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Abstract

One of the most promising solutions to deal with huge data traffic demands in
large communication networks is given by flexible optical networking, in par-
ticular the flexible grid (flexgrid) technology specified in the ITU-T standard
G.694.1. In this specification, the frequency spectrum of an optical fiber link is
divided into narrow frequency slots. Any sequence of consecutive slots can be
used as a simple channel, and such a channel can be switched in the network
nodes to create a lightpath. In this kind of networks, the problem of establishing
lightpaths for a set of end-to-end demands that compete for spectrum resources
is called the routing and spectrum allocation problem (RSA). Due to its rele-
vance, RSA has been intensively studied in the last years. It has been shown
to be NP-hard and different solution approaches have been proposed for this
problem. In this paper we present several families of valid inequalities, valid
equations, and optimality cuts for a natural integer programming formulation
of RSA and, based on these results, we develop a branch-and-cut algorithm for
this problem. Our computational experiments suggest that such an approach is
effective at tackling this problem.

Keywords: integer programming, valid inequalities, networking, optical fibers,
flex-grid
2000 MSC: 90C10, 94A05

1. Introduction

Elastic optical networks seem to be indispensable to lead with the ever-
increasing bandwidth demands due to its many desirable properties including
flexible data rate and spectrum allocation, low signal attenuation, low signal
distortion, low power requirement, low material usage, small space requirement,
and low cost [1]. Such a network translates the known routing and wavelength
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allocation problem into the routing and spectrum allocation (RSA) [2, 3] which
in its simplest version consists in establishing the lightpaths for a set of end-to-
end traffic demands that, assuming the same modulation format for each, are
expressed in terms of the number of required slots. Since lightpaths are deter-
mined by a route and a selected channel that satisfies the volume, RSA involves
finding a route and assigning frequency slots to each demand. Several solution
approaches have been explored in the last years, including direct approaches
using commercial ILP-solvers to solve formulations to optimality [2, 4, 5, 6, 7],
or to solve ILP based heuristics [8, 9, 10, 11, 12], generally using pre-computed
sets of paths. Several heuristics [13, 14, 15, 16, 17, 18, 19] and metaheuristics
[20, 21, 22] like genetic algorithms [12, 23] have also been proposed. A few works
can be found where the authors apply Lagrangian decompositions and column
generation techniques [14, 24, 25, 26, 27, 28, 29, 30].

The most common approach is to decompose the RSA problem into two
phases or sub-problems. Since this approach tries to reduce the search space,
the first phase is generally solved by calculating the set of k-shortest paths for
each demand. Once a path for each demand is determined, the problem that
remains to be solved is the spectrum allocation problem (SA) [31, 32, 33], which
consists in assigning the spectrum to each demand, having the route already
fixed. This problem belongs to the class NP-hard even for paths, if their length
is of at least three arcs, and for any kind of rings [13, 34]. However, each of
these two sub-problems or phases is probably easier to solve in practice than
the original RSA and can provide some bounds to the optimal value.

Formally, we are given a digraph G = (V,E) representing the optical fiber
network, a fixed number s̄ ∈ Z+ of available slots, and a set of demands D =
{di = (si, ti, vi)}ki=1, where each demand di, i = 1, . . . , k, is composed by a
source si ∈ V , a target ti ∈ V , and a volume vi ∈ Z+. We define a lightpath for
a demand di = (si, ti, vi) to be a tuple (l, r, p), where 1 ≤ l ≤ l+ vi − 1 ≤ r ≤ s̄
and p is a (directed) path in G from si to ti. We say that two lightpaths (l, r, p)
and (l′, r′, p′) overlap if p ∩ p′ ̸= ∅, l′ < r, and l < r′. In this setting, RSA
consists in establishing a lightpath associated to each demand, in such a way
that lightpaths do not overlap.

1.1. Integer programming formulation

To the best of our knowledge, most of the works carried out are heuristics,
and although several authors presented various mathematical models to solve
the RSA -or its variants- to optimality [12, 14, 35, 36, 37, 38], they have hardly
taken advantage of the great power that integer linear programming techniques
provide. In fact, we have found very few works that present valid inequalities
to improve the generic branch-and-cut implementation of ILP solvers [28, 39,
40, 41, 42, 43].

In this work, we concentrate on the so-called demand-slot-link basic formula-
tion (DSL-BF), which was one of the best-performing models in the experiments
reported in [44]. The family of binary variables u ∈ {0, 1}|D||E|s̄ is defined for
every demand d ∈ D, every arc e ∈ E, and every slot s ∈ S, in such a way that
udes = 1 if and only if the demand d uses the slot s over the arc e. For technical
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reasons, we also consider the fictitious variable ude,s̄+1 that always takes value
0, for every d ∈ D and every e ∈ E.

Likewise, when dealing with the static RSA problem, several different ob-
jective functions may be of interest for the network operator. In the present
work we seek to minimize the length of the routes assigned to each demand, as
in works [10, 42, 45, 46], among others.

If d = di = (si, ti, vi) ∈ D is a demand, for some i ∈ {1, . . . , k}, we define
s(d) = si, t(d) = ti, and v(d) = vi. For j ∈ V , we define δ−(j) to be the set
of incoming arcs to j, and δ+(j) to be the set of outgoing arcs from j. In this
setting, the DSL-BF formulation for RSA is the following integer program.

min
∑
d∈D

∑
e∈E

∑
s∈S

udes/v(d) (1)

s.t.
∑

e∈δ−(j)

udes −
∑

e∈δ+(j)

udes = 0
∀s ∈ S, ∀d ∈ D,

∀j ∈ V \{s(d), t(d)} (2)

∑
e∈δ+(s(d))

∑
s∈S

udes ≥ v(d) ∀d ∈ D (3)

∑
e∈δ−(s(d))

∑
s∈S

udes = 0 ∀d ∈ D (4)

∑
d∈D

udes ≤ 1 ∀e ∈ E, ∀s ∈ S (5)

ude,s̄+1 = 0 ∀d ∈ D, ∀e ∈ E (6)

v(d)(udes − ude,s+1) ≤
s∑

s′=f

udes′
∀d ∈ D, ∀e ∈ E, ∀s ∈ S,
f = max{1, s− v(d) + 1} (7)

udes ∈ {0, 1} ∀d ∈ D, ∀e ∈ E, ∀s ∈ S (8)

The objective function (1) asks for the total length of the lightpaths to
be minimized. Since a solution using spurious cycles uses more arcs than the
strictly needed, this objective function also forbids spurious cycles in any optimal
solution. Constraints (2) impose flow conservation restrictions for each demand
at each node in the network, except for the source and sink nodes associated
with the demand. Constraints (3) ensure that the required number of slots is
routed for each demand, whereas constraints (4) forbid incoming arcs into the
source node of each demand with the aim of forcing each path to end in the
destination node. Otherwise a cycle containing the source would satisfy all the
constraints. Constraints (5) guarantee that no two different lightpaths overlap.
Finally, constraints (6) and (7) ensure slot contiguity in the following way. If
a demand has assigned a slot s in an arc but not the slot s + 1, then it must
have assigned the previous v(d) slots. Constraints (6) allows us to also apply
the inequalities to the last available slot s̄.

We define RSA(G,D, s̄) to be the convex hull of feasible solutions of the
DSL-BF formulation (2)-(8). A valid inequality (resp. valid equation) is a linear
inequality (resp. equation) on u satisfied by all points in RSA(G,D, s̄). An op-
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timality cut (resp. optimality equation) is a non-valid inequality (resp. equation)
that does not remove all optimal solutions.

The polytope RSA(G,D, s̄) seems hard to study, since even characterizing
its dimension is not straightforward (as suggested by the valid equations in the
next sections). Due to this fact, in the present work we explore families of valid
inequalities without providing facetness results. Instead, we aim for the more
modest goal of showing that –together with the model constraints– the inequal-
ities from these families do not imply each other. We have also implemented
a branch-and-cut procedure for RSA in order to evaluate the contribution of
the proposed families of valid inequalities, valid equations, and optimality cuts
within a cutting plane environment.

The remainder of this work is organized as follows. Section 2 presents some
theoretical results, Sections 3, 4, and 5 introduce several families of valid in-
equalities and equalities, and optimality cuts based on flow, contiguity, and
non-overlapping considerations, respectively. Section 6 presents the branch-
and-cut algorithm. Section 7 summarizes the results of the computational ex-
periments performed in order to measure the efficiency of adding each family of
cuts. Section 8 presents some conclusions and possible future work.

2. Properties coming from symmetry considerations

The DSL-BF formulation presents several symmetries; for example, for any
given solution, flipping the spectrum upside-down would generate a solution
of same cost. These consideration lead to the following technical results. Let
u′ ∈ R|D||E|s̄, we define as Is : R|D||E|s̄ → R|D||E|s̄ the function such that if
ū = Is(u

′) then ūdes = u′
de,s̄−s+1 for every arc e ∈ E, demand d ∈ D, and slot

s ∈ S.

Theorem 2.1. If a · u ≤ b is a valid inequality (resp., optimality cut) for
RSA(G,D, s̄), then the slot-symmetrical inequality∑

d∈D

∑
e∈E

∑
s∈S

ades ude,s̄−s+1 ≤ b (9)

is also valid (resp., an optimality cut) for RSA(G,D, s̄). Furthermore, if a·u ≤ b
induces a facet of RSA(G,D, s̄), then (9) also induces a facet of this polytope.

Proof. If u′ is a feasible solution for RSA(G,D, s̄) its transformation Is(u
′) is

also feasible and has the same objective value, thus if a·u ≤ b is a valid inequality
(resp. optimality cut), since (9) is exactly a · Is(u) ≤ b, then (9) is also a valid
inequality (resp. optimality cut). Assuming that the dimension of RSA(G,D, s̄)
is n, if a ·u ≤ b is facet-defining, there must exist n affinely independent vectors
that satisfy a · ui = b, with i = 1, . . . , n, so since the function Is preserves the
affinity of the given vector set, their transformations Is(u1), . . . , Is(un) are also
affinely independent and satisfy a · Is(ui) = b for i = 1, . . . , n, and therefore, the
inequality (9) also induces a facet of the polytope.
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Theorem 2.2. Fix d ∈ D and define δd = δ(t(d))∪ δ(s(d)). Let a · u ≤ b be an
optimality cut for RSA(G,D, s̄) such that for every s ∈ S there exist αds ∈ R
and βds ∈ R, with ades = αds for every e ∈ δ+(s(d)), ades = βds for every
e ∈ δ−(t(d)), ades = 0 for every e ∈ δ−(s(d))∪ δ+(t(d)), and ad′es = 0 for every
d′ ̸= d and e ∈ δd. Then, the inequality∑

s∈S

( ∑
e∈δ−(t(d))

αdsudes +
∑

e∈δ+(s(d))

βdsudes +
∑
d′∈D

∑
e∈E\δd

ad′esud′es

)
≤ b (10)

is also an optimality cut for RSA(G,D, s̄).

