
Autoría ditelliana: Marenco, Javier
Fecha de publicación: 2023
Publicado como artículo en: Discrete Applied Mathematics, 341,
180–195 //ISSN-e: 1872-6771

¿Cómo citar este artículo?
Marenco, J. (2023).An integer programming approach for the
hyper-rectangular clustering problem with axis-parallel clusters and
outliers. Preprint. Repositorio Digital Universidad Torcuato Di Tella.
https://repositorio.utdt.edu/handle/20.500.13098/12149

Típo de documento: Preprint

An integer programming approach for
the hyper-rectangular
clustering problem with axis-parallel
clusters and outliers

El presente documento se encuentra alojado en el Repositorio
Digital de la Universidad Torcuato Di Tella bajo una licencia Atribución-
NoComercial-CompartirIgual 4.0 Internacional CC BY-NC-SA 4.0
Dirección: https://repositorio.utdt.edu

Biblioteca Di Tella

An integer programming approach for the hyper-rectangular

clustering problem with axis-parallel clusters and outliers

Javier Marenco

Business School, Universidad Torcuato Di Tella, Argentina
javier.marenco@utdt.edu

April 20, 2023

Abstract

We present a mixed integer programming formulation for the problem of clustering
a set of points in Rd with axis-parallel clusters, while allowing to discard a pre-specified
number of points, thus declared to be outliers. We identify a family of valid inequalities
separable in polynomial time, we prove that some inequalities from this family induce
facets of the associated polytope, and we show that the dynamic addition of cuts coming
from this family is effective in practice.
Keywords: clustering, integer programming, facets, cutting planes

1 Introduction

Given a nonempty set X = {x1, . . . , xn} of n points in Rd and an integer p ≥ 1, the hyper-
rectangular clustering problem with axis-parallel clusters consists in determining the p “small-
est” axis-parallel hyper-rectangles Rd such that each point in X is included in at least one
such hyper-rectangle. If we also specify a number q ≥ 0 of possible outliers, then up to q
points may be discarded and not be included in any hyper-rectangle.

Alternatively, we may consider a feasible solution to be a partition of a subset X ′ ⊆ X
of points with cardinality |X ′| ≥ n − q into subsets C1, . . . , Cp ⊆ X ′, in such a way that
X ′ = C1∪· · ·∪Cp and Ci∩Cj = ∅ for i, j ∈ {1, . . . , p}, i ̸= j. Such a partition C = {C1, . . . , Cp}
is called a clustering in this context. The rectangular hulls of C1, . . . , Cp, namely the smallest
inclusion-wise axis-parallel hyper-rectangles containing each cluster, are the rectangles to be
determined as the solution to this problem.

Figure 1(a) depicts a sample instance in R2 (i.e., d = 2) with n = 50 points, whereas
Figure 1(b) shows the optimal solution (with respect to the objective function to be presented
later) for this instance when we are required to identify p = 4 clusters while being allowed to
discard up to q = 3 points as outliers. The rectangles enclose the four clusters, and the three
points not included in any rectangle are the points identified as outliers.

Hyper-rectangular clustering has been proposed as a model for explainable clustering, since
it is straightforward to describe the obtained clusters by the bounds defining each hyper-
rectangle. Indeed, if each coordinate corresponds to a relevant parameter in the application
generating the given points, then clusters are specified by a lower and an upper bound on each
parameter, and this is easier to communicate than a distance-based clustering. For example,

1

Figure 1: (a) Sample instance with dimension d = 2 and n = 50 points, and (b) optimal
solution for this instance, with p = 4 clusters and q = 3 outliers.

in [3], axis-parallel hyper-rectangles are used to cluster points obtained by energy simulations,
and such hyper-rectangles neatly describe the governing rules for each cluster in terms of the
application parameters. In the particular application considered in [3], each hyper-rectangle
describes a design strategy that, due to the rectangular shape of the clusters, can be easily
communicated to the user.

In [7] an exhaustive analysis of rectangle-based clustering methods is performed, and
heuristics are presented in order to find such clusterings in particular cases. In this work we
tackle the case q > 0, namely the clustering may discard up to a pre-specified number q of
points, which are thus declared to be outliers. To the best of the author’s knowledge, the
identification of outliers within axis-parallel hyper-rectangular clustering was first proposed
in [10], by presenting a fast heuristic algorithm capable of discovering high-density regions
(clusters) and low-density regions (outliers, negative clusters, holes, empty regions) at the
same time. Outliers in the context of hyper-rectangular clustering have also been considered
in [8] in the context of video processing.

It is out of the scope of this paper to discuss the merits of axis-parallel hyper-rectangular
clustering models. Instead, we are interested in assessing how far standard mixed integer pro-
gramming techniques can go at solving this kind of problems with optimality. The application
of integer programming techniques to clustering and classification problems has been subject
to great interest from the optimization community in recent years (see, e.g., [1, 2, 5, 12]
and the recent survey [6]), and this work continues this line of research. To the best of the
author’s knowledge, the first integer programming approach for hyper-rectangular clustering
was proposed in [11], where an integer programming formulation for the case q = 0 (i.e., all
points must be clustered) is presented and is applied to image capturing. Integer program-
ming concepts also appear in [9], where an integer-programming-based procedure is presented
for identifying two hyper-rectangular clusters.

In this work we consider the total cluster span as the objective to be minimized. The span
of a cluster C ⊆ X over the coordinate t is spant(C) = max{xt : x ∈ C} −min{xt : x ∈ C}
if C ̸= ∅ and spant(C) = 0 otherwise, and the total span of C is span(C) =

∑d
t=1 spant(C).

The total span of a clustering is the sum of the total spans of its constituent clusters. Such
a linear objective function is not usual in clustering environments, but allows us to propose

2

a clean integer programming approach, while at the same time providing a good clustering
criterion. Indeed, although minimizing the total span can cause artifacts in the clustering, our
experience shows that this situation is rare and that this objective function provides results
that are visually consistent with the expectations for a reasonable clustering.

This work is organized as follows. Section 2 explores the computational complexity of this
problem, showing that it is NP-hard in general. Section 3 presents a natural mixed integer
programming formulation for the problem considered in this work. Section 4 explores a large
family of valid inequalities, providing partial facetness results. Section 5 presents an exact
separation procedure based on linear programming for the family of valid inequalities and
reports computational experiments in order to evaluate this machinery. Finally, Section 6
closes the paper with concluding remarks and lines for future work. Throughout this work,
for any nonnegative integer m ∈ Z+, we define [m] := {1, . . . ,m} and [m]0 := {0, . . . ,m}.

2 Computational complexity

In this section we explore the computational complexity of the hyper-rectangular clustering
problem with axis-parallel clusters and outliers. Given a finite set X ⊆ Rd, integers p ≥ 1
and q ≥ 0, and a threshold κ ∈ R+, the decision version of the hyper-rectangular clustering
problem with axis-parallel clusters and outliers consists in determining whether there exists
a clustering with p clusters and up to q outliers with total span less than or equal to κ or not.
Given a graph G and an integer k ∈ Z+, the decision version of the maximum clique problem
consists in determining whether G contains a clique (i.e., a set of pairwise adjacent vertices)
with cardinality greater than or equal to k or not. This problem is known to be NP-complete
even when G is a regular graph [4].

Theorem 1 The decision version of the hyper-rectangular clustering problem with axis-parallel
clusters and outliers is NP-complete.

