−W ≤ 0,

e−qtκl+1H(l)−W (xδm, λ)

=
∑l

j=1(e
−qtκj+1H(j)− e−qtκjH(j − 1))

=
∑l

j=1 I{κj+1 ̸=κj}(e
−qtκj+1H(j)− e−qtκjH(j − 1))

=
∑l

j=1 I{κj+1 ̸=κj}(e
−qt1+κj−1 (

∑κj−1
k=1+κj−1

(
W (xδmk − pδ)−W (xδmk)

)
))

+
∑l

j=1 I{κj+1 ̸=κj}(e
−qtκj+1H(j)− e−qtκjW (xδ

mkj
))

≤
∑l

j=1 I{κj+1 ̸=κj}(
∑κj−1

k=1+κj−1
e−qt1+κj−1 (−pδI{sk=Ei}))

+
∑l

j=1 I{κj+1 ̸=κj}(e
−qtκj+1H(j)− e−qtκjW (xδ

mkj
)).

(57)
Since T0(W )−W ≤ 0 and TF (W )−W ≤ 0, if κj+1 ̸= κj ,

E
(
e−qtκj+1H(j)− e−qtκjW (xδ

mkj
, λkj )

∣∣∣Ftκj

)
= E

(
(e−qtκj+1H(j)− e−qtκjW (xδ

mkj
, λkj ))I{sκj

=E0}

∣∣∣Ftκj

)
+I{sκj

=EF }e
−qtκj

(
xδ
mkj

−W (xδ
mkj

, λkj )
)

≤ E
(
e−qtκj+1 I{sκj

=E0}(W (xδ
mkj+1 , λ

kj+1)I{yκj≥0})
∣∣∣Ftκj

)
−e−qtκjW (xδ

mkj
, λkj )I{sκj

=E0}

= e−qtκj I{sκj
=E0}

(
T0(W )

(
xδ
mkj

, λkj

)
−W (xδ

mkj
, λkj )

)
≤ 0.

(58)

From (57) and (58), we have

lim sup
l→∞

E
(
e−qtκl+1H(l)−W (xδm, λ)

)
≤ −E

(∫ (τL∧τF )−

0−
e−qsdLs

)
.

Consequently,

W (xδm, λ)

≥ J(π;xδm, λ) + lim sup
l→∞

E
(
e−qtκl+1

(
W (xδm1+κl

, λ1+κl)I{sκl
=E0}I{yk≥0}

))
.

Since W satisfies the growth condition (13), by Lemma A.4,

lim sup
l→∞

E
(
e−qtκl+1

(
W (xδm1+κl

, λ1+κl)I{sκl
=E0}I{yk≥0}

))
= 0,

and so we have the result.
In order to prove Theorem 6.9, we need the next definition.

Definition A.3. We define the auxiliary function V : [0,∞)× [λ,∞) → R as

V (x, λ) := limk→∞ V δk(x, λ).
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We will prove that V is the optimal value function. In order to do that, we
will show that V is a viscosity supersolution of (11). It is straightforward to see
that V is a limit of value functions of admissible strategies in Πx,λ for all (x, λ) ∈
[0,∞) × [λ,∞), so the result will follow from Corollary 4.3. Since there is no
uniqueness of the solution of the HJB equation, it is essential to show that this
function is a limit of value functions of admissible strategies. In the next lemma,
we find a bound on the variation of V δ and as a consequence we obtain that V is
locally Lipschitz in [0,∞)× [λ,∞) and so it is absolutely continuous.

Lemma A.5. We have that V is locally Lipschitz in [0,∞)× (λ,∞). That is, for
any x2, x1 ≥ 0 and for any λ2, λ1 > λ with λ2 − λ1 ≤ d(λ1 − λ),∣∣V (x2, λ2)− V (x1, λ1)

∣∣
≤
∣∣V (x2, λ2)− V (x1, λ2)

∣∣+ ∣∣V (x1, λ2)− V (x1, λ1)
∣∣

≤ V (x2 ∨ x1, λ)p+q+(λ1∨λ2)
p |x2 − x1|+ V (x2 ∨ x1, λ) (β(λ1∨λ2)+q)

d((λ1∧λ2)−λ) |λ2 − λ1|
≤ V (x2 ∨ x1, λ)(p+q+(λ1∨λ2)

p + β(λ1∨λ2)+q
d((λ1∧λ2)−λ )(|x2 − x1|+ |λ2 − λ1|).