Proof. It is enough to prove that in every optimal solution u∗, the equality∑
e∈δ−(t(d))

u∗
des =

∑
e∈δ+(s(d))

u∗
des. (11)

is satisfied for every d ∈ D and s ∈ S. Due to the flow conservation constraints
(2) we can verify that if u∗

des = 1 with e ∈ δ+(s(d)), then there must exist a
path P ⊆ E with e ∈ P such that u∗

de′s = 1 for every e′ ∈ P . Because of the
constraints (3), the node s(d) cannot belong to that path, so it must inevitably
end in t(d). Also, since no optimal solution can contain a cycle, in which case
it would not be optimal, then

∑
e∈δ+(t(d)) u

∗
des = 0. Therefore, if all paths on

the slot s that start in s(d) finish in t(d) and since no cycle can exist beginning
and ending in t(d), the inequality (11) is satisfied, and thus it is possible to
transform a · u ≤ b into (10).

3. Flow inequalities and optimality cuts

In this and the following sections we propose several families of valid inequal-
ities, valid equations, and optimality cuts for RSA(G,D, s̄). The formulation
does not include constraints avoiding spurious elements, as cycles, bifurcations,
more than one lightpath and more than v(d) slots satisfying a demand d, for
d ∈ D. Instead, we rely on the objective function for this task, as no optimal
solution will contain such elements. Due to this fact, many of the inequalities
presented in this work are not valid but are optimality cuts instead, since they
apply to solutions with no spurious elements and exactly v(d) slots in the only
lightpath satisfying each demand d, for d ∈ D. We might add to the model suit-
able constraints avoiding spurious elements, and in this case all the optimality
cuts in this work become valid inequalities for such a strengthened model.

Because of the theorems enunciated in Section 2, each time we have a family
of inequalities related to the outgoing arcs of a particular node, we can formulate
the symmetrical one looking at the ingoing arcs to that node. Likewise, when
we state a family of inequalities that include in any way the lowest usable slot,
we can state a symmetrical inequality by considering the highest usable slot.

Whenever we have a particular vector u′ ∈ {0, 1}|D||E|s̄, we write u′
de∗ ∈

{0, 1}s̄ to be the sub-vector of u′ that refers to the slots used by the demand d
in the arc e. Analogously, u′

d∗∗ ∈ {0, 1}|E|s̄ is the sub-vector of u′ that refers to
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all the slots and arcs used by d. We denote as |C| the number of arcs of C for
every set C ⊆ E. A simple path is a path without cycles; we call as P (G, i, j) the
set of simple paths from i to j in G, and E(G, d) the set composed by every arc
e such that there exists a path P ∈ P (G, s(d), t(d)) and e ∈ P . Due to the space
restrictions, we omit most of the proofs. None of the presented families is implied
by the model constraints. Despite a large number of the families presented are
not mutually implicated –which was specifically stated for those we consider
less clear–, we also included sub-families or families clearly dominated by others
because this allows us to have a finer adjustment in the separation procedures.
Even more, some of these dominated families obtained better results than their
dominant ones.

Theorem 3.1. The equalities flow I, namely,∑
s∈S

∑
e∈δ+(t(d))

udes = 0 ∀d ∈ D, (12)

do not cut any optimal solution from RSA(G,D, s̄).

Proof. Let u∗ be an optimal solution, and assume that for some d ∈ D there ex-
ists an arc e ∈ δ+(t(d)) such that

∑
s∈S u∗

des > 0. As u∗ is optimal, the demand
d is satisfied by a lightpath composed by a simple path P from s(d) to t(d) with
at least v(d) consecutive slots on (i.e., slots such that their corresponding vari-
ables equal 1). Since e ̸∈ P , then it is possible to define a new feasible solution
u′ such that u′

de′s = u∗
de′s for every s ∈ S and for every e′ ∈ P , u′

de′s = 0 for
every e′ /∈ P and for every s ∈ S, and u′

d′∗∗ = u∗
d′∗∗ for every d′ ̸= d. Since d

does not use e in u′, then the objective value of u′ is strictly better than the
objective value of u∗, a contradiction.

Theorem 3.2. The family of inequalities flow II, namely,∑
e∈δ+(i)

udes ≤ 1 ∀d ∈ D, ∀s ∈ S, ∀i ∈ V \ {t(d)}, (13)

do not remove any optimal solution from RSA(G,D, s̄).

Proof. Let u∗ be an optimal solution such that u∗ violates at least one of the
inequalities (13). Then there must exist at least one node i ∈ V such that the
sum of the variables related to a slot s over δ+(i) is greater than 1. That means
that exists a bifurcation, therefore two paths. Because of the model constraints
(4) and the flow conservation constraints (2), each of them must have at least
v(d) slots used, and as well as they share slots, they must be disjoint in arcs.
Thus, we can define a new solution u′ that uses only one of these paths, i.e.,
setting 0 to every slot of the arcs belonging to the other path, with objective
function strictly lower than u∗, a contradiction.

Corollary 3.1. We call flow III to the sub-set of optimality cuts obtained by
taking i = s(d), in (13), namely,∑

e∈δ+(s(d))

udes ≤ 1 ∀d ∈ D, ∀s ∈ S. (14)
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Corollary 3.2. Due to the flow conservation constraints (2) and Theorem 2.2,
the symmetrical inequality obtained by taking the sum on every e ∈ δ−(i), i ∈
V \ {s(d)}, called flow IV, and the case when i = t(d), i.e., flow V, are also
optimality cuts for the model DSL-BF.

Definition 3.1. Let u′ be a solution for the RSA. A lightpath (P,C) for a
demand d is said to be minimal if P is a simple path from s(d) to t(d), C is a
channel of exactly v(d) slots, and there does not exist another solution u′′ using
the same lightpaths as u′ for every other demand different than d, but using a
lightpath (P ′, C) to satisfy d where P ′ is composed of fewer arcs than P .

Lemma 3.1. Any feasible solution such that there exists a demand satisfied
with a non-minimal lightpath is not optimal.

Theorem 3.3. The inequalities flow-volume VI, namely,∑
e∈δ+(i)

∑
s∈S

udes ≤ v(d) ∀d ∈ D, ∀i ∈ V, (15)

do not remove any optimal solution from RSA(G, D, s̄).

Proof. Let u∗ be an optimal solution removed by at least one of the inequalities
(15). Because of its optimality and due to Lemma 3.1, every demand d must be
satisfied by a minimal lightpath, but the inequalities violation claims that the
number of slots used by some demand d′ in δ+(i′) for some i′ ∈ V must be at
least v(d′) + 1, a contradiction.

Corollary 3.3. We call flow-volume VII to the sub-set of optimality cuts ob-
tained by taking i = s(d) in (15); namely,∑

e∈δ+(s(d))

∑
s∈S

udes ≤ v(d) ∀d ∈ D, (16)

Corollary 3.4. Due to Theorem 2.2, we can also state that exactly v(d) slots
must reach the destination of every demand d ∈ D, by taking e ∈ δ−(t(d)) on
(16). We can also state the same for the incoming arcs of every node in the
graph, i.e., the analogous to (15). We name these families as flow-volume VIII
and flowflow-volume IX, respectively, and they are also optimality cuts.

Theorem 3.4. The inequalities flow-branches X, namely,∑
e′∈δ+(i)\{e}

∑
s′∈S

ude′s′ ≤ v(d)(1− udes)
∀d ∈ D, ∀i ∈ V ,

∀e ∈ δ+(i), ∀s ∈ S,
(17)

are optimality cuts for the model DSL-BF.

Proof. Let u∗ be an optimal solution. If u∗ violates at least one of the inequal-
ities (17), then, there must exist a demand d ∈ D and a node i ∈ V such that d
uses at least two arcs of δ+(i). Due to the contiguity and integrality constraints
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both arcs must have at least v(d) slots used by d, and due to flow limitations,
each must belong to either a cycle or a path that connects s(d) with t(d). Since
a demand in any optimal solution must be satisfied by a lightpath composed
by a simple path and a channel with exaclty v(d) slots, then u∗ cannot be
optimal.

Corollary 3.5. We call flow-branches XI to the inequalities obtained by taking
i = s(d) in (17), namely,∑

e′∈δ+(s(d))\{e}

∑
s′∈S

ude′s′ ≤ v(d)(1− udes)
∀d ∈ D, ∀e ∈ δ+(s(d)),

∀s ∈ S.
(18)

Assume that the constraints (2)-(7) hold, then the family flow-branches XI
does not imply flow-volume VII, nor vice versa. Likewise, if the constraints
(2)-(7) hold, then, the inequalities (17) do not imply (15), nor vice versa.

Corollary 3.6. Because of the flow conservation constraints (2) and Theo-
rem 2.2, we can look at the incomming arcs, δ−(i) on every i ∈ V \ s(d),
obtaining the family called flow-branches XII. We call flow-branches XIII the
sub-family obtained when i = t(d). Both families are optimality cuts for the
model DSL-BF.

Theorem 3.5. The inequalities flow-used-arcs XIV, namely,∑
e∈E

udes′ ≤
∑
e∈E

udes + |E|
(
1−

∑
e∈δ+(s(d))

udes

) ∀s, s′ ∈ S, s′ ̸= s,
∀d ∈ D,

(19)

are optimality cuts for the model DSL-BF.

Proof. Let u∗ be an optimal solution that violates at least one of the inequalities
(19) for the demand d and the slot s. Since the integer vector u∗ satisfies the
inequalities (13) due to Theorem 3.2, then

∑
e∈δ+(s(d)) udes ∈ {0, 1}. In order

to violate (19), if this sum is 0, the amount of arcs in which s′ is used must be
greater than the total number of arcs of the graph; therefore

∑
e∈δ+(s(d)) udes =

1. This implies that the slot s is used by d and that there exists s′ ̸= s which
is used by d in more arcs than s in u∗. As u∗ is an optimal solution, due to
Lemma 3.1 the demand d must be satisfied by a minimal lightpath composed
by a path P and a channel of v(d) slots, and thus s and s′ have to be used only
in P so in the same amount of arcs, a contradiction.

Theorem 3.6. Inequalities flow-used-arcs XV, namely,

1

v(d)

(∑
e∈E

∑
s′∈S

udes′

)
≤

∑
e∈E

udes + |E|
(
1−

∑
e∈δ+(s(d))

udes

) ∀d ∈ D,
∀s ∈ S,

(20)

are optimality cuts for the model DSL-BF.
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Proof. Let u∗ be an optimal solution and assume it violates some of the inequal-
ities (20). Since vector u∗ satisfies the inequalities (13) due to Theorem 3.2 and
u∗ ∈ {0, 1}|D||E|s̄, therefore the sum

∑
e∈δ+(s(d)) u

∗
des = α must be 0 or 1 for

every s ∈ S and d ∈ D. If α = 0, then there must exist a demand d ∈ D and a
slot s ∈ S such that

∑
e∈E

∑
s′∈S u∗

des′ > v(d)|E|, so, u∗ is not optimal because
it uses more slots than v(d)|E|. If α = 1, then there must exist a demand d ∈ D
and a slot s ∈ S such that∑

e∈E

∑
s′∈S

u∗
des′ > v(d)

∑
e∈E

u∗
des, (21)

but
∑

e∈E u∗
des ≥ 1, because slot s is used by d in δ+(s(d)). Since u∗ is optimal,

due to Lemma 3.1, d must be satisfied by a minimal lightpath composed by a
channel C and a path P that connects s(d) with t(d). Since the slot s must
belong to C, it must be used all along the path P , so the right-hand side of (21)
is at least v(d)|P |. But the number of slots of the lightpath composed by P
and C is enough to satisfy d, and it is exactly v(d)|P |, therefore (21) cannot be
satisfied for any optimal solution, then u∗ is not optimal, a contradiction.