Proof. It is not difficult to check that the decision version of the hyper-rectangular clustering
problem with axis-parallel clusters and outliers belongs to NP, since we can nondeterminis-
tically generate a solution and check in polynomial time whether it is a valid solution with
total span less than or equal to κ or not. In order to conclude the proof, we show that the
decision version of the maximum clique problem for regular graphs can be reduced to the
decision version of the hyper-rectangular clustering problem with axis-parallel clusters and
outliers. To this end, consider an instance (G, k) (with G = (V,E) an r-regular graph) of the
decision version of the maximum clique problem, and assume w.l.o.g. k ≥ 3. We construct an
instance of the clustering problem as follows. We take d := |E| and associate each coordinate
axis with an edge of G. We define X := {xv}v∈V to include one point for every vertex v of
G, defined as

xve =

{
1 if v is incident to e
0 otherwise

for every e ∈ E. We take p := 1, q := |V | − k, and κ := rk − k(k − 1)/2. For any A ⊆ V ,
we define CA := {xv : v ∈ A} to be the associated subset of points from X . If |A| ≥ 3 then
at least one vertex in A is not incident to the edge e, for any e ∈ E. Hence, in this case we
have that spane(CA) = 1 if some vertex in A is incident to e, and spane(CA) = 0 otherwise,
for any e ∈ E. This implies that span(CA) equals the number of edges from E incident to at

3

least one vertex from A, and the r-regularity of G implies span(CA) = r|A| − |E(A)|, where
E(A) = {uv ∈ E : u, v ∈ A}.

Since p = 1 and q = |V |−k, any feasible clustering is composed by exactly one cluster with
k or more points. For any A ⊆ V and v ∈ V , if we take A′ = A∪ {v} then the r-regularity of
G implies that span(CA′) = r|A′| − |E(A′)| ≥ r|A| − |E(A)| = span(CA). This implies that
there exists an optimal clustering with the only cluster having exactly k points, since larger
clusters cannot have a strictly smaller span. Let A ⊆ V with |A| = k such that the solution
given by the single cluster CA is optimal. We have span(CA) = rk−|E(A)| ≥ rk−k(k−1)/2,
since |E(A)| ≤ k(k − 1)/2 for any subset A with k vertices. This implies that span(CA) =
rk− k(k− 1)/2 if A is a k-clique in G, and span(CA) > rk− k(k− 1)/2 otherwise. Therefore,
the instance (X , p, q) admits a clustering with total span less than or equal to κ if and only if
G has a clique with cardinality greater than or equal to k. Since this reduction is polynomial,
the result follows. □

Theorem 1 states that the general version of the hyper-rectangular clustering problem
with axis-parallel clusters and outliers is NP-complete. However, a polynomial algorithm
can be provided when the dimension is fixed to d = 1. This case corresponds to covering
a set of points in the real line with segments of minimum total length, while discarding at
most q points. To this end, fix d = 1 and consider a finite set X = {x1, . . . , xn} ⊆ R such
that xi ≤ xi+1 for i = 1, . . . , n − 1. Construct a digraph G = (V,E) as follows. We take
V := {vijk : i ∈ [n]0, j ∈ [p]0, k ∈ [q]0}, and we will interpret the vertex vijk as indicating that

all the points in {x1, . . . , xi} have been considered, j clusters have been formed, and k points
from {x1, . . . , xi} have been discarded as outliers. We also define E := E1 ∪ E2, where

E1 := {(vijk, vi
′
j+1,k) : i, i

′ ∈ [n]0, i < i′, j ∈ [p− 1]0, k ∈ [q]0},
E2 := {(vijk, vi+1

j,k+1) : i ∈ [n− 1]0, j ∈ [p]0, k ∈ [q − 1]0}.

Traversing the arc (vijk, v
i′
j+1,k) ∈ E1 represents the inclusion of the cluster {xi+1, . . . , xi

′} in
the solution, whereas traversing the arc (vijk, v

i+1
j,k+1) represents that the point xi+1 is being

declared to be an outlier in the solution. Thus, any path from v000 to any vertex in T :=
{vnjk}j∈[p],k∈[q]0 corresponds to a feasible clustering of X . Each edge (vijk, v

i′
j+1,k) ∈ E1 is

assigned the weight xi
′ − xi+1, and each edge in E2 is assigned null weight. In this setting,

a shortest path from v000 to any vertex in T corresponds to an optimal solution of the 1-
dimensional hyper-rectangular clustering problem with axis-parallel clusters and outliers.

These results leave open the question of whether there exists a fixed dimension d such
that the d-dimensional hyper-rectangular clustering problem with axis-parallel clusters and
outliers is NP-hard. As a first step, it would be interesting to explore whether a similar
construction as the one provided above can be given for d = 2. However, for the general
case with arbitrary dimension, we must resort to non-polynomial algorithms in order to find
optimal solutions (unless P = NP) and, due to this fact, in the remainder of this work we
consider integer programming techniques for the general version of this problem.

3 Integer programming formulation

We consider the following mixed integer program representing the clustering problem that
we are interested in solving. For i ∈ [n] = {1, . . . , n} and c ∈ [p] = {1, . . . , p}, we consider
the binary variable zic representing whether xi is assigned to the cluster c or not. Also, for

4

c ∈ [p] and t ∈ [d] = {1, . . . , d}, the real variables ltc, rtc ∈ R represent a lower and an upper
bound, respectively, for the points in the cluster c in the coordinate t. For t ∈ [d], define
Xt := {xt : x ∈ X}, mint := min(Xt), and maxt := max(Xt). In this setting, we can formulate
the problem as follows.

min

p∑
c=1

d∑
t=1

rtc − ltc (1)

s.t.

p∑
c=1

zic ≤ 1 ∀i ∈ [n], (2)

ltc + (maxt − xit)zic ≤ maxt ∀i ∈ [n], c ∈ [p], t ∈ [d], (3)

rtc + (mint − xit)zic ≥ mint ∀i ∈ [n], c ∈ [p], t ∈ [d], (4)

ltc ≤ rtc ∀c ∈ [p], t ∈ [d], (5)
p∑

c=1

n∑
i=1

zic ≥ n− q, (6)

mint ≤ ltc, rtc ≤ maxt ∀c ∈ [p], t ∈ [d], (7)

zic ∈ {0, 1} ∀i ∈ [n], c ∈ [p]. (8)

The objective function asks to minimize the sum of the total cluster spans. Constraints
(2) ask every point to be assigned to at most one cluster, and a point is considered to be
an outlier if it is assigned to no cluster. Constraints (3)-(4) bind the variables, in such a
way that ltc ≤ xit ≤ rtc if the point i is assigned to the cluster c. Constraints (5) avoid
bound crossings in empty clusters, whereas constraints (6) specify that at most q outliers
can be selected. Finally, constraints (7) impose bounds for the l- and the r-variables, and
constraints (8) specify that the z-variables are binary.

The formulation (2)-(8) has obvious symmetry issues (i.e., every clustering admits more
than one representation within the model, by renaming the cluster indices), which could be
problematic when attempting the solution of this model with general integer programming
solvers. We can add any of the following families of symmetry-breaking constraints to this
basic formulation in order to mitigate this situation:

n∑
i=1

zi,c−1 ≤
n∑

i=1

zic ∀c ∈ [p], c > 1, (9)

n∑
i=1

i zi,c−1 ≤
n∑

i=1

i zic ∀c ∈ [p], c > 1, (10)

zic +

p∑
c′=c+1

zjc′ ≤ 1 +
∑

k∈[n]:xk
1<xi

1

zkc ∀i, j ∈ [n], xj1 < xi1, ∀c ∈ [p]. (11)

The symmetry-breaking constraints (9) ask for the clusters to be ordered in size, whereas
(10) enforce the same condition for the sum of the points indices of all clusters. Finally,
the symmetry-breaking constraints (11) assert that if xi is the point in the cluster c with
the smallest value in the coordinate x1 (i.e., zic = 1 and zkc = 0 for every k ∈ [n] with
xk1 < xi1), then xj cannot be assigned to a cluster with index greater than c if xj1 < xi1. This
implies that the clusters are ordered with respect to the smallest coordinate x1 of their points.