Proof of Lemma A.5. We can write, from Proposition 6.1,

V (x2, λ)− V (x1, λ)

= V (x2, λ)− V δk(x2, λ) + V δk(x2, λ)− V δk(x1, λ) + V δk(x1, λ)− V (x1, λ)

≤ V (x2, λ)− V δk(x2, λ) +
(
ρδk(x2)− ρδk(x1)

)
e(β+q)δk+

∫ δk
0 λc

udu−1
pδk

V δk(x2, λ) + δkp

+V δk(x1)− V (x1).

Also,

V (x, λ1)− V (x, λ2)

= V (x, λ1)− V δk(x, λ1) + V δk(x, λ1)− V δk(x, λ2) + V δk(x, λ2)− V (x1, λ2)

≤ V (x, λ1)− V δk(x, λ1) + V δ(x, λ1)
(βλ2+q)
d(λ1−λ) (λ2 − λ1) + V δk(x, λ2)− V (x1, λ2).

Taking the limit as k goes to infinity, we obtain∣∣V (x2, λ)− V (x1, λ)
∣∣ ≤ V (x2 ∨ x1, λ)

p+ q + λ

p
|x2 − x1|

and ∣∣V (x, λ1)− V (x, λ2)
∣∣ ≤ V (x, λ)

(βλ2 + q)

d(λ1 − λ)
|λ2 − λ1| .

In the next lemma, we show that the convergence of V δk to V is locally uniformly.

Lemma A.6. V δk ↗ V locally uniformly as k goes to infinity.

Proof of Lemma A.6. Consider a compact set K in [0,∞) × (λ,∞), (x1, λ1) ∈ K
and ε > 0. Let us take M ∈ [0,∞) such that M ≥ x, for all (x, λ) ∈ K. We
show first that there exists k0 large enough and η > 0 small enough such that if
|x− x1|+ |λ− λ1| < η, and k ≥ k0, then

V (x, λ)− V δk(x, λ) < ε. (59)

Indeed, by pointwise convergence at (x1, λ1), there exists k1 such that

V (x1, λ1)− V δk(x1, λ1) < ε/3 for k ≥ k1. (60)
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By Lemma A.5, there exists η1 such that if |x− x1|+ |λ− λ1| < η1, then∣∣V (x, λ)− V (x1, λ1)
∣∣ < ε/3. (61)

Also, from Proposition 6.1, there exists η2 and k2 such that if |x− x1|+ |λ− λ1| <
η1, then∣∣V δk(x, λ)− V δk(x1, λ1)

∣∣ ≤ V δk(M,λ)( e
(β+q)δ+

∫ δ
0 λc

udu−1
pδ

+ β(λ1∨λ2)+q
d((λ1∧λ2)−λ) )(ρ

δ(x2)− ρδ(x1) + |λ2 − λ1|) + δp

< ε/3
(62)

for k ≥ k2. Therefore, taking η := η1 ∧ η2, for k ≥ k0 := k1 ∨ k2, we obtain (59)
from (60), (61) and (62).

Finally, we conclude the result by taking a finite covering of the compact set
K.

The next lemma is the key argument in the proof of Theorem 6.9.

Lemma A.7. V is a viscosity supersolution of (11) in (0,∞) × (λ,∞), and so
V = limk→∞ V δk = V.

Proof of Lemma A.7. Take (x0, λ0) ∈ (0,∞)× (λ,∞) and a differentiable test
function φ : [0,∞)× [λ,∞) → R for a viscosity supersolution of (11) at (x0, λ0),
that is

V (x,λ) ≥ φ(x, λ) and V (x0, λ0) = φ(x0, λ0). (63)

Consider the sets K1 = [x0, x0 + δ1] ⊂ (0,∞), K2 = [λ0, λ0 + 1] ⊂ (λ,∞) and
Kδk = (Gδk ∩K1)×K2 ⊂ (0,∞)× (λ,∞). In order to prove that L(φ)(x0, λ0) ≤ 0,
consider now, for η > 0 small enough,

φη(x,λ) = φ(x,λ)− η
((
x− x0

)2
+(λ− λ0)2

)
.