Assume that the constraints (2)-(7) and the inequalities (13) and (15) hold.
Then, the inequalities (20) are not implied by (19). Let u′ be a solution of an
instance of RSA with only one demand d with v(d) = 1 that is satisfied using a
path of two arcs that connects s(d) with t(d) and using slot 1, and a spurious
cycle of two arcs ij and ji using slot 2. Vector u′ is a feasible solution that
satisfies the inequalities (13) and (15) because for each vertex k ∈ V , d uses at
most one arc of δ+(k) with at most v(d) slots. Since each slot is used in exactly
two arcs, u′ also satisfies (19). However, u′ does not satisfy (20) because it uses
4 slots in all the graph, which is greater than v(d) times the amount used by
each slot, i.e., 2.

Note that we could strengthen the inequalities (19) and (20) by considering
|E(G, d)| instead of |E|, but since the graphs we used in the experiments are
strongly connected, both sets are mostly the same.

Given an arc sub-set E′ ⊆ E, we call PE′ to the set of all paths in E′

without cycles, and we call M(PE′) ⊆ P(E′) to a set of vertex-disjoint paths
with maximum total number of arcs. If |M(PE′)| is the total amount of arcs
of the set M(PE′), then each demand in any optimal solution can use at most
|M(PE′)| arcs on E′. This results in the large family of inequalities shown in
(22). By also forcing each demand to be satisfied by exactly its volume, we get
the optimality cuts shown in (23). A particular case of this family is obtained
by taking E′ = δ+(i) for every i ∈ V , i.e., (15).∑

e∈E′

udes ≤ |M(PE′)| ∀d ∈ D, ∀s ∈ S, ∀E′ ⊆ E, (22)∑
s∈S

∑
e∈E′

udes ≤ v(d)|M(PE′)| ∀d ∈ D, ∀E′ ⊆ E. (23)

Theorem 3.7. The inequalities (22) are optimality cuts for the model DSL-BF.
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Proof. Let u∗ be an optimal solution that violates at least one of the inequalities
of this family. So, there must be a demand d ∈ D, a slot s ∈ S and a set of
arcs E′ ⊆ E such that

∑
e∈E′ u∗

des > |M(PE′)|. That is, the demand d uses the
slot s in a set of arcs Y ⊆ E′ such that |Y | > |M(PE′)|. However, since u∗ is
optimal, its path cannot contain cycles nor bifurcations, so Y must be a set of
paths, i.e., Y ⊆ PE′ , so |Y | ≤ |M(PE′)|. Thus, u∗ cannot be optimal.

Theorem 3.8. The inequalities (23) are optimality cuts for the model DSL-BF.

Proof. Let u∗ be an optimal solution for RSA and assume that u∗ violates some
of the inequalities (23). So, there must exist d ∈ D and E′ ⊆ E such that∑

s∈S

∑
e∈E′ u∗

des > v(d) |M(PE′)|. Let Y ⊆ E′ be the set of arcs used by d in
E′. Since u∗ is optimal, due to Lemma 3.1, d must be satisfied by a minimal
lightpath with a path P and channel C, so Y ⊆ P cannot contain cycles nor
bifurcations, i.e., Y ⊆ PE′ , thus |Y | ≤ |M(PE′)|. It is also true that the channel
used by d must be C all along the path P , in particular in Y , and since d cannot
use any arc e /∈ P , then

∑
s∈S

∑
e∈E′ u∗

des = v(d)|Y |, therefore u∗ cannot be
optimal.

We can prove that the model given by constraints (2)-(7) and the inequalities
(23) does not imply the family (22).

Given an arc ij ∈ E, we define δ−(i) ∪ δ(j) to be the incoming double
broom (InDBroom) associated with ij. Similarly, we define δ+(i) ∪ δ(j) to be
the outgoing double broom (OutDBroom) associated with ji. Note that the
arc ij must exist in order to have an InDBroom. Analogous with ji for the
OutDBroom.

We can see that if DB is either an InDBroom or an OutDBroom in a graph
G, then |M(PDB)| = 3, i.e., the maximum amount of arcs of DB used by any
demand in an optimal solution must be lower than or equal to 3.

Corollary 3.7. The particular cases of (23) in which E′ is an InDBroom or an
OutDBroom are called flow-dbrooms XVI and flow-dbrooms XVII, respectively.

Since M(PE′) is a set of paths, the total number of arcs belonging to them,
i.e., |M(PE′)|, must be lower than |V (E′)|, wherewith (24) and (25) are domi-
nated by the inequalities (22) and (23), respectively.∑

e∈E′

udes ≤ (|V (E′)| − 1) ∀d ∈ D, ∀s ∈ S, ∀E′ ⊆ E, (24)∑
s∈S

∑
e∈E′

udes ≤ v(d)(|V (E′)| − 1) ∀d ∈ D, ∀E′ ⊆ E. (25)

Corollary 3.8. In our experiments, we consider the sub-families of (24) and
(25) generated by taking E′ to be: (I) an undirected cycle in G (i.e., disregarding
the arc orientations), getting the sub-families flow-cycles XVIII and flow-cycles
XIX respectively, (II) the set of all edges induced by the vertices of a cycle in
G, getting the sub-families of inequalities flow-cycles XX and flow-cycles XXI,
respectively, and (III) the set {ij, ji}, when both arcs exist between the nodes i

10



and j, obtaining the sub-families flow-cycles XXII and flow-cycles XXIII, re-
spectively.

Note that, in spite that (II) can be seen as a lifted version of (I) –and hence
(II) clearly dominates (I)–, in the experiments the two families of (I) obtained
better results than the two families of (II); and, even more, no family of (I)
overcame a generic branch-and-bound, while a family of (I) did it.

Corollary 3.9. Finally, for two arcs ij, ji ∈ E (when such a structure exists),
we consider the family of inequalities flow-cycles XXIV, namely,∑

s′∈S

ud,ji,s′ ≤ v(d)(1− ud,ij,s) ∀ij, ji ∈ E, ∀d ∈ D, ∀s ∈ S. (26)

Constraints (2)-(7) and (25) do not imply the family (15), nor vice versa.
The inequalities (26) are not implied by the model constraints (2)-(7) together
with (23). Since (26) only avoid the cycles including two arcs ij and ji and using
more than v(d) slots in arcs with reverse, any solution that uses more than v(d)
slots on a cycle with no such a structure, i.e., where no arc of the cycle has
a reverse, violates (15) but not (26). Therefore, the model constraints (2)-(7)
with the inequalities (26) do not imply (15). Likewise, the model constraints
(2)-(7) together with (26) do not imply (23) nor (25).

4. Contiguity inequalities

In this section we present valid inequalities and equations dealing with the
contiguity requirements, namely that each demand must use consecutive slots.
Most of the following families are based on a result shown in [44], called the
consecutive ones theorem, where given a demand d, the contiguity constraint
is obtained mainly by grouping the slots that are distanced from each other by
the volume of d.

Theorem 4.1. The family contiguity I and its symmetrical called contiguity
II, namely,

∑
s∈{1,...,i}:

s ≡ i (mod v(d))

udes ≥
∑

s∈{1,...,i−1}:
s+1 ≡ i (mod v(d))

udes

∀d ∈ D,
∀e ∈ E,
∀i ∈ S

(27)

∑
s∈{s̄−i+1,...,s̄}:

s ≡ s̄−i+1 (mod v(d))

udes ≥
∑

s∈{s̄−i+2,...,s̄}:
s−1 ≡ s̄−i+1 (mod v(d))

udes

∀d ∈ D,
∀e ∈ E,
∀i ∈ S,

(28)

respectively, are optimality cuts for the model DSL-BF.
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Proof. Let u∗ be an optimal solution for an instance of RSA such that u∗ violates
at least one of the inequalities (27). Then, there must exist a demand d ∈ D,
an arc e ∈ E and a slot i ∈ S such that the left-hand side is strictly smaller
than the right-hand side. If d does not use e in u∗, the inequality is satisfied,
so d must use e, and as it is optimal there must be v(d) contiguous slots used
by d in that arc. Since u∗ must also satisfy integrality, then udes ∈ {0, 1} for
every s ∈ S, and because the slots in the left-hand side are taken distanced by
v(d) slots, only one can be used. So the right-hand side must use at least two
slots because of the integrality, but the slots in this side are also at a distance of
v(d) each other, so only one can be used. Since inequalities (28) are symmetric
by slots to (27), thus, due to Theorem 2.1, (28) are also optimality cuts for the
model DSL-BF.

Given the constraints of the model DSL-BF, two counterexamples show that
the inequalities (27) do not imply (28) nor vice versa. Consider an instance of
the RSA problem with s̄ = 5, and a graph with only one arc e connecting
the unique pair of nodes i and j which are the source and the destination of
the unique demand d. If v(d) = 2, the vector u′

de∗ = ( 14 ,
1
4 ,

1
2 ,

1
2 ,

1
2 ) satisfies

the inequalities (27) besides the constraints of the model DSL-BF but not (28).
Defining a vector u′′ by reversing u′

de∗ we have a counterexample for the converse
assertion.

Theorem 4.2. The equalities contiguity III, which assume that each demand
d ∈ D uses exactly v(d) slots, namely,∑

s∈S:
s ≡ i (mod v(d))

udes =
∑
s∈S:

s+1 ≡ i (mod v(d))

udes
∀d ∈ D, ∀e ∈ E,

∀i ∈ {1, . . . , v(d)}, (29)

are valid for every optimal solution for the model DSL-BF.

Proof. Suppose we have an optimal solution u∗ such that it violates at least one
of the equalities (29). That means that there exists one arc e ∈ E, one demand
d ∈ D with v(d) > 1, and an index i′ = 2, . . . , v(d), such that∑

s∈S:
s ≡ i′ (mod v(d))

u∗
des ̸=

∑
s∈S:

s ≡ i′−1 (mod v(d))

u∗
des. (30)

If the arc e is not used, then the equality is trivially satisfied, thus d uses the arc
e. Let L = {i′, i′ + v(d), . . . , i′ + k · v(d)} and R = {i′ − 1, i′ − 1 + v(d), . . . , i′ −
1 + h · v(d)} be the sets of the slots of variables of the left-hand side and the
right-hand side of (30), respectively, with k, h ∈ N0. Since each pair of slots in
L is at a distance of at least v(d), then the demand d can use at most one of
them on e so that u∗ is optimal. The same happens with the set R. Suppose
u∗
des′ = 1 with s′ ∈ L. Since d must use exactly v(d) contiguous slots in e, then

d must also use slot s′ + 1 or s′ − 1 ∈ R. If u∗
des′ = u∗

de,s′−1 = 1, then the
equality is satisfied, therefore assume u∗

des′ = u∗
de,s′+1 = 1. But, since s′ − 1 <
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s′ < s′ + 1 ≤ s′ + v(d)− 1, with the difference (s′ + v(d)− 1)− (s′ − 1) = v(d),
and both slots, i.e., s′+ v(d)− 1 and s′− 1 belonging to R, then d must use one
of them, therefore the left-hand side and right-hand side of (30) equal 1. Due
to symmetry we can follow the same reasoning when assuming u∗

des′ = 1 for any
s′ ∈ R. Therefore, such an optimal solution u∗ does not exist and the equalities
(29) are optimality equations.

