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ARTICLE INFO ABSTRACT

Keywords: In this paper we study the Traveling Salesman Problem with release dates (TSP-rd) and completion time
Traveling Salesman Problem minimization. The TSP-rd considers a single vehicle and a set of customers that must be served exactly
Release dates once with goods that arrive to the depot over time, during the planning horizon. The time at which each

Integer Linear Programming

requested good arrives is called release date and it is known in advance. The vehicle can perform multiple
Branch and cut

routes, however, it cannot depart to serve a customer before the associated release date. Thus, the release
date of the customers in each route must not be greater than the starting time of the route. The objective
is to determine a set of routes for the vehicle, starting and ending at the depot, where the completion time
needed to serve all customers is minimized. We propose a new Integer Linear Programming model and develop
a branch and cut algorithm with tailored enhancements to improve its performance. The algorithm proved
to be able to significantly reduce the computation times when compared to a compact formulation tackled
using a commercial mathematical programming solver, obtaining 24 new optimal solutions on benchmark
instances with up to 30 customers within one hour. We further extend the benchmark to instances with up to
50 customers where the algorithm proved to be efficient. Building upon these results, the proposed model is
adapted to new TSP-rd variants (Capacitated and Prize-Collecting TSP), with different objectives: completion
time minimization and traveling distance minimization. To the best of our knowledge, our work is the first
in-depth study to report extensive results for the TSP-rd through a branch and cut, establishing a baseline and
providing insights for future approaches. Overall, the approach proved to be very effective and gives a flexible
framework for several variants, opening the discussion about formulations, algorithms and new benchmark

instances.
1. Introduction and literature review The motivation behind release dates is to represent the time at
which a requested package arrives at the depot. In this fashion, the
In this paper, we address the Traveling Salesman Problem with vehicle is required to only satisfy the requests of customers whose
release dates and completion time minimization (TSP-rd(time)) with packages are ready at the depot at the moment of departure. This
an exact approach. The TSP-rd(time) addresses a key operational con- version of release dates is first introduced by Cattaruzza et al. (2016)
straint within nowadays last-mile logistics, which is partly motivated by where the authors tackle the multi-vehicle routing problem with time

same-day and fast deliveries. The package requested by a customer may
not be available at the beginning of the planning horizon, representing
the timing of its arrival at the distribution center. Thus, the vehicle
is allowed to perform multiple routes to serve all customers. The
TSP-rd(time) is formulated as a synchronization problem, but so far,
neglects the effect of vehicle capacity. Variants of routing problems
with release dates have only recently been introduced in the literature,
and applications arise in the context of cross-docking and same-day
delivery problems (Mor and Speranza, 2020).

windows and release dates. The objective is to minimize the total travel
distance, and the authors propose a hybrid genetic algorithm on a set of
instances adapted from Solomon (1987). A single-vehicle variant of a
routing problem with release dates is presented in Archetti et al. (2015).
The problem is called Traveling Salesman Problem with release dates
(TSP-rd) for the first time by the authors and it does not consider capac-
ities or time windows. Two different objective functions are proposed:
(a) completion time minimization (TSP-rd(time)), where the idea is to
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minimize the time needed to complete the distribution of all packages
computed as the sum of the total traveling time plus the total waiting
time, and (b) total traveling distance minimization (TSP-rd(distance)),
in which there is a deadline for completing the distribution and the goal
is to minimize the total traveling distance. Although both variants are
NP-hard, the authors show that they can be solved in polynomial time
provided that the underlying graph has a special structure. Reyes et al.
(2018) generalize these results considering a service guarantee that
implies a common deadline for the orders after each release date. Still
the contributions are towards the complexity of the problem on specific
networks (e.g., the half-line). Archetti et al. (2018) present a Mixed
Integer Linear Programming (MILP) formulation for the TSP-rd(time)
and propose two iterated local-search procedures based on a destroy-
and-repair scheme. The article focuses on the heuristics and report
results for instances up to 500 customers. A natural extension for multi-
vehicle routing problem with release dates is presented in Shelbourne
et al. (2017) for which a path relinking algorithm is proposed. Due
dates are considered for each order, i.e. a time by which the order
must be delivered to the customer. The objective function considered
combines an operational cost and customer service level by means of
the total distance traveled and the total weighted tardiness of deliv-
ery, respectively. Waiting times are not considered and no results are
reported for the single-vehicle case. Another version which is related
to TSP-rd is the Multi-Trip Vehicle Routing Problem (MTVRP) where
each vehicle is allowed to perform multiple trips starting and ending at
the depot due to duration or capacity constraints (see Azi et al., 2007,
2010, 2014 for potential applications and results that, despite missing
release dates, incorporate time windows). An exact solution framework
which accounts for the modeling of release dates for the Capacitated
MTVRP with Time Windows (CMTVRP-TW) is proposed in Paradiso
et al. (2020). It relies on column generation, column enumeration
and cutting planes. Among the four different variants, one of them
incorporates release dates. However, the objective function accounts for
the minimization of the total traveled distance instead of the makespan
and the developed labeling algorithm explicitly exploits the presence of
time windows. Thus, no direct comparison with Archetti et al. (2018)
is established, as the framework cannot be directly adapted.

Finally, a survey about routing problems over time is presented
by Mor and Speranza (2020), and a recent article about challenges in
routing and inventory routing in the context of e-commerce and last-
mile delivery is presented in Archetti and Bertazzi (2021), including a
dedicated section about release dates.

Release dates are still relatively new in the VRP literature. The
contributions of our paper are threefold. First, on the methodological
side, we propose a new MILP formulation for the TSP-rd(time) where
the multiple trips are modeled via an adaptation of the Generalized
Cut Set (GCS) constraints (see, e.g., Taccari, 2016). To the best of our
knowledge, the only results with an optimality guarantee are reported
in Archetti et al. (2018), where the proposed formulation is solved
using an out-of-the-box MILP solver. Although both models consider
the edge flow variables, our approach provides an improved fashion
to model the multiple visits to the depot. In addition, we propose
two enhanced families of valid inequalities to model the interaction
among the release dates. Second, from an algorithmic standpoint, we
develop a tailored branch and cut (BC) algorithm incorporating the
new valid inequalities as part of the formulation, the GCS, an initial
heuristic to compute an upper bound on the instance and a specific
branching criterion. We conduct extensive computational experiments
over benchmark instances and compare our results with the ones
reported by Archetti et al. (2018). We show that our method improves
the results reported therein, and we provide strong evidence on the
components that drive such improvement via specific experiments. We
provide 24 new optimal solutions for the benchmark instances having
up to 30 customers proposed in Archetti et al. (2018), and we further
expand the benchmark and report results for instances with up to
50 customers. Third, building upon the previous results, we consider
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different variants for the TSP-rd by incorporating other characteristics
such as capacities, distances and profits. The model is adapted to each
variant and we generate tailored instances in each case to study the
performance of our algorithm in different setups, which may result
very valuable for practitioners or researchers tackling such problems.
Overall, our paper contributes with improved methodology and strong
computational results for a family of single vehicle routing problems
with release dates.

The rest of the paper is organized as follows. In Section 2 we present
the formal definition of the TSP-rd(time) and the notation used along
the paper. In Section 3 we introduce the formulation proposed by
Archetti et al. (2018) and our new formulation. Section 4 describes the
details of the BC algorithm based on the new formulation, and Section 5
reports the computational results for the TSP-rd(time). Several TSP-rd
variants are explored in Section 6, considering both completion time
and distance minimization, as well as capacities and the prize-collecting
version of the problem. Finally, we conclude and state some future
research lines in Section 7.