5

We get similar symmetry-breaking constraints by replacing the coordinate x1 by some other
coordinate in (11). Unfortunately, as we shall report in Section 5, the addition of each of the
families (9)-(11) of symmetry-breaking constraints does not appear to be effective in practice,
so we stick to the formulation (1)-(8) in this work.

Definition 1 We define P(X , p, q) to be the convex hull of all vectors (z, l, r) ∈ Rnp+pd+pd

satisfying (2)-(8).

Throughout this paper we assume that for every coordinate t ∈ [d] there exist points
x, x′ ∈ X with xt ̸= x′t, i.e., that not all points have the same value in this coordinate. If
this condition does not hold, then the coordinate t does not provide any information and can
be eliminated (by projecting all points onto the space defined by the remaining coordinates),
and this operation does not change the optimal solutions. We state this assumption for future
reference.

Assumption 1 For every t ∈ [d] there exist points x, x′ ∈ X with xt ̸= x′t.

If C = {C1, . . . , Cp} is a clustering of X (i.e., Ci ⊆ X for i ∈ [p], |C1∪· · ·∪Cp| ≥ n−q, and
Ci∩Cj = ∅ for i, j ∈ [p], i ̸= j), then we define χC = (z, l, r) to be the solution constructed as
follows. For i ∈ [n] and c ∈ [p], we take zic = 1 if xi ∈ Cc and zic = 0 otherwise. For t ∈ [d] and
c ∈ [p] such that Cc ̸= ∅, we take ltc = min{xt : x ∈ Cc} and rtc = max{xt : x ∈ Cc}. Finally,
for t ∈ [d] and c ∈ [p] such that Cc = ∅, we take ltc = mint and rtc = maxt. In other words,
χC encodes the clustering C in the formulation variables, with {ltc, rtc}t∈[d] representing the
smallest axis-parallel rectangle containing Cc, for every c ∈ [p] with Cc ̸= ∅, and {ltc, rtc}t∈[d]
representing the largest possible rectangle (satisfying the variable bounds) for every c ∈ [p]
with Cc = ∅.

For c ∈ [p], we call C(c) to the clustering obtained by assigning all points to the cluster c,
i.e., C = {C1, . . . , Cp} with Cc = X and Cc′ = ∅ for c′ ∈ [p], c′ ̸= c.

Theorem 2 The polytope P(X , p, q) is full-dimensional if and only if (a) Assumption 1 holds,
(b) q ≥ 1, and (c) either p ≥ 2 or there exist at most q points in X with xt = mint and there
exist at most q points in X with xt = maxt, for every t ∈ [d].

Proof. Assume the hypotheses (a)-(c) hold, and let (ζ, λ, ρ) ∈ Rnp+pd+pd and π0 ∈ R such
that ζz + λl + ρr = π0 for every (z, l, r) ∈ P(X , p, q). We shall show that (ζ, λ, ρ) = 0, thus
proving that P(X , p, q) is full-dimensional.
Claim 1: ζic = 0 for every i ∈ [n] and every c ∈ [p]. Consider the clustering C(c)
assigning all points to the cluster c and construct the clustering C′ from C(c) by leaving the
point xi as an outlier, which is allowed by the hypothesis (b). The solutions χC and χC′

satisfy
(ζ, λ, ρ)χC = π0 = (ζ, λ, ρ)χC′

and only differ in the zic-variable, hence ζic = 0. ♢
Claim 2: λtc = ρtc = 0 for every t ∈ [d] and every c ∈ [p]. Consider the hypothesis
(c), and assume first p > 1. The clustering C(c′), for c′ ∈ [p], c′ ̸= c, assigns all points to
the cluster c′, so the solution (z̄, l̄, r̄) = χC(c′) has l̄tc = mint, since Cc is empty in C(c′).
Assumption 1 implies that mint < maxt, so construct the solution χ′ = (z̄, t̂, r̄) from χC(c′)

by setting l̂tc = mint + ε, with 0 < ε < maxt − mint and leaving the remaining variables
unchanged. The existence of χC(c′) and χ′ shows that λtc = 0, and a symmetric construction
shows that ρtc = 0.

6

Assume now that p = 1 and that the set A = {x ∈ X : xt = mint} has cardinality at
most q, according to the hypothesis (c). Consider the clustering C = {X\A}, namely the
only available cluster contains all points with the exception of those in A. Let (z̄, l̄, r̄) = χC .
Assumption 1 implies that l̄t1 > mint, since all points with xt = mint are outliers in this
clustering. Construct a new solution (z̄, l̂, r̄) from (z̄, l̄, r̄) by setting l̂t1 = l̄t1−ε, for some 0 <
ε < min{xt : x ∈ X\A}−mint and leaving the remaining variables unchanged. The existence
of these two solutions shows that λt1 = 0. The symmetric construction, now assuming that
there exist at most q points in X with xt = maxt, shows that ρt1 = 0. ♢

Since (ζ, λ, ρ) = 0, we conclude that P(X , p, q) is full-dimensional.
In order to prove the converse implication, we show that if either of the hypotheses (a)-(c)

does not hold, then there exists an equality satisfied by all feasible solutions in P(X , p, q),
which hence is not full-dimensional. If the hypothesis (a) does not hold, then mint = maxt
for some t ∈ [d], and this implies mint = ltc = rtc = maxt for every c ∈ [n]. If the hypothesis
(b) does not hold, then q = 0 and this implies

∑p
c=1 zic = 1 for every i ∈ [n], since no outliers

are allowed. Finally, if the hypothesis (c) does not hold, then p = 1 and there exist t ∈ [d]
and A ⊆ X with |A| = q + 1 such that either (c’) xt = mint for all x ∈ A or (c”) xt = maxt
for all x ∈ A. Since p = 1 and at most q outliers can be identified, then at least one point
from A belongs to the unique cluster in any feasible solution, hence either ltc = mint in every
feasible solution if (c’) holds, or ltc = maxt in every feasible solution if (c”) holds. □

Standard solution procedures for general integer linear programs usually involve the res-
olution of the linear relaxation of the given formulation, i.e., the linear program obtained by
relaxing the integrality constraints. The optimal value of the linear relaxation provides the
first dual bound for a branch and bound procedure, hence its value is of great interest in
this context. Unfortunately, the linear relaxation of the formulation (1)-(8) is weak, as the
following proposition shows.

Proposition 1 If p ≥ 2, then the optimal solution of the linear program (1)-(7) plus the
variable bounds 0 ≤ zic ≤ 1 for i ∈ [n] and c ∈ [p] has null objective value.