Given the constraints of the model DSL-BF, a counterexample shows that
the inequalities (27) and (28) are not implied by (29). Consider an instance
of the RSA problem with s̄ = 6, and a graph with only one arc e connecting
the unique pair of nodes i and j which are the source and the destination of
the unique demand d. If v(d) = 3, the vector u′

de∗ = ( 12 , 1,
1
2 ,

1
2 , 1,

1
2 ) satisfies

the inequalities (29) besides the constraints of the model DSL-BF but not (27),
since ude3 < ude2, nor (28), since ude4 < ude5, both for i = 3.

Using that P (G, s, t) is composed by all the simple paths that connect s with
t, we can define a minimal (s,t)-cut to be a sub-set C ⊆ E such that for every
P ∈ P (G, s, t) there exists e ∈ C with e ∈ P , but for every e′ ∈ C, e′ ̸= e, we
have e′ ̸∈ P . An optimal solution u∗ must satisfy every demand using a path
that cannot have cycles nor bifurcations, otherwise u∗ would not be optimal,
and by definition each path between the source and the destination of d has
exactly one arc that belongs to C, in particular the paths used in the lightpath
that satisfies d. This implies the following result.

Proposition 4.1. For every demand d ∈ D and every minimal (s(d), t(d))-cut
C, the lightpath associated with d in any optimal solution contains exactly one
arc from C.

Theorem 4.3. Let SCd be the set of minimal (s(d), t(d))-cuts for a demand
d ∈ D in a digraph G, then the equalities∑

e∈C

∑
s∈S:

s ≡ i (mod v(d))

udes = 1
∀d ∈ D, ∀i ∈ {1, . . . , v(d)},

∀C ∈ SCd,
(31)

are valid for every optimal solution of RSA(G,D, s̄).

Proof. Consider an instance for RSA, a demand d and a cut C ∈ SCd. Given
an optimal solution u∗, due to Proposition 4.1 there exists a unique arc e′ ∈ C
such that e′ belongs to the path of the lightpath that satisfies the demand
d in u∗. Then

∑
s∈S u∗

de′s = v(d). Furthermore,
∑

s∈Ŝi
u∗
de′s = 1 for every

i ∈ {1, . . . , v(d)}, with Ŝi = {s ∈ S : s ≡ i (mod v(d))}. On the other hand,∑
s∈S u∗

des = 0 for every e ̸= e′ in C by definition, so the equality (31) is satisfied
by u∗.

Corollary 4.1. The families (27), (29), and (31) are sufficient to ensure that
in any solution that satisfies the model DSL-BF, each demand d ∈ D uses either
0 or exactly v(d) consecutive slots in every arc e ∈ E.
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Corollary 4.2. The special cases of (31) given by C = δ+(s(d)) and C =
δ−(t(d)) are called contiguity IV and contiguity V respectively.

Note that when we use the cuts (29) we do not need to state the family of
contiguity IV for every value of i but only for one of them.

Corollary 4.3. We also separate the sub-family obtained by taking only one sub-
group of slots, for example by fixing i = 1. We call these families as contiguity
VI.

Theorem 4.4. The equalities contiguity-central VII, restricted to every demand
d such that 2v(d) > s̄, namely,∑

e∈C

∑
s∈Y

udes = |Y | Y = {s̄− v(d) + 1, . . . , v(d)}, ∀C ∈ SCd, (32)

and the special case when C = δ+(s(d)), called contiguity-central VIII, are
optimality cuts for the model DSL-BF.

Proof. Consider an instance of RSA and assume an optimal solution u∗ such
that u∗ violates some equalities (32). There must exist a demand d ∈ D such
that 2v(d) > s̄, a non-empty set C ∈ SCd, and

∑
e∈C

∑
s∈Y u∗

des ̸= |Y |. Oth-
erwise equalities (32) would be trivially satisfied. Since u∗ is optimal, due to
Lemma 3.1, d must be satisfied by a lightpath composed by a simple path P
and a channel with v(d) consecutive slots. By definition of C, there must exist
exactly one arc e ∈ C such that e ∈ P , so d must use v(d) slots in that arc and
no other slot in the rest of the arcs belonging to C, i.e.,

∑
e′∈C\{e} u

∗
de′s = 0.

Due to integrality constraints and since Y belongs to every posible interval of
v(d) consecutive slots in [1, . . . , s̄], then d must use every slot of Y in the arc e,
therefore

∑
s∈Y u∗

des = |Y |, a contradiction.

The equalities (32) are not implied by the model given by (2)-(7) and the
equalities (31).

Corollary 4.4. We can disjoin the equalities (32) by slot, thus getting the set
of equalities∑

e∈C

udes = 1 Y = {s̄− v(d) + 1, . . . , v(d)}, ∀s ∈ Y , ∀C ∈ SCd, (33)

named contiguity-central IX, which are also valid for every demand d such that
2v(d) > s̄. Analogously, we call as contiguity-central X the group of equalities
resulting of taking C = δ+(s(d)).

For the experiments, we implemented only this last group of equalities.
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Theorem 4.5. The inequalities contiguity-position XI and contiguity-position
XII, i.e.,

v(d)∑
s′=s+1

udes′ ≥ (v(d)− s) udes
∀e ∈ E, ∀d ∈ D,

∀s ∈ {1, . . . , v(d)− 1} (34)

s−1∑
s′=ŝd

udes′ ≥ (s− ŝd) udes
∀d ∈ D, ∀s ∈ {s̄− v(d) + 2, . . . , s̄},

∀e ∈ E, ŝd = s̄− v(d) + 1,
(35)

respectively, are implied by (27) and (28), respectively, therefore they are are
optimality cuts for the model DSL-BF.

Proof. Let u′ be a fractional solution for an instance of the model given by
constraints (2)-(7) and the inequalities (28), let d be a demand and e an arc.
Inequalities (28) force u′

des for each s higher than s̄−v(d) to be greater or equal
than u′

de,s+1, and so u′
des must to be greater than or equal to u′

des′ for every
s′ > s. Summing over every one of these new inequalities we have (35). The
proof of the symmetric proposition is analogous.

Theorem 4.6. If we define S′ = {1, . . . , s− v(d)}∪ {s+ v(d), . . . , s̄}, then, the
inequalities contiguity-distance XIII, namely,∑

s′∈S′

udes′ ≤ M(1− udes) ∀e ∈ E, ∀d ∈ D, ∀s ∈ S, (36)

with M = min{|S′|, v(d)}, are optimality cuts for the model DSL-BF.

Proof. Let u∗ be an optimal solution for an instance of RSA such that there is a
slot s ∈ S, an arc e ∈ E, and a demand d ∈ D so that at least one inequality (36)
is violated. Without loosing generality we can assume v(d) ≤ s ≤ s̄ − v(d) + 1
and extend the following results to the border cases. If u∗

des = 0, as M ≥ |S′|
we would have

∑
s∈S′ u∗

des > |S′|, that cannot occur since u∗
des′ ∈ {0, 1} for

every s′ ∈ S due to the integrality constraints. Consequently, u∗
des has to be

equal to 1. But this, in addition to contiguity constraints, implies that another

v(d) − 1 slots must be used all around s, i.e.,
∑s+v(d)

s′=s−v(d)+1 u
∗
des′ = v(d), and

since S′ = S − {s − v(d) + 1, . . . , s + v(d)}, hence
∑

s′∈S′ u∗
des′ = 0 in order to

be optimal.

A counterexample shows that the optimality cuts (36) are not implied by the
model constraints (2)-(7) together with (15), (29), and (31) with C = δ+(s(d)).
Consider an instance of RSA with s̄ = 12 and only one demand d with v(d) =
2. Then M must be equal to v(d). Let u′ ∈ R|D||E|s̄ be a vector such that
u′
de∗ = ( 14 ,

1
4 ,

1
8 ,

1
8 , 0,

1
8 ,

1
2 ,

1
4 , 0,

1
8 ,

1
8 ,

1
8 ) for each e all along a simple path between

s(d) and t(d) and u′
des = 0 for the remaining slots and arcs. The vector u′

trivially satisfies the flow and the non-overlapping constraints and we can easily
see that it does not violate the contiguity constraints. Likewise this fractional
solution does not violate the inequalities (15), because the sum of every variable
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belonging to the arcs that outgo from s(d) is exactly v(d) and for the other
vertices it is lower than or equal to v(d). This solution also satisfies the equalities
(29), because the sums of the two possible sets of slots are both equal to 1.
However u′ violates the inequalities (36) on each arc of the path taking s = 7,
i.e., the unique slot with value 1

2 .

Theorem 4.7. The family of inequalities contiguity-symmetrical XIV, obtained
by applying Theorem 2.1 to the model constraints (7), namely,

v(d)∑
s′=1

udes′ ≥ v(d) ude1 ∀d ∈ D, ∀e ∈ E (37)

f∑
s′=s

udes′ ≥ v(d)(udes − ude,s−1)
∀d ∈ D, ∀e ∈ E, ∀s ∈ {2, . . . , s̄},

f = min(s̄, s+ v(d)− 1),
(38)

are valid inequalities for the model DSL-BF.

We can show that (37) and (38) are not implied by the model constraints,
in particular by (7), by presenting a counterexample. Consider an instance of
RSA with only one demand d with v(d) = 2 and such that the arc e = s(d), t(d)
belongs to the graph. Assume s̄ = 4. Let u′ be a vector such that all of
its elements are zero except for u′

de∗ = (0, 1, 1
2 ,

1
2 ). The vector u′ satisfies all

constraints in particular (7) but not the inequalities (38) when taking s = 2,
because 3

2 < 2. Generating another vector u′′ by reversing u′, i.e., u′′
de∗ =

( 12 ,
1
2 , 1, 0), we can show the converse non-implication.

Corollary 4.5. The variation to DSL-BF proposed in [44], i.e., DSL-ASCC,
replaces constraints (6) and (7) with two families of inequalities. In particular,
we can use

udes1 + udes2 ≤ ude(s1+1) + 1 ∀d ∈ D, ∀e ∈ E, ∀s1, s2 ∈ S, s2 > s1, (39)

as optimality cuts for DSL-BF. We call them as contiguity-ASCC XV.

With a counterexample we can prove that (39) are not implied by the model
constraints (2)-(7) and the inequalities contiguity-symmetrical XIV. Assume an
instance of RSA with only one demand d such that v(d) = 3, and only one
arc e connecting s(d) with t(d). Let s̄ = 5 and u′ be a vector such that
u′
de∗ = ( 12 , 1,

1
2 , 1,

1
2 ). Vector u′ satisfies the non-overlapping and flow con-

servation constraints, and also satisfies both the contiguity constraints and the
symmetrical (37)-(38) but u′

de2 − u′
de3 + u′

de4 > 1. However, we believe that if
we add flow inequalities (15), then (39) would be redundant.