2. Problem definition

Let G = (V,A) be a complete digraph, with V' the set of vertices
and A the set of edges. The set V' = {0} U N models the depot, denoted
by vertex 0, and the set of customers N = {1,...,n}. We consider a
traveling time 7;; associated to each edge (i, j) € A which satisfy the
triangle inequality. We assume a non-negative release date r; for each
customer i € N, which represents the time at which the requested
package arrives at the depot. In particular, setting r; = 0 models that
the package is available at the beginning of the distribution because
it arrived overnight. Note that the classical TSP can be retrieved by
setting r;, = 0 for all i € N. The operations are carried out by one
vehicle with infinite capacity, ready to depart at t+ = 0. The vehicle is
allowed to perform multiple consecutive routes. However, each route
can only include packages which are ready before the corresponding
departure from the depot (i.e., its release date r; is at most the departure
time of the vehicle from depot). The objective is to serve all customers
at minimum total completion time, defined as the time at which the
vehicle is back to the depot after visiting all customers, computed as
the sum of travel and waiting times.

For simplicity, we adopt the definition of a route used in Archetti
et al. (2018). A route refers to a trip that starts and ends at the depot
and that does not visit the depot in between. Note that in the context
of multiple vehicles (e.g., Cattaruzza et al., 2016) trips and routes may
refer to different concepts.

Fig. 1 shows two examples of feasible solutions for a distribution
network with 3 customers. Let 7, be the starting time of the kth route
within a solution. In the example, Solution (1(a)) involves one route
which departs as soon as all packages are available at time 40 =
max{ry, r, r3}, resulting in a completion time of 130 and a traveled
time of 90. Solution (1(b)) involves two routes. In the first one, the
vehicle departs at time 5 = max{r,, r,} being able to deliver the
requested package of Customers 1 and 2. As soon as the vehicle returns
to the depot at time 85, the requested package of Customer 3 is available
(r3 < 85), and the vehicle departs again to visit the remaining customer
with the second route. The total completion time is 125 with a traveled
time of 120 and a waiting time of 5. In this example, Solution (1(b)) is
better than Solution (1(a)) as the total completion time of the former
is lower.

We introduce two properties presented by Archetti et al. (2018),
which are important to understand the structure of the TSP-rd(time)
and to enhance the mathematical formulations presented in Section 3.

Property 1 (No Waiting Time After First Departure). Given an instance
of the TSP-rd(time), there exists an optimal solution with no waiting time
after the departure of the first route.
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Fig. 1. Examples of feasible solutions for the TSP-rd(time).
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Fig. 2. Forward shift of Route i to remove waiting time after departure (Property 1).

The intuition behind this result is that each departure can be shifted
forward without changing the set of customers served in each route,
neither the total completion time as depicted in Fig. 2.

Property 2 (Routes & Latest Release Date). There exists an optimal
solution with exactly one route starting not earlier than r,,,,, i.e., the latest
release date.

We omit the proof and refer the reader to Archetti et al. (2018) for
further details.

3. MILP formulations

In this section we present two MILP formulations for the TSP-
rd(time). First, we describe the formulation proposed in Archetti et al.
(2018). We then introduce our new formulation as well as an improved
version with tightened constraints.

3.1. AFMG formulation (Archetti et al., 2018)

The 3-index formulation introduced in Archetti et al. (2018) for the
TSP-rd(time), named AF M G, is based on flow variables indexed by the
route in which the edge is traversed. Let K be a set of routes, with |K|
being an upper bound for the number of routes in the optimal solution.
Define binary variables x,’.‘j taking value 1 if and only if edge (i,j) € A
is traversed in route k € K, and let binary variables y;( take value 1
if and only if vertex i € V is visited in route k € K. To account for
the timing of the route, let r* _ and t:fn , denote the starting and ending
time of route k € K, respectively.

Additional continuous non-negative flow variables uf.‘j are added to

enforce subtour elimination, and a binary variable x’éo is considered for

each k € K, taking the value 1 if and only if route k is an empty route,
i.e., it visits no customers. As a result, the model is:

min ILI:d‘ 1)

s.t.
Y =1 VieN @
kekK
Zx{.;:zxfi:y{? VieV,VvkeKk ©)]
jev jev
k=Yl =y VieNVkek 4

Ji ij Vi ’
JjEV JjEV
ufjsnxffj V(@i,j)e AVkeK (5)
k k k
tend :tslarl + Z tij x[j VkeK (6)
(i.j)eA

< Y ke K\ {IK|} Q)
o ZriYy VkEKVieN ®)
=t ke K\ {IK|} ©)
o Stmax Y kEK\{IK]) 10
x{fjg1_x§0 Y (i,j) € AV ke K\ {|K|} an
xby > xb v ke K\ {|K|} 12)
x{fj €{0,1} VY@, j)eAVkeK 13)
yre(0,1} VieV,vkek a4
k k
o 1o, 20 Vkek (15)
u{.‘jzo V(i,j)e AVkeK (16)

The objective function (1) minimizes the total completion time as it
is the ending time of the last route. Constraints (2) guarantee that all
customers are visited by exactly one route. Constraints (3) establish the
flow conservation between edges entering and leaving each customer,
and connect flow variables with indicator variables yf.‘. Constraints (4)—
(5) impose that each route is a circuit connected to the depot. In
particular, constraints (5) were first proposed by Gavish and Graves
(1978) and are used to prevent subtours through a flow that decreases
while the vehicle visits customers. The relation between variables tfmr,
and t’e‘" J is set by constraints (6) and (7). Feasible starting times of
a route depending on the release dates of the customers served is
modeled through constraints (8). Properties 1 and 2 are incorporated
by constraints (9) and (10) respectively in order to reinforce the for-
mulation. Note that constraints (9) imply (7), but we include both sets
of constraints to be consistent with the model presented by Archetti
et al. (2018). Constraints (11) enable an edge in a tour only if the latter
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visits at least one vertex. Finally, constraints (12) remove symmetric
solutions by setting that if route k is empty then all routes k < k must
be empty as well. Note that all empty routes, if any, will precede all the
non-empty routes given constraints (12), and the fact that the last route
(noted as |K|) departs not earlier than r,, due to constraints (10).

Although the model uses an upper bound on the number of routes
in the optimal solution, Archetti et al. (2018) point out that the optimal
solution can always be retrieved by setting |K| = n. The authors only
replace it with a tighter value for the purpose of embedding the model
in a heuristic scheme.

3.2. AJI formulation

We propose a new formulation that also uses the 3-index flow
variables indexed by route in which the edge is traversed. However,
similar to other TSP variants, modeling specific constraints in a dif-
ferent fashion can translate into improved formulations that perform
better in practice. This is the aim of our formulation, where subtours
are prevented by an adaptation of the GCS constraints. Thus, we do not
consider variables uffj as part of the formulation. Moreover, both ¥,
and t’e‘n , are removed and we let continuous variables 7, indicate the
starting time of route k € K, and consider the special case of 7k,
that indicates the ending time of route |K|. For the sake of notation,
given S C V, let §%(S) = {(i,j) € A i €S,jeV\S} Then, the
formulation reads:

min g 17)
Y ¥=1 VieN (18)
kek

Y oxk= Y xk=y vievvirek (19)
(i.))EA (i.))eA
xj,2y) VIESCN,|S|22VkeK (20)
()€ (S)
yE <y Ve K\ {IK|} (21)
ot =t x5 VkeK (22)
(i,j))EA
xryt VkeKVieN (23)
I Srmax ¥V k€ K\{|K|} 24
x,€{0,1}) V@ j)eAVkeK (25)
y'e{0,1} VieV,vkek (26)
420 Vkek @7
Hk41 20 (28)

The objective function (17) minimizes the total completion time as
it is the ending time of the last route, i.e., route |K|. Constraints (18)—
(19) play the same role as in the formulation from Archetti et al. (2018)
to ensure that all customers are visited and that flow conservation is
satisfied. Constraints (20) are based on Generalized CutSet Inequalities
(GCS) to enforce elimination of subtours. Symmetry breaking is done
through constraints (21) which establish that all empty routes, if any,
precede all the non-empty routes. Note that variables x’éo are not
needed because of variables yg and constraints (21). Constraints (22)
are similar to constraints (6), but also incorporate the idea behind (7)
and (9) that exploit Property 1 by removing waiting times between
routes. As a consequence, the model removes solutions with waiting
time after the first departure. Although it is not needed, such solutions
with waiting time can be included by relaxing constraints (22) as
inequalities. Finally, constraints (23) and (24) are the analogous of
constraints (8) and (10).