Proof. We claim that the solution (z̄, l̄, r̄) given by z̄ic = 1/p for every i ∈ [n] and c ∈ [p],
and l̄tc = r̄tc = (mint +maxt)/2 for every t ∈ [d] and c ∈ [p] is feasible for the linear program
(1)-(7). This solution has null objective value, thus settling the proposition. Constraints (2)
and (5) are trivially satisfied. For every i ∈ [n], c ∈ [p], and t ∈ [d], the following calculation
shows that constraint (3) is satisfied:

l̄tc + (maxt − xit)z̄ic =
mint +maxt

2
+

maxt − xit
p

≤ mint +maxt
2

+
maxt −mint

p

≤ mint +maxt
2

+
maxt −mint

2
= maxt.

The first inequality stems from the fact that xit ≥ mint, whereas the second inequality is

7

implied by p ≥ 2. A similar calculation shows that constraint (4) is satisfied:

r̄tc + (mint − xit)z̄ic =
mint +maxt

2
+

mint − xit
p

≥ mint +maxt
2

+
mint −maxt

p

≥ mint +maxt
2

+
mint −maxt

2
= mint.

Again, the first inequality is a consequence of xit ≤ maxt, whereas the second inequality is
implied by p ≥ 2 and mint −maxt ≤ 0. The left-hand-side of constraint (6) equals n, so this
constraint is also satisfied. Finally, (z̄, l̄, r̄) satisfies the variable bounds, and we conclude that
this solution is indeed feasible. □

A direct consequence of Proposition 1 is that the initial dual bound within a branch and
bound procedure will be the worst possible when p ≥ 2. This suggests that the application of
cutting planes may be useful within such a procedure, and the next section explores potential
cuts within this setting.

4 A familiy of valid inequalities

Throughout this section we fix a cluster c ∈ [p] and a coordinate t ∈ [d], and we shall consider
valid inequalities involving the associated variables, i.e., {zic}i∈[n] ∪ {ltc, rtc}. The following
theorem identifies conditions ensuring validity for a general valid inequality on these variables.

Theorem 3 Fix c ∈ [p] and t ∈ [d], and let α, β ≥ 0 and γ ∈ Rn with γ ≥ 0. Assume p ≥ 2
or q = n. The inequality

α rtc − β ltc ≥
n∑

i=1

γizic − δ (12)

is valid for P(X , p, q) if and only if (a) αx2−βx1 ≥
∑

i∈[n]:x1≤xi
t≤x2

γi−δ for every x1, x2 ∈ Xt

with x1 ≤ x2, (b) δ ≥ (β − α) maxt, and (c) δ ≥ (β − α) mint.

Proof. Assume first that the hypotheses (a)-(c) hold, and consider any feasible solution
(z̄, l̄, r̄) ∈ P(X , p, q)∩Znp×Rpd+pd. Define I = {i ∈ [n] : z̄ic = 1} to be the set of point indices
assigned to the cluster c by this solution, and assume first I ̸= ∅. Call x1 = min{xit : i ∈ I}
and x2 = max{xit : i ∈ I}. The following calculation shows that (z̄, l̄, r̄) satisfies (12):

n∑
i=1

γiz̄ic =
∑
i∈I

γi =
∑

i∈I:x1≤xi
t≤x2

γi

≤
∑

i∈[n]:x1≤xi
t≤x2

γi ≤ α x2 − β x1 + δ ≤ α r̄tc − β l̄tc + δ.

The first inequality follows from the fact that γ ≥ 0, the second inequality is a restatement
of the hypothesis (a), and the third inequality is implied by l̄tc ≤ x1 ≤ x2 ≤ r̄tc and α, β ≥ 0.
Assume that I = ∅. The model constraint (5) implies that αr̄tc−βl̄tc ≥ (α−β)l̄tc. If α−β ≥ 0
then (α−β)l̄tc ≥ (α−β)mint ≥ −δ, the last inequality implied by the hypothesis (c), so (12)

8

is satisfied. If α− β < 0 then (α − β)l̄tc ≥ (α− β)maxt ≥ −δ, the last inequality implied by
the hypothesis (b), and again (12) is satisfied.

For the converse implication, assume (12) is a valid inequality. Let x1, x2 ∈ Xt with
x1 ≤ x2, and construct a feasible solution (x̄, l̄, r̄) such that exactly the points in A = {i ∈
[n] : x1 ≤ xit ≤ x2} are assigned to the cluster c. This is possible since either p ≥ 2 (and thus
the remaining points can be assigned to some other cluster) or q = n (and thus any set of
points can be discarded from all clusters). Define also l̄tc := x1 and r̄tc := x2, so we have

αx2 − βx1 = αr̄tc − βl̄tc ≥
n∑

i=1

γiz̄ic − δ =
∑

i∈[n]:x1≤xi
t≤x2

γi − δ. (13)

The inequality in (13) stems from the fact that (x̄, l̄, r̄) satisfies (12), and this calculation shows
that the hypothesis (a) is satisfied. Consider now any solution (x̂, l̂, r̂) such that ẑic = 0 for
every i ∈ [n] (again, such a solution exists since p ≥ 2 or q = n) and with l̂tc = r̂tc = maxt.
Since (x̂, l̂, r̂) satisfies (12), we have

(α− β)maxt = αr̂tc − βl̂tc ≥
n∑

i=1

γiẑic − δ = −δ, (14)

hence the hypothesis (b) is satisfied. A similar construction with a solution having ltc = rtc =
mint shows that (α− β)mint ≥ −δ, and so the hypothesis (c) is satisfied. □

Consider, e.g., the point set X = {xi = (i, i)}4i=1. If p ≥ 2, then the inequality rtc − ltc ≥∑4
i=1 zic−1 is valid for any t ∈ [d] and any c ∈ [p], since rtc−ltc ≥ max{xit : zic = 1}−min{xit :

zic = 1}, and this last expression is greater than or equal to the number of points in c minus
1. This inequality belongs to the family identified in Theorem 3, and can be easily shown to
be valid using this theorem.

It is interesting to note that the hypothesis p ≥ 2 or q = n is indeed necessary for
Theorem 3. To this end, consider again the point set X = {xi = (i, i)}4i=1. Assume p = 1
and q = 1, and consider the inequality rtc − ltc ≥ z1c + z4c + 1 for any t ∈ [d] and c = 1. This
inequality is valid since at least three points from X must be assigned to the only available
cluster in any feasible solution, so rtc−ltc ≥ 2. Furthermore, z1c = z4c = 1 implies rtc−ltc = 3,
so the inequality is satisfied by all feasible solutions. However, neither of the hypotheses (a)-
(c) in Theorem 3 is satisfied for this inequality, which is nevertheless valid for this instance.
If p = 1 and q ≤ n − 1, then the hypotheses (a)-(c) ensure the validity of (12) but, as the
previous counterexample shows, the converse implication does not hold in general.

Theorem 3 provides a general characterization of valid inequalities with γ ≥ 0 for a fixed
cluster c ∈ [c] and a fixed coordinate axis t ∈ [d], showing that it suffices to consider the
intervals between every pair of points along the coordinate axis t instead of resorting to
all possible subsets of points. Nevertheless, the number of parameters governing each valid
inequality is large and may not provide an intuition of the meaning provided by the inequality.
Such a number of parameters can be reduced when α > β and x ≥ 0 for every x ∈ X , by
taking λ := α

α−β , γ
′
i :=

γi
α−β for every i ∈ [n], and δ′ := δ

α−β . In this setting we can assume
that δ = (β − α)mint, hence (12) can be written as

λrtc + (1− λ)ltc ≥ mint +
n∑

i=1

γ′izic. (15)

9

Theorem 3 implies that the inequality (15) is valid if and only if

λx2 + (1− λ)x1 ≥ mint +
∑

i∈[n]:x1≤xi
t≤x2

γ′i

for every x1, x2 ∈ Xt, x1 ≤ x2.
The family of valid inequalities identified by Theorem 3 includes facet-defining inequalities,

as the following result shows.