5. Non-overlapping inequalities

In this section we present several valid inequalities, equations, and optimality
cuts dealing mainly with the non-overlapping restriction, that is that no two
demands can use the same slot within the same arc.
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Theorem 5.1. Given three slots s1, s2, s3 ∈ S, inequalities

udes1 +
∑

d′∈D\{d}

ud′es2 + udes3 ≤ 2 ∀d ∈ D, ∀e ∈ E, s1 < s2 < s3, (40)

called non-over I, are optimality cuts for the model DSL-BF.

Proof. Suppose there exists an optimal solution u∗ that violates any inequality
(40), i.e., there exists d ∈ D, e ∈ E, and 1 ≤ s1 < s2 < s3 ≤ s̄ such that
u∗
des1

+
∑

d′∈D\{d} u
∗
d′es2

+ u∗
des3

> 2. The solution u∗ must satisfy integrality
constraints for each binary variable, and because of non-overlapping constraints∑

d′∈D\{d} u
∗
d′es2

∈ {0, 1}, thus there must exist a particular demand d′ ̸= d
such that u∗

des1
+ u∗

d′es2
+ u∗

des3
> 2 and the three variables should be equal to

1. Since u∗ is optimal, each demand must use exactly v(d) consecutive slots
in e, so if u∗

des3
= 1 then there must exist a slot s′ ≤ s̄ + 1 such that (7) is

satisfied with equality, i.e., u∗
des′ = 1, u∗

de,s′+1 = 0, and
∑

s∈A u∗
des = v(d) with

A = {s− v(d) + 1, s}, and since |A| = v(d), therefore u∗
des = 1 for every s ∈ A.

In addition, since u∗ is optimal, d cannot use any slot not belonging to A in e,
hence, s1, s3 ∈ A and also s2 ∈ A because this slot is between s1 and s3, thus
s2 must also be used by d but, due to non-overlapping constraints (5), it cannot
be because s2 is used by d′.

Corollary 5.1. The inequalitites non-over II, namely,

ud2es1 + ud1es2 + ud2es3 ≤ 2
∀e ∈ E, ∀d1, d2 ∈ D, d1 ̸= d2
∀s1, s2, s3 ∈ S, s1 < s2 < s3,

(41)

are satisfied by every point of the linear relaxation of the model DSL-BF that
satisfies the inequalities (40).

Corollary 5.2. Inequalities (41) are optimality cuts for the model DSL-BF.

Corollary 5.3. As the number of inequalities in previous families may be too
large to separate, in our experiments we also take s3 = s2 + 1, thus allowing
s1 and s2 to be in the ranges [1, s̄− 2] and [s1 + 1, s̄− 1], respectively. We call
these sub-families as non-over III and non-over IV when reducing (41) and as
non-over V and non-over VI when taking a sub-set of (40), respectively.

Definition 5.1. A set D′ ⊆ D is said to be a minimal set of demands if∑
d∈D′ v(d) > s̄ and for every d′ ∈ D′,

∑
d∈D′\{d′} v(d) ≤ s̄,

Theorem 5.2. If D′ ⊆ D is a minimal set of demands then the inequalities
non-over-capacity VII, namely,∑

s′∈S

udes′ ≤ v(d)
∑

d′∈D′\{d}

(
v(d′)−

∑
s′∈S

ud′es′

)
∀d ∈ D′, ∀e ∈ E, (42)

are optimality cuts for the model DSL-BF.
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Proof. Let u∗ be an optimal solution for an RSA instance, and assume that
u∗ violates at least one of the inequalities (42). Then there must exist a set
D′ ⊆ D, a demand d ∈ D′, and an arc e ∈ E such that the inequality is not
valid. Since u∗ is optimal, then each demand d′ ∈ D must use exactly 0 or v(d′)
slots in e, and, given that v(d′) ∈ N, the sum of the right-hand side must be
k · v(d) with k ∈ N0. But since the left-hand side must equal 0 or v(d) due to
the optimality of u∗, the only way to violate the inequality, is the right-hand
side to be 0, i.e., each demand d′ ∈ D′ included d uses exactly v(d′) slots, which
is not possible by definition of D′.

If we assume the constraints (2)-(7) and the family (23), we can prove that
the inequalities (40) do not imply (42), nor vice versa.

Theorem 5.3. If D′ ⊆ D is a minimal set of demands, the inequalities non-
over-capacity VIII, namely,∑

s∈S

∑
d∈D′

udes ≤
∑
d∈D′

v(d)− min
d∈D′

v(d) ∀e ∈ E, (43)

are optimality cuts for the model DSL-BF.

Proof. Assume there exists an optimal solution u∗ for an instance of the RSA
such that for an e ∈ E and a minimal set D′ ∈ D at least one inequality of the
family (43) is violated. Since u∗ is optimal, each d′ ∈ D′ must use 0 or v(d′)
contiguous slots in e, but if any demand d′ does not use e, the sum of the slots
used by the others is lower than or equal to the right side of the inequality,
because v(d′) ≥ mind∈D′ v(d). Therefore all the demands in D′ use e, but due
to non-overlapping, each slot in e can be used by only one demand, and by
definition of D′ we would need more than s̄ slots.

If the constraints (2)-(7) hold, then the inequalities (42) do not imply (43).

Corollary 5.4. In our computational experiments, we separate the case |D′| = 2
both in (42) and (43), which attains a better performance obtaining the families
called non-over-capacity IX and non-over-capacity X, respectively.

The following families of inequalities are motivated by the fact that the slot
position used by one demand sometimes forces another demand not to be able
to use a particular set of slots because its volume does not fit there without
an overlap. This idea can be stated in many ways and generalized for a large
structure giving us several families of inequalities.

Definition 5.2. Let e′ ∈ E and E′ ⊂ E \ {e′}. The set of arcs PP = E′ ∪
{e′} is an incoming private path if and only if e′ ∈ P for every path P =
[e1, e2, ..., ek] ⊆ E that contains two arcs ei and ej, 1 ≤ i < j ≤ k, with ei ̸∈ PP
and ej ∈ PP .

Analogously, we can define a similar structure when the path goes the other
way, that is, from the inside of the private path to the outside.
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Definition 5.3. Let e′ ∈ E and E′ ⊂ E\{e′}. The set of arcs PP = E′∪{e′} is
an outgoing private path if and only if e′ ∈ P for every path P = [e1, e2, ..., ek] ⊆
E that contains two arcs ei and ej, 1 ≤ i < j ≤ k, with ei ∈ PP and ej ̸∈ PP .

In both cases of private paths we name the arc e′ as the master arc. When
every path that connects an arc not in PP with an arc in PP must go through
the master arc, we have an incoming private path, as shown in the example of
Figure 1. Analogously, if every path that connects an arc in PP with an arc
not in PP must use the master arc, then we have an outgoing private path.

a b

Figure 1: Example of private path. The black arcs form an incoming private path PP , because
every path that connects an arc not in PP with an arc in PP must use the master arc ab.

Definition 5.4. Given an incoming private path PP with ij as its master arc,
we call as D(PP ) to the set composed by every demand d ∈ D such that

• s(d) ̸= j, and

• if s(d) ∈ V (PP )\{i} then t(d) ∈ V (PP )\{i} and does not exist any path
with all its arcs in PP \ {ij} connecting s(d) with t(d).

We define the analogous when PP is an outgoing private path.

That is, for every path P that satisfies a demand d ∈ D(PP ), if P uses some
arc e ∈ PP , it must also use the arc ij.

Lemma 5.1. Given a private path PP with master arc ij, and a demand d ∈
D(PP ), if d cannot use a slot s in ij then it cannot use s in any arc e ∈ PP
without using a spurious cycle.

Proof. Without loss of generality, assume PP is an incoming private path. Sup-
pose there exists such a demand d ∈ D(PP ). If s(d) ̸∈ V (PP ), by definition
of PP there is no path P ⊆ E \ {e′} that uses first an arc e1 ̸∈ PP and then
an arc e2 ∈ PP , and if s(d) ∈ PP by definition of D(PP ), then t(d) ∈ V (PP )
and there is no path P ⊆ D(PP ) \ {e′} connecting s(d) with t(d). Therefore,
in both cases, if d uses an arc belonging to PP within a path P , e′ must also
belong to P and due to continuity if d uses the slot s in an arc belonging to P ,
d must use this slot all along the path P , in particular in the master arc e′.

Since each arc in the instances that we use has its reverse, they have few
private paths, so the following families were implemented by taking each arc of
the graph as a private path (i.e., PP = {e} for every e ∈ E, with e as its master
arc).
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Theorem 5.4. Let PP be a private path with e′ its master arc. The inequalities
non-over-position XI, namely,

ud1es1 +
∑
d′ ̸=d1

ud′e′s ≤ 1
∀d1 ∈ D(PP ), ∀s ∈ {2, . . . , v(d1)},
∀s1 ≤ max(s,mind′∈D\{d1}(v(d

′))),
(44)

are valid for every e ∈ PP for the model DSL-BF.

Proof. Suppose u′ is a feasible solution for an instance of RSA that violates (44).
That is, there exist a pair of slots s ̸= s1 ∈ S, a private path PP with master
arc e′, an arc e ∈ PP , and a demand d1 ∈ D(PP ) such that the left-hand side
of the inequality is greater than 1. Because of integrality and non-overlapping
constraints, at most one demand may use the slot s in the master arc e′. So
both terms of the left-hand side must be equal to 1. Since s ≤ v(d1), then d1
cannot use the slots 1, . . . , s in the master arc, due to the integrality, contiguity
and non-overlapping constraints. If s ≥ mind′∈D\{d1} v(d

′) then s1 ≤ s, and in if
s < mind′∈D\{d1} v(d

′), then d1 cannot use any slot in s, . . . ,mind′∈D\{d1} v(d
′)

in the master arc due to integrality, contiguity and non-overlapping constraints.
Therefore, due to Lemma 5.1 d1 cannot use s1 in any arc belonging to PP .

Corollary 5.5. Given a private path PP with master arc e′, the inequalities
non-over-position XII, namely,

ud1es1 + ud2e′s ≤ 1
∀e ∈ PP , ∀d2 ∈ D, ∀d1 ∈ D(PP ), d1 ̸= d2,

∀s ∈ {2, . . . , v(d1)}, ∀s1 ≤ max(s, v(d2)),
(45)

are satisfied by every point of the linear relaxation of the model DSL-BF that
satisfies the inequalities (44).

Corollary 5.6. The inequalities (45) are valid for the model DSL-BF.

Theorem 5.5. The inequalities non-over-position XIII, namely,

s1∑
s′=1

ud1es′ ≤ s2(1−
∑
d′ ̸=d1

ud′,e′,s)
∀e ∈ PP , ∀d1 ∈ D(PP ),

∀s ∈ {1, . . . , v(d1)},
(46)

taking s1 = max{s,mind′∈D\{d1}(v(d
′))} and s2 = min{v(d1), s1}, and being

PP a private path with master arc e′, are optimality cuts for the model DSL-
BF.