Regarding the set of routes K, the model is still flexible as it makes
use of an upper bound on the number of routes in the optimal solution.
However, in all cases, we set |K| = n which is the trivial upper bound
on the number of routes.
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3.3. Valid inequalities

Let Ko, = {h € K h < k} denotes the subset of route indices
smaller than or equal to k. We provide in this section two families of
valid inequalities to strengthen the AJI formulation. Intuitively, the first
family states that once a customer i € N is visited, all subsequent routes
must start later than release date r;.

Proposition 1. Given a customer i € N and a route k € K, constraint

ez Y (29)

heK;

is valid for the AJI formulation.

Proof. Constraints (23) can be generalized by considering & < k,
ie 1, > r,-yf’. Since at most one y” can take value 1 for h € K, (23)
can be lifted by adding the rhs of these constraints, resulting in the
desired inequality. [J

The intuition behind the second family is to exploit that empty
routes, if any, precede non-empty routes. Then, route k € K is used
(i.e., y‘é = 1), if at least one customer is assigned to k or to a precedent
route h < k.

Proposition 2. Given a customer i € N and a route k € K, constraint

> <y 30)
heKy

is valid for the AJI formulation.

Proof. We separate the proof in two cases. If the lhs is 0, the inequality
is trivially satisfied. Otherwise, note that at most one of the variables
takes value 1 due to constraints (18). Let // < k be the index of the
trip visiting i. Then, y?' = y(’)" = 1 due to constraints (20) and (19). If
n' < k, then by constraints (21) we get yg = 1 as well, which concludes
the proof. []

Constraints (23) are replaced by its strengthened version (29).
Constraints (30) are incorporated as part of the formulation, although
they are not needed for the formulation to be correct. Both (29) and
(30) should help by removing fractional points and improving the linear
relaxation. We call the resulting model AJI++.

4. Branch and cut algorithm

We develop a BC algorithm based on the formulation presented in
Section 3.2 for the TSP-rd(time). In this section we describe the main
components, such as how we compute an initial feasible solution, the
cutting plane algorithm and the branching scheme.

4.1. Initial feasible solution

The BC algorithm is initialized with a feasible solution obtained by a
time-explorer multi-start heuristic depicted in Algorithm 1. The heuristic
considers as input a set T of feasible departure-times for the first route
of the TSP-rd(time) solution, and the idea is to compute a sequence of
tours using the myopic-optimal solution for each ¢ € T. In other words,
every time the vehicle reaches the depot, it either departs to serve
the customers whose goods arrived while the vehicle was traveling, or
waits for the next customer that can be served and then immediately
departs. The routing (i.e., the order in which customers are going to be
served), is decided by solving to optimality a TSP instance defined by
the underlying sub-graph.

Algorithm 1 starts with the set T of all the (integer) time instants
between the minimum and maximum release dates, as there is no
need to consider values outside that range. During the execution, it is
possible for a TSP instance to appear as an auxiliary subproblem more
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Algorithm 1 Time-Explorer heuristic

Input: Instance 7 of the TSP-rd(time), with G = (V,A), V = N U {0},
travel times ¢;; for (i,j) € A

Output: Feasible solution x,,,, of cost z,,,

1. Initialization. Define T = {r;,, ..., Fmax) as the list of possible departure
times for the first trip of the depot as all the (integer) instants between
the minimum and maximum release dates, where r;, = min,cy r; and
Fmax = MaX;en 7.

Initialize the cache of TSP solutions mem = {}, indexed by subsets of
vertices; current solution information z,,,, = co and x,,,, = nil.

2. Iteration. If T is non-empty, get the next r € T and define the current
solution x =< 0 > with makespan z = t. Set NS = N as the set of
non-assigned customers.

2.1 Auxiliary TSP. Compute S = {v € NS | r, < z} as the set of
non-visited customers ready to be delivered at time z. Let Ig
be the auxiliary TSP instance defined by the subset of vertices
S U {0}. If mem[S] is defined, retrieve the optimal solution x,,,
and its objective value z,,. Otherwise, solve the auxiliary TSP
instance, obtain x,, and z,,,, and update mem[S] = (x,,, z,;,) for
future iterations. Update the current solution x = x + x,,, and
z=2z+z,, as the current makespan.

2.2 Feasibility check. Update NS = NS \ S. If NS is non-empty,
update z = max{z, min,ygs{r,}}, and return to Step 2.

3. Termination. If z < z,,,, then update z,,, = z and x,,, = x. Set
T =T\ {t}. If T is non-empty, go to Step 2. Otherwise, return the
best solution found x,,, zy.-

than once. In order to avoid solving the same subproblem several times
and speed-up the execution, the algorithm stores a table that maps TSP
instances (i.e., subsets of vertices) to optimal solutions. In Step 2, every
time a TSP is formulated, this table is first examined to check whether
the same instance has been solved previously and, in that case, retrieves
the optimal solution. As the number of vertices » is at most 50, this table
can be queried and modified efficiently.

We remark that it is not sufficient to consider in T only the release
dates of the vertices, since eventually a better solution can be obtained
by initially departing from the depot at other time. For example, con-
sider an instance with 3 customers where ¢, ;=2 for all (i, j) € A. Let the
release dates be 0, 4 and 5, respectively. Then, the best solution that the
Time-Explorer heuristic can provide is obtained by departing at 7 = 1,
which is not a release date. However, during the execution it is possible
to identify time instants that will not lead to an improving solution
and, therefore, can be removed from T as starting values in Step 3.
One of those situations involves the first auxiliary TSP considered and
eventual waiting times. Let 7 be the current initial departure time
from the depot and r the return to the depot after the first tour. If
the latter occurs before the minimum release date of the non-visited
vertices, i.e. 7 < min;cy g r;, the solution would include waiting times.
Then, the heuristic can remove the interval [z, + min;cy g r; — 7] from
T since the subset of vertices in the underlying first TSP instance
remains unchanged for those time instants. A second situation arises
when the initial departure time ¢ occurs before the maximum release
date, but the return to the depot ¢ afterwards, i.e., 1 < rp.x < 7. In
these cases, the heuristic does not need to consider initial departures
' > t since the subset of vertices in the underlying first TSP instance
remains unchanged for those time instants. Therefore, the subsequent
TSP instances, if any, also remain unchanged and only lead to solutions
at most as good as the one obtained from the initial depart at ¢ in the
best case.