Theorem 4 Let c ∈ [p], t ∈ [d], and s ∈ [n], and assume x1t ≤ x2t ≤ · · · ≤ xnt . Also
suppose that (a) Assumption 1 holds, (b) q ≥ 1, and (c) p ≥ 2. Fix α, β ≥ 0 and let
δ ≥ max{(β − α)mint, (β − α)maxt}. If

(i) αxit + δ ≥ βxi+1
t for i = 1, . . . , n− 1,

(ii) there exists i1 ∈ {1, . . . , n− 1} such that (ii’) αxi1t + δ = βxi1+1
t and (ii”) if i1 < s then

mint′ < xi1t′ < maxt′ for every t′ ∈ [d], t′ ̸= t, whereas if i1 ≥ s then mint′ < xi1+1
t′ <

maxt′ for every t′ ∈ [d], t′ ̸= t, and

(iii) there exists i2 ∈ {i1 +2, . . . , n− 1} such that (iii’) αxi2t + δ = βxi2+1
t and (iii”) xi1+1

t <
xi2t ,

then the inequality (12) defines a facet of P(X , p, q), with γs := (α−β)xst+δ, γi := β(xi+1
t −xit)

for i = 1, . . . , s− 1, and γi := α(xit − xi−1
t) for i = s+ 1, . . . , n.

Proof. We first show that (12) is a valid inequality with this definition of γ and δ, by
resorting to Theorem 3. We have that α, β ≥ 0 by the hypotheses, and we must also check
that γ ≥ 0 in order to apply Theorem 3. The definition of γi for i ̸= s directly implies γi ≥ 0
since α, β ≥ 0 and xjt ≤ xj+1

t for j = 1, . . . , n− 1, so we are left to verify γs ≥ 0. To this end,
consider the following cases.

� If α ≥ β then δ ≥ (β − α)mint implies γs = (α − β)xst + δ ≥ (α − β)(xst −mint) ≥ 0,
since α− β ≥ 0 and xst −mint ≥ 0.

� If α < β then δ ≥ (β − α)maxt implies γs = (α − β)xst + δ ≥ (α − β)(xst −maxt) ≥ 0,
since α− β < 0 and xst −maxt ≤ 0.

We now check that the hypothesis (a) of Theorem 3 is satisfied. To this end, consider any
two x1, x2 ∈ Xt with x1 ≤ x2, and let j, k ∈ [n], j ≤ k, such that {i ∈ [n] : x1 ≤ xit ≤ x2} =
[j, k] := {j, . . . , k} (thus implying xjt = x1 and xkt = x2).

� If k < s then
∑k

i=j γi = β(xk+1
t −xjt). The following calculation shows that the hypoth-

esis (a) is satisfied:

αx2 − βx1 = αxkt − βxjt ≥ β(xk+1
t − xjt)− δ =

k∑
i=j

γi − δ.

In this expression, the inequality is equivalent to αxkt + δ ≥ βxk+1
t , which is implied by

the hypothesis (i).

10

� If j > s then
∑k

i=j γi = α(xkt − xj−1
t). A similar calculation shows that in this case the

hypothesis (a) is also satisfied:

αx2 − βx1 = αxkt − βxjt ≥ α(xkt − xj−1
t)− δ =

k∑
i=j

γi − δ.

Again, the inequality in this expression simplifies to αxj−1
t + δ ≥ βxjt , which is implied

by the hypothesis (i).

� Finally, if j ≤ s ≤ k, then
∑k

i=j γi = αxkt − βxjt + δ = αx2 − βx1 + δ, so the hypothesis
(a) is trivially satisfied with equality.

Since δ ≥ max{(β−α)mint, (β−α)maxt}, we have that δ ≥ (β−α)maxt and δ ≥ (β−α)mint,
so the hypotheses (b) and (c) of Theorem 3 are satisfied. Therefore, Theorem 3 ensures that
(12) is a valid inequality for this particular definition of γ and δ.

Now for facetness. By Theorem 2, the hypotheses (a)-(c) ensure that P(X , p, q) is full-
dimensional. Let F be the face of P(X , p, q) induced by (12) and let (ζ, λ, ρ) ∈ Rnp+pd+pd

and π0 ∈ R such that ζz + λl + ρr = π0 for every (z, l, r) ∈ F . We shall show that (ζ, λ, ρ)
is a multiple of the coefficient vector of (12) which, combined with the full dimensionality of
P(X , p, q), will allow us to conclude that F is indeed a facet of this polytope.

The hypothesis (ii) ensures the existence of i1 ∈ {1, . . . , n−1} such that αxi1t +δ = βxi1+1
t .

For any c′ ∈ [p], c′ ̸= c, let χ1
c′ be the solution specified as follows.

� If i1 < s, define C̄ = {C̄1, . . . , C̄p} to be the clustering given by C̄c = {xi1}, C̄c′ = χ\C̄c,

and C̄c′′ = ∅ for every c′′ ∈ [p]\{c, c′}, and take χ1
c′ = (z̄, l̄, r̄) := χC̄ . The following

calculation shows that χ1
c′ satisfies (12) with equality:

n∑
j=1

γj z̄jc − δ = γi1 − δ = β(xi1+1
t − xi1t)− δ = (αxi1t + δ)− βxi1t − δ

= αxi1t − βxi1t = αr̄tc − βl̄tc.

� If i1 ≥ s, define C̄ = {C̄1, . . . , C̄p} to be the clustering given by C̄c = {xi1+1}, C̄c′ =

χ\C̄c, and C̄c′′ = ∅ for every c′′ ∈ [p]\{c, c′}, and take χ1
c′ = (z̄, l̄, r̄) := χC̄ . Again, the

following calculation shows that χ1
c′ satisfies (12) with equality:

n∑
j=1

γj z̄jc − δ = γi1+1 − δ = α(xi1+1
t − xi1t)− δ = αxi1+1

t − (βxi1+1
t − δ)− δ

= αxi1+1
t − βxi1+1

t = αr̄tc − βl̄tc.

We define χ2
c′ similarly, by considering a clustering in which c is composed only by xi2 if i2 < s

and only by xi2+1 otherwise.
Claim 1: ζic′ = 0 for every i ∈ [n] and every c′ ∈ [p], c′ ̸= c. If i < s, then consider
the solution χ := χ1

c′ if i ̸= i1 and χ := χ2
c′ otherwise. If i = s then take χ := χ1

c′ . Finally,
if i > s, then consider the solution χ := χ1

c′ if i ̸= i1 + 1 and χ := χ2
c′ otherwise. Call

(z̄, l̄, r̄) := χ, and note that z̄ic′ = 1. Construct χ̂ = (ẑ, l̄, r̄) from χ by setting ẑic′ = 0 and
leaving the remaining variables unchanged (this construction is possible since the hypothesis