Proof. Suppose u∗ is an optimal solution that violates at least one of the in-
equalities (46), i.e., there exist a private path PP , a demand d1 ∈ D(PP ), an
arc e ∈ PP and a slot s ≤ v(d1) such that the left-hand side of the inequality
is strictly greater than the right-hand side. Due to the integrality and non-
overlapping constraints the sum α =

∑
d′ ̸=d1

u∗
d′,e′,s = {0, 1} but as s2 ≤ v(d1)

by definition and
∑

s′∈S u∗
d1,e,s′

= {0, v(d1)} by optimality of u∗, then α = 1
in order to violate the inequality. That means, due to integrality and non-
overlapping, that there exists a demand d2 ̸= d1 that uses the slot s on the
master arc e′, and as s ≤ v(d1) because of non-overlapping, integrality and con-
tiguity, d1 cannot use any slot lower than or equal to s in e′, and due to the
Lemma 5.1, in any arc e ∈ PP neither.
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Corollary 5.7. Since (46) implies non-over-position XIV, namely,

s1∑
s′=1

ud1es′ ≤ s2(1− ud2,e′,s)
s ∈ {1, . . . , v(d1)}, ∀e ∈ PP ,

∀d2 ∈ D, d1 ∈ D(PP ), d1 ̸= d2,
(47)

where PP is a private path and e′ its master arc, and s1 = max{s, v(d2)}
and s2 = min{v(d1), s1}, then these inequalities are also optimality cuts for the
model DSL-BF.

Definition 5.5. Let PP be a private path and s ∈ S, then D≥
s = {d ∈ D(PP ) :

v(d) ≥ s} is defined to be the set of demands with volumes greater than or equal
to s, and D< = D\D≥ is defined to be the remaining demands.

Theorem 5.6. Let PP be a private path with e′ its master arc, then the vari-
ation of the inequalities (45), namely,∑

d′∈D
≥
s2

ud′es1 +
∑

d′∈D<
s2

ud′e′s2 ≤ 1
∀e ∈ PP , s1 ∈ {1, . . . , s2 − 1},
s2 ∈ {2, . . . ,maxd∈D(PP ) v(d)},

(48)

called as non-over-position XV are valid inequalities for the model DSL-BF.

Proof. Suppose that it is possible to find a feasible solution u′ violating at least
one inequality (48) when taking a private path PP with a master arc e′, a
slot s2 ∈ {2, . . . ,maxd∈D(PP ) v(d)} and a slot s1 < s2. Because of the non-
overlapping and integrality constraints each sum of the left-hand side of the
inequality must equal 0 or 1, so to violate the equality both must equal 1, so
there exists a demand d2 ∈ D<

s2 that uses the slot s2 in the master arc e′, and
another demand d1 ∈ D≥

s2 ⊆ D(PP ) which uses a slot s1 < s2 ≤ v(d1) in any
arc e ∈ PP . Since d1 uses slot s1 and v(d1) ≥ s2, then d1 must also use s2: a
contradiction since u′ is valid.

If we sum up inequalities (48) for every s1 ∈ {1, . . . , s2} we obtain the
following family of optimality cuts.

Corollary 5.8. The inequalities non-over-position XVI, namely∑
d′∈D

≥
s

s∑
s′=1

ud′es′ ≤ s (1−
∑

d′∈D<
s

ud′e′s) ∀s ≤ maxd∈D(PP ) v(d), (49)

with PP being a private path and e′ its master arc, are optimality cuts for every
e ∈ PP for the model DSL-BF.

Corollary 5.9. Due to Theorem (2.1) we can formulate the symmetrical for
the inequalities (45)-(49), which are also valid for the model DSL-BF.

Theorem 5.7. Given a private path PP with master arc e′, a demand d2 ∈
D(PP ), and three slots s1, s2, s3 ∈ S such that s1 < s2 < s3, and s3−s1 ≤ v(d2),
then the family of inequalities∑

d′ ̸=d2

ud′,e′,s1 + ud2es2 +
∑
d′ ̸=d2

ud′,e′,s3 ≤ 2 ∀e ∈ PP , (50)

called as non-over-position XVII, are optimality cuts for the model DSL-BF.
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Proof. Given an instance of the RSA, assume it is possible to find an optimal
solution u∗ that violates any of the inequalities (50). This implies that for some
private path PP with master arc e′, slots s1 < s2 < s3, demand d2 and arc
e, the left-hand side of the inequality is greater than 2. Because of integrality
and non-overlapping constraints each term of the left-hand side must equal 1
in order to violate the inequality, and u∗

d2,e′s1
= u∗

d2,e′s3
= 0. But, since the

amount of slots between s1 and s3 is strictly less than the volume of d2, then
e ̸= e′, and because of Lemma 5.1, u∗

d2,es2
= 0 for every e ∈ PP .

Corollary 5.10. Let PP be a private path and e′ its master arc. Let d1, d3 ∈ D,
d2 ∈ D(PP ), and s1, s2, s3 ∈ S be three different demands and slots such that
s3 − s1 ≤ v(d2) and s1 < s2 < s3. Then, the inequalitites

ud1,e′,s1 + ud2es2 + ud3,e′,s3 ≤ 2 ∀e ∈ PP , (51)

are satisfied by every point of the linear relaxation of the model DSL-BF that
satisfies the inequalities (50).

Corollary 5.11. The inequalities (51) are optimality cuts for the model DSL-
BF.

Corollary 5.12. The previous family can be expressed by taking M = s3−s1−1
and 2 ≤ s3 − s1 ≤ v(d2) in the inequalities non-over-position XVIII, i.e.,

s3−1∑
s′=s1+1

ud2es′ ≤ M(2−
∑
d′ ̸=d2

ud′,e′,s1 −
∑
d′ ̸=d2

ud′,e′,s3) ∀e ∈ PP , (52)

that are also valid for the model DSL-BF.

Corollary 5.13. The inequalities generated this way are called non-over-low
XIX and non-over-low XX when simplifying (45) and (44), respectively. The
optimality cut (47) for this kind of private path is called non-over-low XXI
when s1 = s2 = s, and non-over-low XXII when s1 = max{s, v(d2)} and s2 =
min{v(d1), s1}. Family (46) results in non-over-low XXIII while (48) results in
the family non-over-low XXIV. Finally the inequalities (51)-(52) generate the
families called non-over-between XXV, non-over-between XXVI, and non-over-
between XXVII, respectively.

Since the results of the experiments showed that no cut was added using non-
over-low XXIV, we did not implement the reduced version of the inequalities
(49).

Corollary 5.14. The symmetrical families of non-over-low XIX, . . . , non-
over-low XXIV applied on the higher slots are called non-over-high XXVIII,
. . . , non-over-high XXXIV.

Theorem 5.8. The family non-over-central-high XXXV, given by the inequal-
ities∑

s′∈Y

udes′ ≥ |Y |
( ∑

d′∈D\{d}

ud′es2 + udes1 − 1
)

∀d ∈ D, ∀e ∈ E, (53)
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where s2 ∈ {v(d) + 1, . . . , 2v(d)}, s1 < s2, and Y = {s2 − v(d), . . . , v(d)}, are
valid for the model DSL-BF.

Proof. Suppose we have an instance of the RSA and assume there is a feasible
solution u′ such that it does not satisfy at least one of the inequalities (53).
Formally, there exist d ∈ D, e ∈ E, s1 < s2 ∈ S with s2 ∈ {v(d) + 1, . . . , 2v(d)}
such that the right-hand side of the inequality is strictly greater than the left-
hand side. Due to non-overlapping and integrality constraints we have that the
left-hand side is less than or equal to |Y |, and both

∑
d′∈D\{d} ud′es2 and udes1

must equal 1, and thus udes2 = 0. To get the left-hand side strictly less than
|Y |, d should not to use at least one slot s ∈ Y , because of integrality. Since
d uses slot s1, d must use v(d) slots at the left or at the right of s because of
contiguity, but from the slot 1 to the highest slot of Y and also from the first
slot of Y to s2 − 1 < 2v(d) there are exactly v(d) slots, so there is no enough
free slots on either side of s.

Corollary 5.15. The family non-over-central-low XXXVI symmetrical to non-
over-central-high XXXV is valid for the model DSL-BF.

Theorem 5.9. The inequalities called non-over-central XXXVII, given by∑
s′∈Y

udes′ ≥ |Y |
( ∑

d′∈D\{d}

ud′es1 +
∑

d′∈D\{d}

ud′es3 + udes2 − 2
)
, (54)

where s1 ∈ {1, . . . , s̄−2v(d)}, s3 ∈ {s1+v(d)+1, . . . , s1+2v(d)}, s1 < s2 < s3,
and Y = {s3 − v(d), . . . , s1 + v(d)}, are valid for every d ∈ D and e ∈ E for the
model DSL-BF.

Proof. Analogous to the proof of Theorem 5.8.

6. Branch-and-cut algorithm

We have implemented a branch-and-cut procedure for RSA in order to eval-
uate the contribution of the families of valid inequalities, valid equations, and
optimality cuts within a cutting plane environment. Each family is sepa-
rated with an ad hoc separation procedure. The running time of these proce-
dures is polynomial in almost all cases, being O((|D|k|E|s̄r) with k, r ≤ 3 the
worst one. Procedures for the families flow-dbrooms XVI, flow-dbrooms XVII,
flow-cycles XVIII ∗, flow-cycles XIX ∗, flow-cycles XX ∗, flow-cycles XXI ∗, non-
over-capacity VII ∗, non-over-capacity VII ∗, non-over-capacity IX ∗, non-over-
capacity X ∗, and non-over-low XXIV that involve complicated structures in
the graph G, pre-compute the structures; and those families marked with an
asterisk where the number of these structures is exponential, we pre-compute a
large set of such structures and take a random sub-set each time.

Since almost every family of inequalities is polynomial, most of the im-
plemented algorithms perform exhaustive searches. The e-companion to this
manuscript (Online Resource 1) contains some details regarding the implemen-
tations of these algorithms with a few improvements and their complexities.
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We define a parameter ϵ for each separation procedure in such a way that
a violated inequality is added as a cut if the absolute value of the difference
between the left-hand side and the right-hand side is at least ϵ. The higher the
value of this parameter, the fewer cuts added. This parameter is calibrated for
each family and fixed at its best value for the final experiments. We evaluated
different strategies for managing the separation procedures. In some of them, we
employ an effectiveness coefficient φ, for each procedure, defined as the number
of generated cuts divided by the number of calls to the procedure. When ϵ
is calibrated, φ gives us a way to compare the behavior of the families. The
different strategies implemented are the following:

• Brute Force [BRF]: Execute all separation procedures.

• Random [RND]: Shuffle the list of procedures and iterate through it until
at least one cut from h different families is found, or until the end of the
list is reached.

• Most Effective [EFF]: Sort the list of procedures by their effectiveness
coefficient, and iterate through this list as in the Random strategy.

• Most Effective With Random [EFFR]: Iterate over the sorted list of pro-
cedures as in Most Effective, but randomly call one of the non-called pro-
cedures with a predefined probability.

• Weighted Selection [WTD]: Iterate over the sorted list of procedures, and
execute each procedure with probability calculated as a function of its
effectiveness coefficient.