In practice, Applegate et al. (2015) is used to solve the auxiliary TSP
instances, and a feasible solution is guaranteed (e.g., departing initially
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at t = rp,). The speed-up is driven mostly by exploiting the cache
of TSP solutions, and the heuristic runs in less than one second per
instance. These running times to compute an initial upper bound are
negligible in the context of the BC algorithm developed, specially for
the most demanding instances.

4.2. Cutting planes

The family of GCS inequalities (20) is exponential, and therefore
we incorporate them as cuts through the corresponding separation
algorithm. In this case, violated cuts can be found by solving a sequence
of polynomial-time max-flow sub-problems (see, e.g. Taccari, 2016).
Constraints (20) are needed to ensure the correctness of the formula-
tion, so we need to incorporate them as lazy-cuts, i.e., on every integer
solution. Moreover, such constraints can be used to tighten the model
by removing fractional points. In particular, we found that this type
of cuts are more effective when added at the root node, while they
downgrade the performance when added during node enumeration
given that the trade-off between time required to separate them and im-
provement in the linear relaxation is not convenient. As a consequence,
the upper limit on the number of cutting plane passes is set to 100 in the
root node, and to 20 (i.e., CPLEX’s default value) on the other nodes.

4.3. Branching scheme

During tree enumeration, decisions are made about which variable
to choose to branch on at each node. A custom branching is considered
by assigning priorities to variables (25) and (26). Variables y’(; have
highest priority as they determine whether a new route is used. Next
in priority order, we have variables yl’.‘ for i > 0, as they decide if a
customer is served or not in the route k. Finally, flow variables xl’.‘j
have the lowest priority. Within each group, all variables have the same
priority and we let CPLEX apply its default criterion for the variable
selection.

5. Computational results
5.1. Experimental setup

The proposed BC algorithm is evaluated on the instances considered
in Archetti et al. (2018) which are derived from Solomon (1987).
These are adapted to the TSP-rd(time) by discarding time windows
and considering different sets of clustered located (C1, C2), randomly
located (R1) and a mix of randomly located and clustered located
(RC1) customers. Sets R2 and RC2 were discarded because they have
the same coordinates as R1 and RC1, respectively, and they only differ
in the time windows information.

The instances are characterized by 3 values:

+ n: number of customers
* drgp: optimal TSP value of the underlying graph
+ f: parameter that controls the width of the interval in which

release dates are defined

For each instance, the original data is truncated after n+1 nodes, and
the first node is set to be the depot. The release date of the ith customer
is determined by uniformly sampling an integer from [0, X dygpl.
Instances are generated with g = {0.5, 1, 1.5, 2, 2.5, 3} resulting in 24
instances for each n = {10, 15, 20, 25, 30, 50}.

In order to extend our results, we use the same approach to generate
instances for n = {35, 40, 45}, resulting in 72 new instances. All
instances are publicly available at github.com/agusmontero/tsprd.

The algorithms are implemented in the C++ programming language
using g++ 7.5.0 and an Ubuntu 18.04 LTS as operating system. The
experiments are run on a workstation with an Intel Core i7-8700
3.20 GHz processor with 32 GB of RAM. CPLEX 12.9 is used as
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Table 1
Number of TSP-rd(time) instances solved to proven optimality within 3600 s. Instances
with n > 35 are not reported in Archetti et al. (2018) which is indicated as n.r.

Source n AFMG AJI++
Solved % Solved Solved % Solved
10 24 100% 24 100%
15 24 100% 24 100%
Archetti et al. (2018) 20 23 96% 24 100%
25 13 54% 20 83%
30 7 29% 12 50%
35 nr. nr. 7 29%
New instances 40 nr. nr. 3 13%
45 nr. nr. 4 17%
Archetti et al. (2018) 50 nr. nr. 2 8%

optimization solver.! We set the traditional branch and cut search
strategy® and impose a total time limit of 3600 s for the execution
time of each instance. The source code is available at github.com/
agusmontero/tsprd.?

5.2. Comparison of formulations

We begin by comparing the performance of the AJI++ model with
the approach proposed in Archetti et al. (2018) which is, to the best
of our knowledge, the only work in the literature to report results
with optimality guarantee for the TSP-rd(time), in their case tackling
a compact formulation using a commercial solver. For the sake of
simplicity, in the remaining of the paper we refer to the methods
presented through the article both as formulations and as algorithms. The
former references the corresponding MILP model and the later the BC
algorithm based on such MILP formulation. The following methods are
considered:

+ AFMG: MILP model proposed in Archetti et al. (2018);

+ AJI++: MILP formulation from Section 3.2 incorporating the GCS
for the subtour elimination, without initial heuristic and CPLEX
default branching strategy.

To account for the different machines used,* time units are scaled
in AJI++. Table 1 reports the number of instances solved to proven
optimality within 3600 s considering the time scaling. Our model is able
to solve all instances up to n = 20, 83% of the instances for n = 25 and
50% of the instances for n = 30 within the time limit. Moreover, AJI++
is also able to solve a subset of instances up to n = 50. It improves the
best known results® of Archetti et al. (2018), for which authors report
to solve 96%, 54% and 29%, respectively, highlighting the effectiveness
of our proposal.

Building upon this initial comparison regarding the effectiveness,
we focus on the AJI++ to assess regarding the impact of the different
components affecting the BC algorithm.

5.3. Impact of subtour elimination strategies

In this section, we focus on the impact of different alternatives to
forbid subtours within each route in the solution. For this purpose, we
consider the following variants of the AJI++ formulation:

! In particular, cuts described in Section 4.2 are added through CPLEX’s
legacy callbacks.

2 https://www.ibm.com/docs/en/icos/12.9.0?topic=enumerations-ilocplex
mipsearch.

3 Upon acceptance of the article.

4 Our processor is 43% faster than the one used in Archetti et al. (2018)
according to the CPU Mark index from www.cpubenchmark.net (Benchmark,
0000).

5 Updated results w.r.t. to the ones published in Archetti et al. (2018) were
provided in a private communication with the authors.
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» AJI: MILP formulation described in Section 3.2. We emphasize
that constraints (29) and (30) are not part of this formulation.

+ AJI poly-subtours: AJI formulation but replacing the GCS (20) by
the polynomial family of constraints (4)—(5) used by Archetti et al.
(2018) for the AFMG model.

+ AJI++ poly-subtours: Same modification as in the previous case,
but for the AJI++ formulation. Observe that the difference be-
tween these two variants is the presence of constraints (29) and
(30).

Table 2 compares these three variants with the AJI++ formulation
considered in Section 5.2. The key to the table is the following: the
number of instances solved to proven optimality before the time limit
(Solved), grouped by n; the average time (in seconds) required for
the solved instances by the corresponding method, also grouped by n
(Time); the average percentage gap of the best lower bound /b found by
the corresponding method in the root node of the BC with respect to the
best known solution (bks) for that instance, computed as |bks — Ib| X %
(Root); the average percentage gap found at the end of the execution
of the BC algorithm (GAP).

The main message from Table 2 is that GCS-based subtour elimina-
tion constraints (20), when combined with constraints (29) and (30),
result in the best method. More specifically, AJI++ solves 34 more
instances to optimality within the imposed time limit than AJI++ poly-
subtours in shorter computation times on average, and outperforming
the other variants as well. This behavior can also be observed when
considering the other two more basic variants that do not consider the
valid inequalities proposed in Section 3.3. In this case, AJI solves 5
more instances to optimality than AJI poly-subtours within the time
limit.