11

(b) allows at least one outlier in any solution). Since zic′ has null coefficient in (12), then
χ̂ ∈ F . Since χ and χ̂ only differ in the zic′-variable, then ζz̄ + λl̄ + ρr̄ = π0 = ζẑ + λl̄ + ρr̄
implies ζic′ = 0. ♢
Claim 2: λt′c = ρt′c = 0 for every t′ ∈ [d], t′ ̸= t. Let c′ ∈ [p], c′ ̸= c, and consider
the solution χ = (z̄, l̄, r̄) := χ1

c′ . Construct the solution χ̂ = (z̄, l̄, r̂) from χ by setting
r̂t′c = r̄t′c + ε, for some 0 < ε < maxt′ −r̄t′c and leaving the remaining variables unchanged
(this construction is possible since r̄t′c = xi1t′ < maxt′ if i1 < s and r̄t′c = xi1+1

t′ < maxt′ if
i1 ≥ s, by the hypothesis (ii”)). We have χ̂ ∈ F since rt′c has null coefficient in (12), and the
existence of χ and χ̂ in F only differing in the rt′c-variable implies ρt′c = 0. Consider now the
solution χ̃ = (z̄, l̂, r̂) constructed from χ̂ by setting l̂t′c = l̄t′c−ε, for some 0 < ε < l̄t′c−mint′c,
and leaving the remaining variables unchanged (which again is possible since l̄t′c = xi1t′ > mint′

if i1 < s and l̄t′c = xi1+1
t′ > mint′ if i1 ≥ s, by the hypothesis (ii”)). Again, χ̃ ∈ F and the

existence of χ̂ and χ̃ in F only differing in the lt′c-variable implies λt′c = 0. ♢
Claim 3: λt′c′ = ρt′c′ = 0 for every t′ ∈ [d] and every c′ ∈ [p], c′ ̸= c. Consider
the clustering C(c) assigning all points to the cluster c. The solution χ = (z̄, l̄, r̄) := χC(c) has∑n

i=1 γiz̄ic = αmaxt − βmint + δ, l̄tc = mint, and r̄tc = maxt, so χ satisfies (12) with equality
and thus χ ∈ F . Consider the solution χ̂ = (z̄, l̄, r̂) constructed from (z̄, l̄, r̄) by setting
r̂t′c′ = r̄t′c′ − ε = maxt′ −ε, for 0 < ε < maxt′ −mint′ , and leaving the remaining variables
unchanged (this construction is possible since Assumption 1 ensures that mint′ < maxt′).
We have χ̂ ∈ F since rt′c′ has null coefficient in (12), and the existence of χ and χ̂ in F
only differing in the rt′c′-variable implies ρt′c′ = 0. Consider now the solution χ̃ = (z̄, l̂, r̂)
constructed from χ̂ by setting l̂t′c′ = r̂t′c′ and leaving the remaining variables unchanged.
Again, χ̃ ∈ F and the existence of χ̂ and χ̃ in F only differing in the lt′c′-variable implies
λt′c′ = 0. ♢

In order to conclude the proof, we show that (ζ, λ, ρ) is a multiple of the coefficient vector
of (12). Fix c′ ∈ [p], c′ ̸= c. For i = 0, . . . , n− s, define the clustering Ci = {Ci

1, . . . , C
i
p} to be

Ci
c = {xs, . . . , xs+i}, Ci

c′ = χ\Ci
c, and Ci

c′′ = ∅ for c′′ ∈ [p]\{c, c′}, and call χ̄i = (z̄i, l̄i, r̄i) :=

χCi
. The following calculation shows that χ̄i satisfies (12) with equality:

n∑
j=1

γj z̄jc =

s+i∑
j=s

γj = (α− β)xst + δ +

s+i∑
j=s+1

α(xjt − xj−1
t)

= αxs+i
t − βxst + δ = αr̄tc − βl̄tc + δ.

Similarly, for i = 1, . . . , s−1, define the clustering Di = {Di
1, . . . , D

i
p} to beDi

c = {xs−i, . . . , xs},
Di

c′ = χ\Di
c, and Di

c′′ = ∅ for c′′ ∈ [p]\{c, c′}, and call χ̂i = (ẑi, l̂i, r̂i) := χDi
. Again, we have

that χ̂i satisfies (12) with equality:

n∑
j=1

γj ẑjc =
s∑

j=s−i

γj = (α− β)xst + δ +
s−1∑

j=s−i

β(xj+1
t − xjt)

= αxst − βxs−i
t + δ = αr̂tc − βl̂tc + δ.

It is easy to verify that {χ̄i}n−s
i=0 ∪{χ̂i}s−1

i=1 are linearly independent, since each of these points
has a z-variable with value 1 that has value 0 in the previous points. Indeed, if we consider
the sequence A = (χ̄0, . . . , χ̄n−s, χ̂1, . . . , χ̂s−1), then

� for i = 0, . . . , n − s, the solution χ̄i has zs+i,c = 1 and this variable is set to 0 in the
previous solutions in the sequence A, and

12

� for i = 1, . . . , s − 1, the solution χ̂i has zs−i,c = 1 and this variable is set to 0 in the
previous solutions in the sequence A.

This implies that the solutions in A are linearly independent, so they are affinely independent.
The solution χ1

c′ is affinely independent with respect to the solutions in A, since zsc = 1 for
every solution in A but the variable zsc is set to 0 in χ1

c′ . So we conclude that A′ := A∪{χ1
c′}

is a sequence of affinely independent solutions. We complete the construction by claiming
that χ2

c′ is affinely independent with respect to the solutions in A′.

� If i1 < s, then all the solutions in A′ satisfy the equation

ltc = xst −
s−1∑
i=1

(xi+1
t − xit)zic − (xst − xi1+1

t) (1− zsc), (16)

but this equation is not satisfied by χ2
c′ , which has zi2c = 1 and zic = 0 for i ∈ [n]\{i2}.

Indeed, take (z̃, l̃, r̃) := χ2
c′ and consider the following cases. If i2 < s then l̃tc = xi2t

and the right-hand-side of (16) equals xi2t + xi1+1
t − xi2+1

t , which differs from l̃tc by the
hypothesis (iii”). If i2 ≥ s then l̃tc = xi2+1

t and the right-hand-side of (16) equals xi1+1
t ,

which again differs from l̃tc by the hypothesis (iii”).

� If i1 ≥ s, then all the solutions in A′ satisfy the equation

rtc = xst +

n∑
i=s+1

(xit − xi−1
t)zic − (xst − xi1t) (1− zsc), (17)

but again this equation is not satisfied by χ2
c′ . Indeed, take (z̃, l̃, r̃) := χ2

c′ and consider
the following cases. If i2 < s then r̃tc = xi2t and the right-hand-side of (17) equals
xi1t , which differs from r̃tc by the hypothesis (iii”). If i2 ≥ s then r̃tc = xi2+1

t and the
right-hand-side of (17) equals xi2t + xi1t − xi2+1

t , which differs from r̃tc by the hypothesis
(iii”).

This shows that A′ ∪ {χ2
c′} is a sequence of n + 2 affinely independent solutions. Construct

now the system of linear equations (ζ, λ, ρ)(χ − χ2
c′) = 0 for χ ∈ A′, where (ζ, λ, ρ) are the

unknowns. Claims 1-3 imply that np+2pd− (n+2) unknowns are null, hence if we eliminate
these unknowns we are left with n+ 1 equations for n+ 2 unknowns. Since the solutions in
A′ ∪ {χ2

c′} are affinely independent, then the vectors {χ− χ2
c′}χ∈A′ are linearly independent,

so the set of solutions to this system of linear equations has dimension 1. Since any multiple
of the coefficient vector of (12) is a solution to this system (as all points in F satisfy (12)
with equality), we conclude that the only solutions to this system are the multiples of the
coefficient vector of (12). Therefore, (ζ, λ, ρ) is a multiple of the coefficient vector of (12)
which, therefore, defines a facet of P(X , p, q). □

The particular definition of γ in Theorem 4 implies that a solution in which the cluster
c only contains the point xs trivially satisfies (12) with equality. Furthermore, if the points
s + 1, . . . , n are sequentially added to the cluster c then the inequality keeps being satisfied
with equality, and the same happens in the points s− 1, . . . , 1 are sequentially added to the
cluster c. For example, consider the instance χ = {(i, i)}5i=1 with p = 2 and q = 1. The
inequality rtc − ltc ≥

∑
i∈[n] zic − 1 corresponds to taking α = β = δ = 1, s = 3, and defining

γ according to the statement of Theorem 4. In this setting, Theorem 4 directly implies that
this inequality induces a facet of P(X , p, q).