Given k ≥ 0, the set Kδk is non-empty and compact, so we can define

aηk := minKδk {V δk(x,λ)− φη(x,λ)} (64)

and

(xηk, λ
η
k) := argminKδk {V δk(x,λ)− φη(x,λ)} ∈ Kδk . (65)

Since V δk ≤ V , we have from (63), that aηk ≤ 0. Taking

0 ≤ bηk := maxKδk {V (x,λ)− V δk(x,λ)},

by Lemma A.6, aηk → 0 and bηk → 0 as k → ∞. Moreover, for all (x,λ) ∈ Kδk , we
get from (63), (64) and (65) that

aηk
= V δk(xηk, λ

η
k)− φη(x

η
k, λ

η
k)

= V δk(xηk, λ
η
k)− V (xηk, λ

η
k) + V (xηk, λ

η
k)− φ(xηk, λ

η
k) + η

((
xηk − x0

)2
+(ληk − λ0)2

)
≥ −bk + η

((
xηk − x0

)2
+(ληk − λ0)2

)
.

Then, the minimum argument in (64) is attained at (xηk, λ
η
k) ∈ Kδk such that(

xηk − x0
)2

+(ληk − λ0)2 ≤ (bk + ak)/η.
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Hence, (xηk, λ
η
k) → (

(
x0
)+
,
(
λ0
)+

) as k goes to infinity. So

V δk(x,λ) ≥ φη(x,λ)+a
η
k for (x,λ) ∈ Kδk and V δk (xηk, λ

η
k) = φη (x

η
k, λ

η
k)+a

η
k. (66)

Since

T0(V δk) (xηk, λ
η
k)− V δk (xηk, λ

η
k) ≤ 0,

we obtain

0 ≥ limk→∞
T δk
0 (φη)(x

η
k,λ

η
k)−φη(x

η
k,λ

η
k)−aη

k(1−e−qδk)
δk

= limk→∞
T δk
0 (φη)(x

η
k,λ

η
k)−φη(x

η
k,λ

η
k)

δk

= L(φη)(x
0, λ0).

Since ∂x(φη)(x
0, λ0) = ∂x(φ)(x

0, λ0) and ∂λ(φη)(x
0, λ0) = ∂λ(φ)(x

0, λ0) and φη ↗
φ as η ↘ 0, we obtain that L(φ)(x0, λ0) ≤ 0 and the result follows.

Proof of Theorem 6.9. From Lemmas A.6 and A.7 we have that for any δ > 0, the
functions V δk ↗ V = V locally uniformly as k goes to infinity. From Proposition
5.2, it is enough to show that V δk ↗ V uniformly in [0,∞)× [λ, λ1] for any λ1 > λ.
From Proposition 5.1, take x > x∗ = p/q + δk, then

V δk(x∗, λ) + (x− x∗) ≤ V δk(x, λ) ≤ V (x, λ) = V (x∗, λ) + (x− x∗),

so

V (x, λ)− V δk(x, λ) = V (x∗, λ) + (x− x∗)− V δk(x, λ)

≤ V (x∗, λ) + (x− x∗)− (V δk(x∗, λ) + (x− x∗))

= V (x∗, λ)− V δk(x∗, λ),

and the result follows.

A.6. Proofs of Section 7. Proof of Proposition 7.1. Since λ̂t ≥ λt for all t ≥ 0,

with a proof analogous to the one of Proposition 3.1-(1), one can prove that V̂ δ,∆ ≤
V δ. Let us prove now that lim∆→0

(
supx≥0,λ≥λ V

δ(x, λ)− V̂ δ,∆(x, λ)
)

= 0. It

is enough to do the proof for (x, λ) ∈ Gδ × H∆. Take the optimal Gδ-strategy

π = (L,∞) ∈ Π̃x,λ such that

V δ(x, λ) = J(π;x, λ)

and let us call the corresponding ruin time of the controlled process XL
t = Xt −Lt

as τL.
Given δ and ∆, since 0 ≤ λ̂t − λt ≤ ∆, we can write the Poisson process N̂t

as N̂t = Nt + N t where N t is a Poisson process independent of Nt and intensity

λ̂t − λt. Therefore,

X̂t = Xt −
Nt∑
m=1

Um. (67)

Define

τ̂1 = sup{t : X̂t − Lt ≥ 0},

L̂t = Lt I{t<τ̂1} + Lτ̂1 I{t≥τ̂1}

and

τ̂F = τ̂1I{Xτ̂1
−L

τ̂
−
1
≥0} +∞I{Xτ̂1

−L
τ̂
−
1
<0}.
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Then, taking π̂ =
(
L̂, τ̂F

)
, it holds that π̂ ∈ Π̂δ,∆

x,λ . That is, it is admissible for the

discrete intensity process λ̂t. Denote the ruin time of as τ̂L and τ̂2 = τ̂L∧ τ̂F . So
we have from (67) τL ≥ τ̂2 and

XL
τ̂2

= Xτ̂2 − Lτ̂2 = X̂τ̂2 +

N τ̂2∑
m=1

Um − Lτ̂2 ≤
N τ̂2∑
m=1

Um.