This experiment also provides evidence on the impact of the valid
inequalities proposed in Section 3.3. The results indicate that the
incorporation of constraints (29) and (30) has a very positive effect,
improving the root average percentage gap, solving more instances
when comparing polynomial-size subtour elimination and GCS based
formulation independently (9 for AJI poly-subtour vs. AJI++ poly-
subtour; 38 for AJI vs. AJI++) in shorter average computation times
and with smaller average final percentage gaps. The only exception
is the case when n = 10, in which the root average percentage gap
increases on GCS based formulations. Based on additional experiments,
we identified that the difference may be caused by a smaller number
of general purpose cuts incorporated by CPLEX during the execution of
the algorithm. Overall, AJI++ outperforms the other variants. Finally,
we remark that this experiment is limited to instances having n < 30
as the other variants only solve a very limited number of instances to
optimality for larger values of n.

5.4. Impact of the initial solution and the tailored branching strategy

Building upon the results in the previous section, we further in-
vestigate the impact of the other components developed for the BC
algorithm. Using AJI++ as a baseline, we evaluate and quantify the
benefit of incorporating the initial heuristic and the tailored branching
strategy when considered in an isolated fashion as well as combined.
For this experiment, we consider the following variants:

+ AJI++ IS: AJI++ using an initial feasible solution obtained by
Algorithm 1 and CPLEX default branching scheme.

+ AJI++ Br: AJI++ using the tailored branching strategy described
in Section 4.3. No initial solution considered.

+ AJI++ IS+Br: A combination of the previous two variants, i.e. the
AJI++ model using both the initial feasible solution obtained by
Algorithm 1 and the tailored branching strategy from Section 4.3.

Table 3 summarizes the results obtained for these three variants as
well as AJI++ over all the instances. The key to the table remains the
same as in Table 2. Although it is not explicitly reported, Algorithm
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Impact of adding GCS (20) subtour elimination constraints in combination with inequalities (29) and (30) when solving AJI++. Note that Column AJI++ corresponds to the same
algorithm of Column AJI++ in Table 1. The difference that can be observed in Column Solved across the aforementioned tables is only due to the scaling needed in Table 1 to

account for the different machine used in Archetti et al. (2018).

n AJI poly-subtours AJl AJI++ poly-subtours AJT++

Solved Time Root GAP Solved Time Root GAP Solved Time Root GAP Solved Time Root GAP
10 24 2 6.82% 0.00% 24 2 10.68% 0.00% 24 1 2.76% 0.00% 24 1 6.85% 0.00%
15 24 311 15.41% 0.00% 24 344 14.43%  0.00% 24 39 12.06% 0.00% 24 12 10.41%  0.00%
20 9 1004  20.18% 3.09% 11 559 16.52% 2.81% 13 368 16.58% 1.06% 24 223 13.38%  0.00%
25 3 1206 19.12% 9.06% 5 1305 15.96%  6.65% 6 1013 15.65% 4.78% 20 1102 13.35%  0.14%
30 1 2920  23.68% 16.03% 2 803 19.30% 10.42% 3 817 18.61% 10.46% 12 678 15.52% 1.62%

Table 3
Impact of providing an initial solution to the BC as described in Section 4.1 in combination with the custom branching proposed in Section 4.3.
n AJI++ AJI++ + IS AJI++ + Br AJI++ + IS + Br
Solved Time GAP Solved Time GAP Solved Time GAP Solved Time GAP

10 24 1 0.00% 24 1 0.00% 24 1 0.00% 24 1 0.00%
15 24 12 0.00% 24 8 0.00% 24 5 0.00% 24 4 0.00%
20 24 223 0.00% 24 180 0.00% 24 43 0.00% 24 38 0.00%
25 20 1102 0.14% 15 616 0.53% 23 476 0.03% 24 445 0.00%
30 12 678 1.62% 11 443 2.29% 18 745 0.46% 19 661 0.48%
35 7 1365 7.35% 7 759 8.26% 13 1305 4.07% 10 717 4.33%
40 3 914 12.06% 3 743 9.70% 8 1571 8.16% 8 1194 7.85%
45 4 2068 14.54% 3 1281 14.90% 4 1706 12.81% 6 1702 10.57%
50 2 2433 17.85% 3 2544 16.55% 2 1849 16.92% 4 2302 13.57%

1 is always able to obtain an initial feasible solution is less than 1 s
with an average quality of 4.18% w.r.t. the best known solutions for
ne{lo, ..., 50).

If considered independently, only AJI++ Br show improvements,
solving 20 additional instances and reducing the average GAP by 21%.
For AJI++ IS, the addition of the warm-start only helps when combined
with the tailored branching, and often negatively impacts the perfor-
mance when applied independently (see, e.g., the case for n = 25). In
AJI++ IS+Br, both features are activated and show further improve-
ments by solving 3 additional instances and reducing the average GAP
by 31% w.r.t. AJI++.

Finally, we remark that Archetti et al. (2018) also generated in-
stances for n = 100. Although the authors do not report results for
such instances using the MILP formulation, it is worth mentioning
that Algorithm 1 is able to compute feasible initial solutions for all
instances with n = 100. Briefly, it requires 13 s on average, having an
average quality of 5.26% w.r.t. to the best known solutions reported
in Archetti et al. (2018), which are obtained via more sophisticated
heuristic approaches. Regarding AJI++ IS+Br, we comment that it is
not able to solve any instance for n = 100 within 3600 s.

Overall, the formulation AJI++, in combination with the initial
heuristic and the branching strategy, improves the current benchmark
based on the results reported by Archetti et al. (2018). Based on this
assessment, we select AJI++ IS+Br as the baseline for the remaining
experiments in the paper.

5.5. Analyzing the impact of release dates

Finally, we shift the focus to provide some insights regarding the
efficiency of the algorithms as well as for the structure of the optimal
solutions in terms of the characteristics of the instances. By construc-
tion, the release dates depend on the parameter f. Fig. 3 illustrates
the behavior for the completion time of the optimal solutions and the
computation time required by AJI++ IS+Br for the instances with n = 20
as a function of # and plotted by instance type (see Section 5.1). As
expected, the completion time increases as f increases, meaning that
the more spread out release dates are (i.e., higher value of f), the later
the distribution will be completed. In particular, clustered instances
have the lower completion time. This is consistent with the behavior
we observe on the number of routes. Although not explicitly reported,
on average, 2 additional routes are required in the optimal solution per

additional unit of B. Therefore, as f increases, there is a preference for
visiting customers as soon as they become available. We also observe
that the time required by the BC increases as f increases. A similar
behavior is reported by Archetti et al. (2018).

6. TSP-rd variants

Given that release dates are relatively new in the literature, it
is interesting to incorporate them and study their impact from an
algorithmic perspective into other problem variants. The formulation
AJI++ from Section 3.2 can be adapted to other variants of the TSP-rd
considering different objective functions and operational constraints.
In this section we explore such adaptations. In all cases, an adapted
version of the Time-Explorer heuristic described in Section 4.1 and the
custom branching scheme proposed in Section 4.3 are used.

6.1. TSP-rd(distance)

Archetti et al. (2015) introduce the TSP-rd(distance) as a variant of
the TSP-rd(time) in which an upper bound, called T, is imposed to
the completion time and the objective is to minimize the total traveled
distance. Then, in AJI++ the objective (17) is replaced by:

k
2

kEK (i,j)EA

min [€29)]
where ¢;; denotes the distance incurred when traveling the edge (i, /).
Note that the distance ¢;; and the travel time 7;; do not need to be the
same. However, in Archetti et al. (2015) the variant TSP-rd(distance)
is introduced assuming ¢;; = t;; for the sake of simplicity. In addition,
the following constraint is added to model the deadline T},,, on the
completion time:

t|K|+1 < Tmax

(32)

To illustrate how the TSP-rd(time) and TSP-rd(distance) objectives
may differ, consider the example depicted in Fig. 4 where ¢;; = t;; for
every edge (i, j).