13

5 Computational experiments

We have implemented a branch and cut procedure for the hyper-rectangular clustering prob-
lem with axis-parallel clusters and outliers, and this section reports this implementation and
the obtained computational results.

We use the valid inequalities identified in Theorem 3 as cuts in the implementation.
Theorem 3 shows that it suffices to check O(n2) conditions in order to guarantee validity of
the inequality (12). This allows for a polynomial separation procedure for these inequalities,
via linear programming. Given a fractional solution (z∗, l∗, r∗), we consider the following
formulation, which includes the coefficients α, β, {γi}i∈[n], and δ of the inequality (12) as the
model variables.

max β l∗tc − α r∗tc +

n∑
i=1

z∗ic γi − δ (18)∑
i∈[n]:x1≤xi

t≤x2

γi ≤ x2α− x1β + δ ∀x1, x2 ∈ Xt, x1 ≤ x2 (19)

β maxt − αmaxt ≤ δ (20)

β mint − αmint ≤ δ (21)

α+ β = n+ 1 (22)

α, β ≥ 0 (23)

γi ≥ 0 ∀i ∈ [n] (24)

The objective function asks to maximize the cut depth. Constraints (19)-(21) enforce the
validity conditions (a)-(c) specified by Theorem 3, whereas constraint (22) normalizes the
coefficients in order to prevent this linear program from being unbounded. If the optimal
value of this linear program is positive, then an optimal solution provides the coefficients
of a violated inequality (12) and viceversa. Since the fractional solution (z∗, l∗, r∗) only
participates in the objective function, we can set up one such linear program for each axis
t ∈ [d], and warm-start the resolution by updating the coefficients in the objective function
every time a new fractional solution must be separated.

It is possible to provide a linear number of (stronger) conditions ensuring the validity of
the inequality (12), which could be helpful within the separation stage. The following direct
corollary to Theorem 3 states these conditions.

Corollary 1 Fix c ∈ [p] and t ∈ [d], and let α, β ≥ 0 and γ ∈ Rn with γ ≥ 0. Assume
p ≥ 2 or q = n, and also suppose xit ≤ xi+1

t for i = 1, . . . , n− 1. If (a’) γi ≤ β(xi+1
t − xit) for

i = 1, . . . , n− 1 and (b’) (α− β)xit ≥ γi − δ for i = 1, . . . , n, then the inequality (12) is valid
for P(X , p, q).

Proof. It suffices to show that the hypotheses (a’) and (b’) imply the conditions (a)-(c) in
Theorem 3. Consider first any x1, x2 ∈ Xt, x1 ≤ x2, and let i, j ∈ [n] such that xit = x1 and
xjt = x2. By summing the following conditions coming from the hypotheses (a’) and (b’) we

14

get that the condition (a) in Theorem 3 is satisfied for x1 and x2:

(a’) β(xi+1
t − xit) ≥ γi

(a’) β(xi+2
t − xi+1

t) ≥ γi+1

(a’) β(xi+3
t − xi+2

t) ≥ γi+2

...
...

...

(a’) β(xjt − xj−1
t) ≥ γj−1

(b’) (α− β)xjt ≥ γj − δ

For condition (b) in Theorem 3, the hypothesis (b’) implies (α − β)maxt = (α − β)xnt ≥
γn − δ ≥ −δ, since γ ≥ 0. A similar calculation with x1 shows that the condition (c) in
Theorem 3 is also satisfied. □

Corollary 1 provides sufficient conditions for (12) to be valid, but these conditions are not
necessary. For example, consider the instance X = {(i, i)}3i=1 and fix a cluster index c ∈ [p].
For q = 3, the inequality 3r1c − l1c ≥ 1.1 z2c + 2 is valid for this instance, but it does not
satisfy the hypothesis (a’) for i = 2.

The conditions ensuring validity given by Corollary 1 allow to simplify the search of a
violated cut. Namely, by assuming that γi = min{δ + (α − β)xit, β(x

i+1
t − xit)} for i ∈ [n],

any feasible solution with positive objective function to the following linear program identifies
such a violated cut.

max β l∗tc − α r∗tc +

n∑
i=1

z∗ic γi − δ (25)

β(xi+1
t − xit) ≥ γi i = 1, . . . , n− 1 (26)

(α− β)xit ≥ γi − δ i = 1, . . . , n (27)

α+ β = n+ 1 (28)

α, β ≥ 0 (29)

γi ≥ 0 ∀i ∈ [n] (30)

Due to the previous observations, solving this linear program does not provide an exact algo-
rithm for separating this family of valid inequalities, i.e., an optimal value with nonpositive
objective function does not guarantee that there are no violated cuts from this familiy. Nev-
ertheless, it is interesting to consider this formulation since it is composed by a linear number
of constraints, and it might be worthwile to solve this smaller linear program instead of the
quadratically-sized formulation (18)-(24).

We have implemented the branch and cut procedure within the framework provided by
Cplex 12.4. The controller code is implemented in Java, interfacing with Cplex through the
Concert API. The linear programs for separating the inequalities (12) are also implemented
with the Cplex linear programming solver, and is attached to the main integer programming
solver of Cplex with a user-cut callback.

In order to conduct experiments with controlled instances having predictable optima, we
use synthetic instances randomly generated with the procedure specified in Algorithm 1. This
procedure takes as input the dimension d, the number n of points to be generated, the number
p of clusters to generate, the number q of outliers to generate, and a parameter s ∈ [0, 1]

15

specifying the dispersion for the generated clusters. In this pseudocode, we assume the
existence of a procedure choose(A) that selects a point from the (finite or infinite) set A ⊆ Rd

with uniform distribution. In lines 1–5 a set of p (= number of clusters) points is generated,
which will act as the originating points for the clusters. In lines 6–11 the p clusters are
generated, by constructing n−q points around the originating points. The dispersion of these
clusters is controlled by the parameter s. Finally, in lines 12–15, q additional points are added
within the range [−1, 1]d, which will act as the outliers to be identified. If the parameter s is
small enough, then the generated instance will be very likely to contain p clearly-identifyable
clusters and up to q points clearly separated from these clusters. This allows us to control the
characteristic of the instances in our experiments. The source code and the instance generator
can be found at https://github.com/jmarenco/clusterswithoutliers.

Algorithm 1 Generation of synthetic instances.