The function used in strategy WTD is such that the resulting probabilities
are guaranteed to be always greater than 0.05. The strategies EFF, and EFFR
also contemplate the variation of pre-sorting the list of procedures according to
the results of previous experiments, while the other strategies start with a ran-
dom order. With the aim of forcing all the separation procedures to run at least
once, the initial value for the coefficient φ is infinite for every procedure in all the
strategies that use it. Since this coefficient φ –different for each family– depends
on the cumulative number of generated cuts by procedure and the number of
calls to each one of them, it is updated on every iteration resulting in higher
value for those procedures that generate a greater amount of cuts per iteration.
All the strategies, except BRF, have a parameter h that indicates the amount
of families to take cuts from. To keep the list of procedures updated, before
returning from the callback, the algorithm iterates over those which were called
and re-positions them. This process runs in time O(CT ) being C and T the
amount of called procedures and the total amount of them, respectively, which
is negligible compared to the time required by the execution of the separation
procedures.
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7. Computational results

We now present our computational experiments. The implementation was
performed within the Cplex 12.10 environment, and the experiments were car-
ried out on a computer with an Intel(R) Xeon(TM) 2.80GHz CPU with 4 GB of
RAM memory. For the codification Java SE 17.0 was utilized. Except for some
experiments –that we explicitly mention– both for the branch-and-cut and for
the branch-and-bound we turned off all Cplex primal heuristics, pre-solving and
parallelization features.

The instance benchmark was generated using a script based on the liter-
ature, which is available at [47]. For the main set of 100 instances, nineteen
real topologies were used, with |V | ∈ {6, . . . , 43} and |E| ∈ {9, . . . , 176}. The
number s̄ of available slots depends on the instance, and it ranges from 5 to
200 in the smallest one and up to 150 in the others. The up to 236 demands
are randomly generated with uniform distribution, with volumes ranging from
1 to 124 slots each. We separated a sub-set of 22 instances for the preliminary
experiments, using 11 topologies, with up to 100 slots per arc, and 51 demands.

To compare the results we define a coefficient τ for each run as follows. Let
t be the running time in minutes, let g ∈ [0, 1] be the optimality gap, and let
p = t/4 be a penalty term. The coefficient τ is defined by

τ =


t if the instance is solved within the time limit,

t+ p+ g p if the instance is not solved within the time limit but
a feasible solution is found,

t+ 2p if no feasible solution is found within the time limit.

In this way, we penalize the lack of certainty when the time limit is reached,
with a stronger penalty if no feasible solution was found. The lower the value of
τ , the better the result. For the following sections, each experiment is executed
at least twice (three times for the parameter calibration) and the best result is
selected. The total coefficient τ of multiple runs is calculated as the sum of the
best coefficient for each particular run.

7.1. Selecting the most effective families

In order to calibrate the parameter ϵ for each procedure, we selected the
sub-set of 22 instances. The execution time was limited to 4 minutes. For each
family f we experimented with ϵ ∈ {0, 0.1, . . . ,Mf}, with Mf a different value
for each family f , so that almost no cuts are added (typically Mf = 4). For
each such value of ϵ we calculated the coefficient τ for the best result of each
instance.
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Family \ Coeff. ϵ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

contiguity I 6.99 9.38 13.14 8.98 15.27 18.27 23.59 36.45 30.75 31.36
contiguity II 9.58 8.25 15.62 18.39 15.97 17.01 15.67 20.54 22.37 22.32

contiguity-symmetrical XIV 20.11 21.20 18.00 17.80 18.07 24.63 23.47 20.51 20.90 22.87
flow-branches XI 27.90 28.04 24.21 26.57 31.08 25.60 24.44 31.02 19.59 29.49

contiguity-distance XIII 26.43 25.87 29.05 23.15 23.61 23.98 29.95 27.14 31.22 23.81
contiguity V 24.17 25.04 24.21 24.66 26.53 25.83 23.28 23.91 23.82 23.56
contiguity IV 25.34 25.00 24.77 23.78 25.77 24.24 25.06 27.05 23.56 25.09
contiguity III 25.57 34.98 26.61 23.86 31.36 30.97 25.62 37.81 39.13 23.90

flow-volume VII 26.00 27.65 49.47 73.94 53.16 26.74 45.48 27.05 28.45 31.34
flow-branches X 29.41 32.05 37.49 26.90 38.96 29.21 31.93 30.17 30.55 30.48
contiguity VI 38.43 32.15 27.62 36.98 33.86 35.53 27.35 29.66 35.32 46.84
flow-volume VI 36.56 36.45 36.23 37.37 37.33 37.57 43.42 33.28 39.17 36.99

non-over-low XXII 43.30 38.16 42.61 38.39 43.13 36.54 37.41 32.68 31.03 32.62
contiguity-position XII 34.33 35.94 34.51 36.85 35.69 35.51 36.70 36.56 33.00 29.31
contiguity-ASCC XV 38.47 33.86 37.00 34.21 29.45 38.74 38.14 39.20 41.94 43.25
flow-dbrooms XVII 43.56 32.18 35.29 35.41 35.78 35.86 36.23 36.58 38.71 40.89

non-over-high XXVIII 34.10 34.84 31.69 32.06 31.30 37.78 47.21 44.11 41.54 41.25
flow-dbrooms XVI 35.74 33.50 32.59 32.58 32.45 32.72 39.11 31.68 31.51 31.59

contiguity-position XI 41.77 37.62 43.94 35.05 46.03 36.71 45.11 44.24 43.91 37.38
non-over-central XXXVII 39.71 46.10 41.02 46.17 44.18 43.62 41.86 41.47 32.17 41.08

flow-cycles XXIII 33.60 33.92 35.10 35.85 36.06 39.23 34.32 34.95 35.18 37.75
non-over-low XXI 34.20 35.61 33.04 37.69 38.98 39.28 43.18 45.69 44.91 45.88
flow-used-arcs XV 34.34 33.17 36.91 36.22 40.56 38.07 39.84 37.68 33.61 37.13
non-over-high XXVI 38.54 33.70 43.32 36.77 46.67 37.49 44.39 40.47 48.80 47.36

non-over-central-high XXXVI 49.11 41.51 40.20 40.78 44.90 44.01 45.76 45.28 34.85 42.53
flow-used-arcs XIV 43.70 40.07 38.11 36.13 34.66 38.04 36.98 35.94 40.87 34.52

non-over-between XXVII 38.65 35.27 40.80 40.93 42.39 40.36 40.37 39.93 39.57 39.70
flow-cycles XXIV 36.78 36.39 35.28 40.71 39.05 43.94 44.35 41.04 40.79 43.99

flow II 46.50 36.54 36.15 41.15 42.48 43.31 42.86 41.68 42.61 40.94
non-over-low XXIII 42.83 41.69 37.30 35.51 43.22 41.71 39.43 36.74 36.45 36.35

non-over-central-low XXXV 40.90 46.92 41.65 36.17 44.88 41.58 46.13 42.97 38.97 43.54
non-over VI 36.06 39.18 43.62 41.07 42.33 42.10 44.89 39.17 40.37 45.06

non-over-high XXIX 36.36 41.09 39.05 38.59 38.61 36.10 40.82 44.37 43.44 43.34
flow V 42.52 42.62 36.78 41.47 40.32 41.74 42.01 41.79 44.09 43.27

non-over-low XX 37.88 40.69 44.85 40.43 37.00 37.13 41.78 37.10 43.18 42.98
non-over-between XXVI 42.17 41.03 46.44 37.56 38.96 46.87 48.27 43.46 42.09 42.83

flow IV 42.60 43.02 38.06 39.31 41.36 40.85 43.97 44.16 44.25 41.17
non-over I 38.23 47.89 39.29 44.88 41.48 39.88 40.99 39.08 40.12 38.48

flow I 42.85 43.71 43.68 43.69 38.47 38.25 38.23 38.57 40.94 40.97
non-over-high XXVII 39.90 41.07 41.55 41.15 38.32 38.27 40.54 45.65 44.70 44.99

non-over V 46.47 48.16 40.35 44.42 42.78 38.51 39.59 46.79 42.66 39.06
flow III 40.93 44.09 42.95 46.60 50.08 46.64 46.50 40.31 40.34 42.08

flow-cycles XXII 41.06 41.81 41.72 41.40 41.03 44.00 43.97 44.00 40.83 40.80
non-over-high XXV 51.09 48.11 49.03 48.34 58.36 50.15 46.46 42.18 51.03 62.02
contiguity-central X 47.50 47.50 48.58 48.54 48.55 48.85 45.67 48.82 42.51 42.21
non-over-capacity IX 44.28 43.61 42.60 42.61 42.65 42.67 42.62 42.63 42.63 42.67
non-over-capacity X 48.06 49.45 46.42 49.46 49.43 49.45 43.28 43.31 43.34 43.29
flow-cycles XVIII 51.67 51.56 48.05 50.28 44.30 47.28 52.45 46.15 47.20 49.25

non-over IV 43.73 52.38 58.02 57.26 47.49 50.19 50.21 47.92 52.61 52.60
contiguity-central VIII 44.38 47.49 48.54 48.50 48.49 48.51 48.51 48.51 48.53 47.93

Table 1: Performance coefficient τ for some of the best-performing separation procedures.

To measure the performance of each family according to each ϵ selected
we report the sum of the coefficients τ over all the instances, resulting in one
coefficient for each combination. Table 1 shows some of these results for some of
the best-performing families. It is interesting to note that the best results were
obtained with small values of ϵ, suggesting that these cuts are indeed effective.
We can observe a direct relation between the amount of cuts added by the
algorithm and the effectiveness coefficient, and also the inverse relation between
these and the coefficient τ . These results support the choice of this coefficient
of effectiveness as a parameter to measure the effectiveness of a family of cuts.
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Figure 2: Comparison of the box-plots of the τ variation for each family of cuts according
to the value of ϵ. These values are also compared against the branch-and-bound and the full
branch-and-cut implementations of Cplex. The figure also shows the best τ we could obtain
for each family when selecting the best performing ϵ for each instance.