Solution (4(a)) consists of one route which departs at time 20 =
max{r, r,} and completes the distribution at time 50. The waiting time
before departing is 20 and the total traveled distance is 30. Solution
(4(b)) consist of two routes in which the first one departs at time 0,
visits Customer 1 (r; = 0), returns to the depot at time 20, and then
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Fig. 3. Completion time (left) and BC time in seconds (right) w.r.t. the value of parameter § in instances with n = 20 solved by AJI++ IS+Br.
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(a) Solution 1
Completion-time: 50
Distance: 30

(b) Solution 2
Completion-time: 40
Distance: 40

Fig. 4. Optimal solutions for TSP-rd(distance) (left) and TSP-rd(time) (right), for an

instance with two customers {1,2} and T},,, = 50 for the case of TSP-rd(distance).

Interval of interesting deadlines

T T
0 l1=2TsP_rd(time) lo=Tmax+2zTSP

Fig. 5. Interval of interesting deadlines for the TSP-rd(distance).

departs to visit Customer 2 (whose release date is r, = 20). The total
completion time is 40 as there is no waiting time, and the traveled
distance is also 40. Solution (4(a)) reduces the traveled distance at the
expense of a higher completion time, while Solution (4(b)) increases the
traveled distance but reduces the completion time. This highlights how
the different objective functions (i.e., completion-time minimization
and traveled-distance minimization) may shape the solutions. Note
that minimizing completion time, both in AFMG and AJI++, does not
guarantee the minimization of traveled distance.

In order to evaluate the adapted AJI++ formulation for the TSP-
rd(distance), the instances presented in Section 5.1 require the addi-
tional definition of T,,, i.e., a new constraint for the distribution that
imposes a deadline for the total completion time. In this regard, we
introduce the interval of interesting deadlines for the TSP-rd(distance),
depicted in Fig. 5. Let /; denote the completion time of the optimal
solution for the TSP-rd(time), r,, the latest release date, and zrgp
the traveled distance of the optimal TSP solution when discarding the
release dates.

Proposition 3. Let T be an instance of the TSP-rd(distance). If Tp,q, < 11,
then T is infeasible.

Proof. Assume T),,, < /; and let x be a feasible solution for the as-
sociated TSP-rd(distance) with completion-time z(x). If the underlying
graph G is considered, then x is also a feasible solution for the TSP-
rd(time) in G with completion-time z(x) < Tp.x < [, which is a
contradiction. []

Values of Tp.x > rpaxt+zrsp Will not be of interest. The deadline
becomes unrestrictive as the solution minimizing travel distance can

be obtained by solving the underlying TSP instance (without release
dates) as the triangle inequality holds.

For every TSP-rd(time) instance, the start and ending of the quintiles
of the interval of interesting deadlines were selected as Tj,,. The
greatest value for which the optimal solution of the associated TSP-
rd(time) is known is n = 30 and, as a result, instances are generated
for each n € {25, 30, 35, 40, 45, 50} using the best known solution for
values of n > 35, resulting in a total of 720 instances. Similarly to
Archetti et al. (2018), for the sake of simplicity, in all instances we
set ¢;; =1;; for all (i, j) € A.

The adapted version of AJI++ to TSP-rd(distance) includes the
straightforward adaptation of Algorithm 1 used to obtain an initial
feasible solution, in which instances having total completion time
greater than Tj,,, are discarded.

Table 4 reports the computational results obtained on the afore-
mentioned TSP-rd(distance) instances. For this experiment, we further
indicate in column T7;,,, QU the quintile of the interval of interesting
deadlines.

The main insight of Table 4 is that the time required to solve
instances decreases as T,,, increases. For example, Fig. 7 shows such
trend on instances C101 and R101 for g = 2.5 and » = 30, in which
the time required by the BC is reported (log-scale) for multiple values
of T,.x Intuitively, it makes sense as the problem becomes closer
to a pure TSP. Moreover, the problem suffers from allowing multiple
solutions with the same traveled distance but different completion time
as depicted in Fig. 6. As T, decreases, the number of such solutions
decreases, arguably making less likely to encounter feasible primal
solutions during the enumeration of the BC tree. In this regard, we
observe that the computation time required to find the first feasible
solution during the BC is larger for small values of T},,,. In addition,
we observe that the adapted version of Algorithm 1 only finds feasible
solutions for 68% of the instances, and in particular, only in 2 out of
48 instances for values of n € {25, 30} in which Ty, = /;. It would be
interesting to explore more sophisticated methods to compute initial
solutions, aiming to reduce the time required to solve instances with
tight values of Ty ..

Regarding the number of instances solved, only 30 instances out of
the 720 considered are not solved in less than 3600 s (see Table 4).
We remark that 28 out of the 30 unsolved instances have T, QU= 1.
Furthermore, in 37% of them, neither Algorithm 1 nor the BC were able
to find a feasible solution.

6.2. Capacitated TSP-rd(time)

Another natural extension considers a single capacitated vehicle,
imposing a limit on the total demand to be delivered in each route. Let
Chax De the capacity of the vehicle. The following constraints are added
to AJI++ formulation from Section 3.2 to model the limit imposed by
the capacity:

> a9 <CuaxVs VKkEK
iEN

(33)

The value ¢; is a one-dimensional representation of the good (e.g., the
weight) to be delivered to customer i € N. It is assumed w.l.o.g. that
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Table 4
Computational results on TSP-rd(distance) instances.

n Tmax QU Solved Time
1 24 55
2 24 8
25 3 24 4
4 24 3
5 24 2
1 22 462
2 24 41
30 3 24 13
4 24 8
5 24 3
1 21 745
2 24 86
35 3 24 23
4 24 19
5 24 8
1 17 673
2 24 197
40 3 24 46
4 24 34
5 24 17
1 17 565
2 23 358
45 3 24 105
4 24 62
5 24 35
1 15 434
2 23 489
50 3 24 141
4 24 111
5 24 64

q; < Cpay Vi € N. The variable y(’; on the right-hand-side is not actually
needed, but improves the linear relaxation of the model.

Remark 4. Let 7 be an instance of the Capacitated TSP-rd(time). Then,
Property 1 holds.

Remark 4 is deduced from the forward shift depicted in Fig. 2 which
is also feasible for the Capacitated TSP-rd(time). Therefore, constraints
(22) are valid as well.

Remark 5. Let 7 be an instance of the Capacitated TSP-rd(time). Then,
Property 2 does not hold.

Remark 5 can be easily proved by considering an instance where
more than one route is needed after r,, due to the capacity of the
vehicle. As a consequence, constraints (24) must be removed for the
TSP-rd(distance).

Moreover, it is possible to tighten the formulation with the follow-
ing constraint:

ZieN 4i
o el 34)
The rationale is to explicitly provide a lower bound on the number of
routes that the vehicle needs to perform.

Instances for the Capacitated TSP-rd(time) are obtained by setting
Cpax = 100 and assigning to each customer a uniformly random integer
g; in [1, Cpax] for every TSP-rd(time) instance with n € {15,20,25,30}.
The adapted version of AJI++ is run over all the instances and an initial
solution is computed with an extension of Algorithm 1 that checks the
remaining capacity of the vehicle before adding every customer for
routing. It is guaranteed that an initial feasible solution is found.