We therefore can write

J(π;x, λ)− Jλ̂(π̂;x, λ) = E(
∫ τL

τ̂2− e
−qsdLs)− E(I{τ̂F<τ̂L}e

−qτF

(X̂τ̂F − L(τ̂F )−))

≤ E(
∫ τL

τ̂2− e
−qsdLs)

≤ E
(
e−qτ̂2I{τ̂2<τL}V (

∑N τ̂2
m=1 Um, λτ̂2)))

)
≤ E

(
e−qτ̂2I{τ̂2<τL}(

∑N τ̂2
m=1 Um + p

q )

)
.

(68)

From λ̂t − λt ≤ ∆, we get that E
(
N t

)
≤ t∆ for any t ≥ 0. So, given ε > 0 and

taking ∆ ≤ 1 and T large enough such that e−qT
(
T∆E(U1)+

p
q

)
≤ ε

2 , we get

E
(
I{τ̂2<τL}I{τ̂2>T}e

−qτ̂2
∑N τ̂2

m=1 Um + p
q )

)
≤ e−qTE

(∑N τ̂2
m=1 Um + p

q

)
≤ e−qT

(
T∆ E(U1)+

p
q

)
≤ ε

2 .

Moreover, τ̂2 < τL implies N τ̂2 ≥ 1, so choosing ∆ ≤ ε/(4
(
E(U1)T + p

q

)
) and

since P(N t ≥ 1) ≤ 1− e−∆t, we obtain

E
(
I{τ̂2<τL}I{τ̂2≤T}e

−qτ̂2(
∑N τ̂2

m=1 Um + p
q )

)
≤ E

(
INT≥1(

∑NT

m=1 Um + p
q )
)

≤ P
[
NT ≥ 1

]
E
(∑NT

m=1 Um + p
q

)
≤ (1− e−∆t)

(
T∆E(U1) +

p
q

)
≤ ε

2 .

So, from (68),

J(π;x, λ)− Jλ̂(π̂;x, λ) ≤ ε for ∆ ≤ ε

4
(
TE(U1) +

p
q

) ,
and we get the result.

Proof of Theorem 7.4. On the one hand, since λ̂t ≥ λt for all t ≥ 0, one can

prove that V̂ δ,∆ ≤ WPδ,∆ in [0,∞) × [λ,∞) with a proof analogous to the one of
Proposition 3.1-(1). On the other hand, given any ε > 0, from Theorem 6.9 and
from Proposition 7.1 there exists δ and ∆ small enough so that

0 ≤ V − V̂ δ,∆(x, λ) ≤ ε

in [0,∞)× [λ,∞), which establishes the result.
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344 HANSJÖRG ALBRECHER, PABLO AZCUE AND NORA MULER

[28] T. Schmidt, Shot-noise processes in finance, From Statistics to Mathematical Finance:
Festschrift in Honour of Winfried Stute, (2017), 367-385.

[29] R. Schneider, Extreme events require new forms of financial collaboration to become more

resilient, Environment Systems and Decisions, 2023. to appear.
[30] R. L. Wheeden and A. Zygmund, Measure and Integral, New York: Marcel Dekker, 1977.

[31] G. Zeller and M. Scherer, A comprehensive model for cyber risk based on marked point
processes and its application to insurance, European Actuarial Journal, 12 (2022), 33-85.

Received November 2023; revised March 2024; early access May 2024.

http://mathscinet.ams.org/mathscinet-getitem?mr=MR3752341&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR492146&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4443594&return=pdf
http://dx.doi.org/10.1007/s13385-021-00290-1
http://dx.doi.org/10.1007/s13385-021-00290-1

	portada.pdf
	10.3934_fmf.2024008.pdf
	1. Introduction
	2. The model
	3. Basic results
	4. Hamilton-Jacobi-Bellman equation
	5. Asymptotic properties of the optimal value function
	6. Approximation of the value function by a discretization of the surplus
	7. Discretization on the intensity process
	8. Numerical results
	8.1. Example 1: Exponential claim sizes
	8.2. Example 2: Erlang(2) claim sizes
	8.3. Example 3: Deterministic claim sizes

	9. Conclusion and outlook
	Appendix A. 
	A.1. Proofs of Section 1
	A.2. Proofs of Section 3
	A.3. Proofs of Section 4 
	A.4. Proofs of Section 5
	A.5. Proofs of Section 6
	A.6. Proofs of Section 7

	REFERENCES