Table 2 shows additional results of some of the best-performing families, re-
porting for the best and the worst combination of ϵ, the total coefficient τ , the
normalized number of generated cuts, and the normalized effectiveness coeffi-
cient φ, which, for each procedure f and ϵ′, is obtained as 100 mϵ′−l

h−l , being h
and l the highest and lowest values obtained in all the executions relative to f ,
and mϵ′ the value obtained when ϵ = ϵ′. These normalized values are 34.06 and
33.67 for the amount of cuts and φ, respectively, in average for all the families
when the best ϵ are selected, while they are 17.61 and 19.57, respectively, for
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Best combination Worst combination
Family name ϵ τ % Cuts % φ |Cuts| ϵ τ % Cuts % φ

contiguity I 0.00 6.99 100.00 100.00 18253 4.00 44.84 0.00 0.00
contiguity II 0.10 8.25 70.21 71.16 14206 1.50 47.53 4.83 0.66
contiguity-symmetrical XIV 0.30 17.80 8.56 26.79 4427 1.90 34.29 3.27 5.18
flow-branches XI 0.80 19.59 0.96 0.82 4903 1.30 31.60 0.67 0.34
contiguity-distance XIII 0.30 23.15 36.31 55.53 52665 1.40 47.36 1.58 4.09
contiguity V 0.60 23.28 14.83 14.07 858 1.50 45.20 0.86 0.21
contiguity VI 0.80 23.56 7.78 7.34 608 4.00 44.77 0.00 0.00
contiguity III 0.30 23.86 15.96 17.82 3082 1.90 51.06 0.54 0.10
flow-volume VII 0.00 26.00 100.00 100.00 2193 0.30 73.94 0.28 1.86
flow-branches XIII 1.40 26.87 0.54 0.17 4328 4.00 38.59 0.00 0.00
flow-branches X 0.30 26.90 1.09 1.02 5820 0.40 38.96 0.91 1.27
contiguity VI 0.60 27.35 8.56 12.81 138 0.90 46.84 5.46 6.43
flow-volume VI 1.60 28.52 1.28 0.85 83 0.60 43.42 2.00 1.53
non-over-low XXII 1.10 28.56 2.41 14.42 256 4.00 46.75 0.00 0.00

Table 2: Total coefficient τ , normalized number of generated cuts and normalized coefficient
φ, for the best and worst performing ϵ. The table also shows the total amount of cuts for the
best performing ϵ.

the worst ϵ. The table also shows the total amount of cuts added for the best
performing ϵ.

We observed that the addition of almost every single separation procedure,
with a proper parameter tuning, outperforms the simple branch-and-bound pro-
cedure, which attains a sum of the performance coefficient of 44.598. This also
holds for many poorly-calibrated values of ϵ. Figure 2 shows a comparison of the
complete list of families against the generic branch-and-bound of Cplex and the
FullCplex, i.e., the solver with generic cuts, the heuristics, pre-solve, re-start,
and parallelization. Note that the coefficients obtained with our best separation
procedures, although for ϵ very well calibrated, are comparable with the best
configuration of Cplex, which attains a sum of the coefficients τ of 5.584.

7.2. Comparison of selection strategies

We now report our experiments in order to evaluate the performance of the
different selection strategies proposed in Section 6. In order to calibrate the
parameter h, which limits the amount of different procedures to add cuts from,
we used the same subgroup of 22 instances from the previous sub-section. We
experimented with h ∈ [5, 10, 15, 20, 25, 30]. For each strategy and value of h,
we considered the sum of the performance coefficient τ over all instances as
a proxy for the overall performance. We also contemplate presorting or not
the separation procedures according to previous experiments. The results are
summarized in Table 3.

Once the best value of h for each strategy was found, we experimented
with the 100 instances with a time limit of 15 minutes. Our cuts were added
to the generic branch-and-bound implemented by Cplex without pre-solve and
primal heuristics. Therefore, the comparison is against this configuration, to
show that our cuts are effective, and against the Cplex branch-and-cut to prove
that they are better than the generic ones. Table 4 reports the total coefficient
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Strategy \ h 5 10 15 20 25 30

MOST EFFECTIVE 5.60 4.58 4.43 4.93 4.69 4.72
MOST EFFECTIVE Pre-sorted 3.78 4.46 4.99 5.10 4.59 5.51
MOST EFFECTIVE RND 5.36 4.32 4.59 5.23 4.79 6.97
MOST EFFECTIVE RND Pre-sorted 4.35 4.62 4.58 5.03 5.47 4.38
RANDOM 6.24 5.59 5.99 4.56 4.88 4.86
WEIGHTED 5.54 5.42 4.63 5.26 5.51 5.12
WEIGHTED Pre-sorted 5.66 6.06 5.49 5.21 5.19 5.23

Table 3: Performance of the selection strategies for different values for h over the set of 22
instances.

Strategy τ Optimal Feasible Unknown Memory

Most Eff. with Rnd. 10 sorted 1121.56 73 0 27 4
Most Effective 5 sorted 1237.84 68 1 31 4
Most Eff. with Rnd. 5 sorted 1273.96 68 0 32 4
Most Effective 10 sorted 1316.44 64 1 35 4
Random 20 1350.32 64 0 36 3
Weighted 15 1385.75 63 0 37 4
Weighted 25 1393.53 63 0 37 4
Brute Force 1577.47 55 0 45 4
CplexBC 1858.67 40 10 50 4
CplexBB 2264.61 29 5 66 4

Table 4: Performance of some of the best selection strategies for the set of 100 instances with
a time limit of 15 minutes.

τ , the number of instances solved to optimality, the number of instances with
feasible but not known as optimal solution, and the number of them where no
feasible solution was found, discriminating those with memory problems. All
these strategies outperform the two procedures implemented by Cplex. For the
solved instances we improved all solution times with every strategy, whereas the
best strategy was able to solve with optimality almost a third more instances
than the branch-and-cut implementation of Cplex and almost twice as many as
its branch-and-bound. For three of the four instances with memory problems we
could not even build the model, therefore, it is necessary to use some pre-solver
to handle them within a branch-and-bound or a branch-and-cut environment.

Except for one instance, the Cplex strategies were the only ones that re-
turned non-optimal feasible solutions. Of those 14 instances, our worst strategy
solved seven instances with optimality, while the best two solved 13 instances.
There are only 27 instances that all the algorithms could solve with optimality
within the time limit, and 39 solved by all algorithms except the branch-and-
bound implementation of Cplex. For these instances, our best strategies proved
optimality in half of the time needed by the branch-and-cut implementation of
Cplex. Figure 3 summarizes these results.

29



0 10 20 30 40
CplexBC

Brute Force
Most Effective 5 sorted

Weighted 25
Random 20

Most Eff. with Rnd. 5 sorted
Weighted 15

Most Effective 10 sorted
Most Eff. with Rnd. 10 sorted Total Time [mins]

Figure 3: Comparison of the times needed to prove optimality for the 39 instances that all
the strategies except the branch-and-bound could solve within a time limit of 15 minutes.

8. Conclusion

In the present work we explored several families of valid inequalities and
equalities, and optimality cuts for the DSL-BF formulation. Since even char-
acterizing the dimension of the polytope RSA(G,D, s̄) is not straightforward,
providing facetness results for the valid inequalities seems to be a challenging
task. Instead, we showed that –together with the model constraints– the in-
equalities from some of these families do not imply each other. Meanwhile we
moved forward with the experimentation in order to empirically determine their
effectiveness. To that end, we implemented a branch-and-cut algorithm using
these inequalities as cutting planes, but since there are more than 60 fami-
lies, we proposed several filter and selection strategies in order to add only a
few of them that improve the performance of the algorithm. Finally, we have
presented the various experiments carried out in order to calibrate the differ-
ent parameters of both the separation procedures and the selection strategies.
These results suggest that the cuts are in fact effective, generally obtaining bet-
ter results when the algorithm uses more of them. Likewise, the results seem to
show that the vast majority of the families presented are, each one separately,
sufficiently effective, not only to allow the branch-and-cut proposed to solve in
less time and with better results the total of the instances tested compared to
a generic branch-and-bound, but also to compete on these metrics against a
branch-and-cut with generic cuts. The results of the comparison between the
different strategies suggest that the proposed branch-and-cut has better perfor-
mance than the generic branch-and-cut implemented by Cplex.

References

[1] B. C. Chatterjee, N. Sarma, E. Oki, Routing and spectrum allocation
in elastic optical networks: A tutorial, IEEE Communications Surveys
Tutorials 17 (2015) 1776–1800.

30



[2] K. Christodoulopoulos, I. Tomkos, E. A. Varvarigos, Elastic bandwidth
allocation in flexible ofdm-based optical networks, IEEE Journal of Light-
wave Technology 29 (2011) 1354–1366.

[3] M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, A. Hi-
rano, Distance-adaptive spectrum resource allocation in spectrum-sliced
elastic optical path network [topics in optical communications], IEEE Com-
munications Magazine 48 (2010) 138–145.

[4] A. Cai, G. Shen, L. Peng, M. Zukerman, Novel node-arc model and mul-
tiiteration heuristics for static routing and spectrum assignment in elastic
optical networks, Journal of Lightwave Technology 31 (2013) 3402–3413.

[5] R. Colares, H. Kerivin, A. Wagler, An extended formulation for the Con-
straint Routing and Spectrum Assignment Problem in Elastic Optical Net-
works *, 2021. URL: https://hal.uca.fr/hal-03156189, working paper
or preprint.

[6] H. Xuan, L. Lin, L. Qiao, Y. Zhou, Grey wolf algorithm and multi-objective
model for the manycast rsa problem in eons, Information 10 (2019).

[7] H. Xuan, Y. Wang, Z. Xu, S. Hao, X. Wang, New optimization model for
routing and spectrum assignment with nodes insecurity, Optics Communi-
cations 389 (2017) 42–50.

[8] M. Klinkowski, D. Careglio, A routing and spectrum assignment problem
in optical ofdm networks, 1st European Teletraffic Seminar (ETS) (2011).

[9] M. Klinkowski, K. Walkowiak, Routing and spectrum assignment in spec-
trum sliced elastic optical path network, IEEE Communications Letters 15
(2011) 884–886.

[10] L. Li, H. Li, Performance analysis of novel routing and spectrum allocation
algorithm in elastic optical networks, Optik 212 (2020) 164688.

[11] A. Paul, An optimal and a heuristic approach to solve the route and spec-
trum allocation problem in OFDM networks, Master’s thesis, School of
Computer Science, University of Windsor, Windsor, ON, Canada, 2014.

[12] L. Velasco, M. Klinkowski, M. Ruiz, J. Comellas, Modeling the routing
and spectrum allocation problem for flexgrid optical networks, Photonic
Network Communications 24 (2012) 177–186.

[13] S. Shirazipourazad, C. Zhou, D. Z., A. Sen, On routing and spectrum allo-
cation in spectrum-sliced optical networks, Proceedings IEEE INFOCOM
(2013) 385–389.

[14] L. Velasco, A. Castro, M. Ruiz, G. Junyent, Solving routing and spectrum
allocation related optimization problems: From off-line to in-operation flex-
grid network planning, Journal of Lightwave Technology 32 (2014) 2780–
2795.

31
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[28] M. Klinkowski, M. Pióro, M. Żotkiewicz, M. Ruiz, L. Velasco, Valid in-
equalities for the routing and spectrum allocation problem in elastic optical
networks, in: 2014 16th International Conference on Transparent Optical
Networks (ICTON), 2014, pp. 1–5.
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A. Morea, On the complexity of routing and spectrum assignment in
flexible-grid ring networks [invited], Journal of Optical Communications
and Networking 7 (2015).

[36] E. A. Varvarigos, K. Christodoulopoulos, Algorithmic aspects in planning
fixed and flexible optical networks with emphasis on linear optimization and
heuristic techniques, Journal of lightwave technology 32 (2014) 681–693.

33



[37] K. Walkowiak, P. Lechowicz, M. Klinkowski, A. Sen, Ilp modeling of flex-
grid sdm optical networks, in: 2016 17th International Telecommunications
Network Strategy and Planning Symposium (Networks), 2016, pp. 121–126.

[38] Y. Wang, X. Cao, Q. Hu, Routing and spectrum allocation in spectrum-
sliced elastic optical path networks, in: 2011 IEEE International Conference
on Communications (ICC), 2011, pp. 1–5.
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