Table 5 reports columns Solved, Time and GAP as in Table 2. In
addition to each value of n, the instance type is reported to highlight
a trend mostly observed for the Capacitated TSP-rd(time). The main
message is that the problem is more challenging than the uncapacitated
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Fig. 6. In the context of the TSP-rd(distance), multiple solutions with the same traveled
distance d (but different completion-time z,, z, and z;), may be obtained by shifting
the departure 1, to ¢, and 1] respectively.

C101.2.5
2 4
—
:IJ:\
Q 2
—_
0 Tinax
424 477
ZT$P-rd(time) Tmax +2T8P
R101.2.5
T 6
=
o0
=
0 Tnax

838 1053
Tmax +2TSP

ZT$P-rd(time)

Fig. 7. BC time (log-scale) in seconds w.r.t. the value of parameter T, on
TSP-rd(distance) instances of type C101 and R101 for f =2.5 and n = 30.

version, i.e. the TSP-rd(time). The number of instances solved decreases
from 24 to 19 for n = 20 and from 24 to 4 for n = 25. Moreover, for n = 30
no instance is solved to proven optimality within the time limit, and the
final average GAP is about 12.95%. The number of routes also increased
by 2.55 times w.r.t. the uncapacitated version. Regarding the instance
type, it is observed that the number of unsolved clustered instances
(i.e., C101 and C201) is bigger than non-clustered instances for n €
{20, 25}. For n = 30, the average GAP is also higher on pure clustered
instance types. This suggests that the more clustered the customers, the
more challenging the TSP-rd(time) instances become when a vehicle
capacity and random weights are incorporated. Additional investiga-
tions would be needed in this regard. Furthermore, we examine in
Tables 6 and 7 the impact of g and C,, both on C101 (clustered)
and R101 (non-clustered) instances, respectively. An extended set of
instances is generated for n = 20 varying the vehicle capacity Cp,x =
{100, 120, ..., 200}, for g € {1, 2, 3}, maintaining the demand of a
given customer fixed across all different combinations, resulting in
36 new instances. The BC time is reported on solved instances and
the optimality GAP is used on instances that are not solved before
the time limit. Table 6 shows 10 solved clustered instances out of 18,
whereas for non-clustered instances such number increases to 16 out
of 18 (see Table 7). In particular, given a fixed value of C,,, on C101
instances (see Table 6), both the GAP and Time decrease as f increases,
which is inverted w.r.t. to the pattern reported for the TSP-rd(time)
(see Fig. 3). Moreover, such trend is less evident on R101 instances
(see, e.g., cases Cp,x € {100,180} in Table 7). Further investigation
would be needed to elucidate the underlying factors responsible of
the observed trend inversion. Finally, we remark that the model does
not incorporate constraints that link both the vehicle capacity and the
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Table 5 Table 8
Computational results on Capacitated TSP-rd(time) instances. Computational results on Capacitated TSP-rd(distance) instances.
n Instance Solved Time GAP n Tax QU Solved Time GAP
C101 6 6 - 1 24 0 -
1s €201 6 9 - 2 24 0 -
R101 6 6 - 10 3 24 1 -
RC101 6 8 - 4 24 1 -
c101 3 233 1.93% 5 24 L -
20 C201 5 1009 1.90% 1 24 10 -
R101 5 278 2.48% 2 24 11 -
RC101 6 460 - 15 3 24 16 -
c101 0 - 6.61% 4 24 25 -
2 201 0 - 7.62% 5 24 24 -
R101 2 1670 4.21% 1 13 492 4.61%
RC101 2 1378 6.69% 2 14 412 4.42%
c1o01 0 _ 14.87% 20 3 13 578 4.673/0
% €201 0 B 14.31% 4 12 547 44550/0
R101 0 - 16.08% 5 12 817 4.81%
RC101 0 - 6.55%
note that for n = 10 all instances are solved in 1 s on average, while
Table 6 for n = 15 instances require 15 s on average. Several instances remain

Results on Capacitated TSP-rd(time) instances of type C101 for n = 20 segmented by
value of § and C,,,. The optimality GAP is reported on unsolved instances, whereas
the BC time is presented (in seconds) for instances solved before the time limit.

i C

‘max

100 120 140 160 180 200
1 2.41% 2.84% 3.04% 1292 3271 358
2 2.08% 2.41% 1.21% 156 235 121
3 0.96% 2.12% 372 187 75 66

Table 7

Results on Capacitated TSP-rd(time) instances of type R101 for n = 20 segmented by
value of § and C,,,. The optimality GAP is reported on unsolved instances, whereas
the BC time is presented (in seconds) for instances solved before the time limit.

p G,

‘max

100 120 140 160 180 200
1 2.48% 3.97% 2335 1014 283 251
2 356 2353 226 320 564 249
3 1055 325 116 237 124 90

weights of goods with the release dates, and it would be interesting
to study valid inequalities that exploit this connection to enhance the
formulation.

6.3. Capacitated TSP-rd(distance)

This version combines the Capacitated TSP-rd and the TSP-rd
(distance). Instances require the addition of the value T, to impose a
deadline for the total completion time. Thus, the interval of interesting
deadlines (see Fig. 5) is replaced with /; = zcrsp.rd(time), i-€- the com-
pletion time of the optimal solution of the Capacitated TSP-rd(time),
and I, = rpa.t+zcrsp Which corresponds to the value of the optimal
solution of the Capacitated TSP where the vehicle departs at ry.,
and may require to perform multiple routes. A total of 120 instances
are generated from each Capacitated TSP-rd(time) instance for n €
{10, 15, 20} where the optimal Capacitated TSP-rd(time) solution is
known.®

Table 8 shows the results similarly to Table 4, including also the
average final GAP for instances not solved within the time limit. We

6 All instances with n = 20 are solved to optimality by running the adapted
AJI++ with a time limit of 12 h.
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unsolved for n = 20, where only 64 out of 120 instances are solved
to proven optimality. Regarding execution time, for n = 20 it takes
on average 569 s, which is significantly larger in comparison with the
uncapacitated version, in which all instances are solved in 2 s on aver-
age. This suggest, once again, that incorporating the vehicle capacity
together with random weights make the problem more challenging than
the TSP-rd(distance). Finally, it is worth mentioning that, unlike the
corresponding uncapacitated variant, the trend regarding the different

values of T, is weaker, but still noticeable.

6.4. Prize-Collecting TSP-rd(time)

In this section we introduce the Prize-Collecting variant of the
TSP-rd(time). We adapt the definition stated in Vansteenwegen and
Gunawan (2019) to define the Prize-Collecting TSP-rd(time) where the
objective is to find a set of routes performed by a single uncapacitated
vehicle that minimizes the total completion time, with the constraint
that the total collected profit is at least p,,,. Each customer i € N
contributes with a profit p; > 0, and it is assumed that p,,;, can be
collected by visiting all customers in the worst case, i.e., >,y 2i = Pin-
However, not all customers need to be visited, but still the constraints
imposed by the release dates have to be satisfied. A first adaptation of
the AJI++ formulation to the Prize-Collecting TSP-rd(time) involves the
constraints (18), that are replaced by

nyﬁl VieN (35)

kek
The following result shows that it is not necessary to include such
constraints.

Proposition 6. Constraints (30) and (26) imply constraints (35).

Proof. Given i € N, consider constraint (30) for k = |K| and note that
the left hand side is the same as in (35). Thus, if the left hand side is
0, the inequality is trivially satisfied. Otherwise, vertex i is visited by
trip k € K and the right hand side of (30) becomes 1, thus obtaining
(35). O

The following inequality must be further incorporated to account
for the total profit collected:

> D 0 Y Z i

keK ieN

(36)
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Table 9
Computational results on Prize-Collecting TSP-rd(time) instances.

n a Solved Time GAP
0.25 24 1 -
0.50 24 4 -

20 0.75 24 22 -
0.90 24 21 -
0.25 24 3 -

25 0.50 24 18 -
0.75 24 290 -
0.90 22 432 1.64%
0.25 24 9 -

30 0.50 24 82 -
0.75 17 548 4.97%
0.90 15 770 5.25%
0.25 24 26 -

35 0.50 22 226 3.39%
0.75 11 1012 11.34%
0.90 9 518 12.73%
0.25 24 53 -

40 0.50 18 1094 7.99%
0.75 6 701 21.86%
0.90 7 1193 21.80%

As regards the instances, we incorporate profits by following Rule
3 in Bérubé et al. (2009):

IO‘
pi=1+ [99 F’J

where 6 = max;ey to;- The rule generates hard instances where larger
profits are associated with customers that are far from the depot.
The parameter p,,, is defined as p,,;, = aY,cy pi» With a € {0.25,
0.50,0.75,0.90}, and instances are generated for n € {20, 25, 30, 35, 40},
resulting in a total of 480 instances.

We also adapted Algorithm 1 so that no additional customers are
considered once the collected profit is greater than p,,;,. Given that
Yien Pi = Pmin, an initial feasible solution is guaranteed.

Table 9 reports columns Solved, Time and GAP as in Table 2. Results
are grouped by n and a. For n = 20 all instances are solved to proven
optimality in 12 s on average. For n = 25, only two instances cannot be
solved within the time limit, having a final GAP of 1.87% and 1.45%
respectively. For n = 30 the number of solved instances is 80 out of
96, with an average GAP of 5.49%. The number of solved instances
decreases to 66 (avg. GAP of 11.50%) and 55 (avg. GAP of 19.20%)
for n = 35 and n = 40, respectively. Regarding execution time of the
BC algorithm, it can be noted that it increases as « increases. This is
reasonable given that the higher the value of parameter «, the more
customers the vehicle needs to visit to satisfy the minimum profit
imposed by p,,;,. Therefore, as « increases, the problem becomes closer
to the TSP-rd(time). Fig. 8 shows the aforementioned trend on BC time
(log-scale) both on clustered (C101) and non-clustered (R101) instances
for n = 25, across values of g € {1, 2, 3}.

6.5. Prize-Collecting TSP-rd(distance)

Finally, we consider the variant that minimizes the total traveled
distance, formulated as an adaptation of the Prize-Collecting TSP-
rd(time) proposed in Section 6.4. The objective function is defined by
Eq. (31), and constraint (32) is incorporated to impose a deadline for
the completion time. Instances can be generated in a similar fashion by
replacing the interval of interesting deadlines from Fig. 5 with /; being
the completion time of the optimal solution for the Prize-Collecting
TSP-rd(time), and /, corresponding to the value of the optimal solution
of the Prize-Collecting TSP departing at r,,,, both using the same un-
derlying network. Once again, the motivation is to evaluate interesting
values of T,,,, where values of T,, < /; will result in infeasible
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Fig. 8. BC time (log scale) in seconds w.r.t. the value of parameter a on Prize-
Collecting TSP-rd(time) instances of type C101 and R101 for p € {1,2,3} and n =
25.

instances for the Prize-Collecting TSP-rd(distance), and values of T}, ,,>
I, induce instances where release dates are not relevant. Instances
are generated for n € {20, 25, 30, 35, 40} based on Prize-Collecting
TSP-rd(time) instances.”

Table 10 reports the average execution time required by the BC
algorithm over the solved instances, grouped by n, « and the quintiles
of Tph.x- Although it is not explicitly reported, the number of unsolved
instances is 5 for n = 30, 7 for n = 35 and 22 for n = 40, resulting
in 33 out of a total of 2400 instances. Furthermore, 32 of them have
Tmax QU = 1 and only 1 has T,,,, QU = 2 (for n = 40). The main
insight of the table is that the required time increases as a increases
and Ty, decreases. This is consistent with what is observed for the TSP-
rd(distance), i.e., the lower the T, the harder the problem instance,
and in variant Prize-Collecting TSP-rd(time), where higher values of «
result in more time required to solve the problem instance. Regarding
the unsolved instances, in 14 out of 33 the BC algorithm is not able to
provide a primal feasible solution within the time limit.

7. Conclusions and future research

In this paper, we propose an alternative formulation for the Trav-
eling Salesman Problem with release dates and completion time min-
imization, which we use to develop an exact algorithm following a
branch and cut scheme. The algorithm is able to solve to optimality
instances with up to 30 customers within one hour, outperforming
the benchmark from the literature studied by Archetti et al. (2018)
with a compact formulation and tackled with a commercial solver.
An extended set of instances is proposed and our model proved to
be able to solve several instances up to 50 nodes. We further extend
our formulation to account for other relevant variants of the TSP-rd
considering a capacitated vehicle, profits to be collected if a customer
is visited and the minimization of the total traveled distance as an alter-
native objective function to the completion time. We explore variants,

7 The BC considers an extended time limit of 12 h for n € {20, 25, 30} in
order to solve the Prize-Collecting TSP-rd(time), and only 4 instances with
n = 30 remained unsolved with an average GAP of 1.24%. In all cases, the
best objective found so far is used to generate Prize-Collecting TSP-rd(distance)
instances.
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Table 10
Time (in seconds) required to solve Prize-Collecting TSP-rd(distance) instances
segmented by parameters « and 7,,,,.

" « T QU
1 2 3 4 5
0.25 0 0 1 1 1
0.50 2 1 1 1 1
20 0.75 7 3 2 1 1
0.90 6 3 2 2 1
0.25 2 2 2 2 3
25 0.50 10 4 3 3 3
0.75 181 7 5 3 3
0.90 208 16 7 5 2
0.25 4 4 6 7 6
30 0.50 62 12 9 9 6
0.75 2151 28 16 10 5
0.90 2070 67 16 11 5
0.25 17 9 11 14 15
35 0.50 371 28 22 19 12
0.75 1204 79 34 20 12
0.90 1175 134 33 22 13
0.25 25 17 22 30 30
40 0.50 793 75 46 37 27
0.75 1876 294 104 44 24
0.90 2269 507 96 42 26

analyze some properties and report extensive computational results
highlighting the most relevant trends for each case. The objective is not
only to find methodological and algorithmic improvements but to also
understand the difficulty of each variant. These models may be of value
for practitioners seeking for a flexible exact algorithm for Traveling
Salesman Problems with release dates. We also aim at opening the
discussion around benchmark instances and MILP formulations, by
releasing the source code to foster research on these problems.
Several research directions are worth considering as next steps. It
would be interesting to perform an in-depth analysis for each variant,
as well as strengthening each model with domain specific cuts. Other
variants can also be explored, for instance the Profitable TSP-rd should
be straightforward to obtain from the AJI formulation. More complex
frameworks may be explored, such as Paradiso et al. (2020) for the TSP-
rd, which would be interesting to evaluate the feasibility of adapting
it to the TSP-rd(time), as the time windows must be discarded and the
objective function should be modified to account for the completion
time. A comparison around the trade-off between performance, flexibil-
ity and simplicity of the implementation of such approaches would be
of practical interest. Following the scheme proposed by Archetti et al.
(2018), it would be interesting to re-consider the heuristic MathTSPrd
using this improved formulation and validate the impact on the results.
Another interesting line of research would be to explore models in
which the objective is to minimize distance over the set of solutions
with minimum completion-time and it could be interesting to explore
bi-level programming models (Kleinert et al., 2021) in this regard.
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