1: C ← ∅
2: for i = 1 to p do ▷ Generates p cluster “centers”
3: x← choose([−1, 1]d)
4: C ← C ∪ {x}
5: end for
6: X ← ∅
7: for i = 1 to n− q do ▷ Generates n− q points around the cluster centers
8: x← choose(C)
9: y ← choose([−s/2, s/2]d)

10: X ← X ∪ {x+ y}
11: end for
12: for i = 1 to q do ▷ Generates q outliers
13: x← choose([−1, 1]d)
14: X ← X ∪ {x}
15: end for
16: return X

The primary objective of the experimentation reported in this section is to evaluate the
contribution of the family of valid inequalities (12) within a cutting plane environment in order
to solve the clustering problem with optimality. A first observation towards this objetive is
that the dynamic addition of cuts coming from the separation procedure specified in Section 4
achieves a dramatic improvement in the total number of nodes in the enumeration tree in
the instances solved with optimality. As a representative example, Figure 2(a) shows the
number of nodes for the out-of-the-box algorithm implemented by Cplex and the branch and
cut procedure specified previously for d = 2, p = 5, and q = 3, and n = 10, . . . , 60. In these
experiments we set a time limit of 600 seconds. As mentioned before, since the optimal value
of the linear relaxation is 0 for p ≥ 2, then the improvement of the dual bound becomes a key
ingredient of a successful procedure. Cuts coming from the inequalities (12) enable such an
improvement, and this explains the reduction in the number of overall nodes for the instances
solved with optimality within the time limit.

This reduction has the additional computational cost of the linear-programming-based
separation procedure, hence the overall running time does not decrease proportionally to
the node reduction. Figure 2(b) shows the overall running time to optimality for the same
instances, showing nevertheless a reduction but of a more modest nature than for the total

16

 100

 1000

 10000

 100000

 1×10
6

 10 20 30 40 50 60

N
o
d
e
s

n

Cplex
B&C

 0

 100

 200

 300

 400

 500

 600

 10 20 30 40 50 60

T
im

e
 (

s
e
c
.)

n

Cplex
B&C

Figure 2: (a) Nodes in the enumeration tree (vertical axis in logarithmic scale) and (b) overall
running time to optimality for Cplex and the branch and cut procedure over instances with
d = 2, p = 5, and q = 3, and n = 10, . . . , 60.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50 60 70 80 90 100

G
a
p
 (

%
)

n

Cplex
B&C
C&B

Figure 3: Optimality gaps after 600 seconds for Cplex, the branch and cut procedure, and a
cut and branch procedure over instances with d = 2, p = 5, and q = 3, and n = 50, . . . , 100.

number of nodes. The instances not shown could not be solved with optimality within the time
limit. The execution of the linear-programming-based separation procedure imposes a non-
negligible overhead to the overall branch and cut (B&C) procedure, which can be prohibitive
for large instances, as Figure 3 shows. This figure represents the optimality gaps for instances
not solved within the time limit, showing that at about n = 80 points Cplex achieves better
optimality gaps than the branch and cut procedure. In this situation, a cut and branch (C&B)
scheme (i.e., applying cuts only at the root node) is a better choice, consistently providing
gaps below 40% for instances up to n = 100.

As mentioned in Section 4, we can set up one linear program (18)-(24) for each coordinate
and warm-start the resolution by updating the coefficients in the objective function every
time a new fractional solution must be separated. When this strategy is implemented, for
an 18-point instance the total running time is reduced from 18.9 to 5.18 seconds. In our
implementation, we set up one Cplex instance for each such linear program and we initialize

17

 0

 100

 200

 300

 400

 500

 600

 700

 10 15 20 25 30 35 40

T
im

e
 (

s
e
c
.)

n

(18)−(24)
(25)−(30)

 0

 500

 1000

 1500

 2000

 2500

 10 15 20 25 30 35 40

C
u
ts

n

(18)−(24)
(25)−(30)

Figure 4: (a) Overall running time to optimality and (b) generated cuts when separating with
the O(n2)-sized linear programming model (18)-(24) and the O(n)-sized linear programming
model (25)-(30) over instances with d = 2, p = 5, and q = 3, and n = 10, . . . , 40.

the model with constraints (19)-(24). These Cplex instances are kept open throughout the
overall branch and cut procedure. When the separation procedure is called, the objective
function of each model is updated with the fractional solution to be separated, and the
resolution is resumed until optimality is reached. Since these models are linear programs, this
procedure is quite efficient. We could try to run each Cplex instance in a separate thread in
order to make further gains but, in our implementation with a four-core CPU, this strategy
was not effective. In the 18-point instance mentioned before, this threaded implementation
needed 7.01 seconds to achieve optimality. This might be due to the additional overhead
needed to control the threads or due to a collision between this mechanism and the threaded
implementation of Cplex. Furthermore, this behavior did not seem to be affected by explicitly
asking Cplex to use one thread or to use the Primal Simplex algorithm. This behavior was
consistently observed in other instances and, due to this fact, we inactivated the use of threads
in the separation procedure.

The previous experiments were performed with the linear program (18)-(24) for exactly
separating the inequalities (12). Figure 4 reports a comparison between this procedure and
the heuristic separation with the smaller linear program (25)-(30) for instances of different
sizes. The exact separation finds a much larger number of cuts and helps to achieve a total
running time to optimality that is smaller than the time to optimality obtained with the
heuristic separation given by the formulation (25)-(30). The total number of nodes in the
enumeration tree is also larger in this case. Due to these facts, in the remainder of this section
we stick to the exact separation procedure given by the linear program (18)-(24).

The experiments reported in Figure 2 and Figure 3 suggest that it might be worthwhile
to calibrate the cutting aggressiveness within the branch and cut procedure. To this end,
we have performed an extensive number of runs with several instances with d = 2, p = 5,
q = 3, and n = 35, generated with different pseudorandom seeds. Figure 5(a) shows the
number of nodes in the enumeration tree as a function of the number of cut rounds per node
in the enumeration tree (i.e., the maximum number of times that the separation procedure is
sequentially executed at each node). The right-hand-side of this plot corresponds to applying 1
to 20 cut rounds per node, and the rightmost data points correspond to applying an unlimited

18

 0.1

 1

 10

 100

Cplex 0.1 0.2 1 5 10 15 Unlimited

N
o
d
e
s
 (

n
o
rm

a
liz

e
d
)

Cut rounds per node

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Cplex 0.1 0.2 1 5 10 15 Unlimited

T
im

e
 (

n
o
rm

a
liz

e
d
)

Cut rounds per node

Figure 5: (a) Nodes in the enumeration tree (vertical axis in logarithmic scale) and (b) overall
running time to optimality as a function of the cut rounds per node over instances with d = 2,
p = 5, q = 3, and n = 35, normalized by the measurements for one cut round per node.

number of cut rounds, until no more cuts are found at each node. On the other hand, the
left-hand-side of this plot corresponds to applying one round of cuts every certain number of
nodes (a parameter sometimes known as skip factor). As an example, the value 0.2 in the
horizontal axis corresponds to applying one round of cuts every 5 nodes. The leftmost data
points correspond to applying no cut rounds, i.e., show the behavior of Cplex with out-of-the-
box parameters. In order to properly compare measurements coming from different instances,
all results are normalized by the measurements corresponding to one cut round per node, so
these data points appear as 1 in this plot. Each point corresponds to an instance, and is
sligthly perturbed in the horizontal axis in order to enhance the presentation. The solid line
shows the average over all instances.

As Figure 5(a) shows, an aggresive cut strategy allows to greatly improve the number of
nodes in the enumeration tree. However, this improvement in the number of nodes involves an
additional computational cost and, in order to evaluate this tradeoff, Figure 5(b) shows the
total time to achieve optimality in the same setting. In this case, it can be seen that the best-
performing strategy consists in setting around one cut round per node in the enumeration tree.
When exactly one cut round per node is implemented, the number of nodes in the enumeration
tree is reduced 174.33 times with respect to the out-of-the-box algorithm implemented by
Cplex, and the overall running time is reduced 2.41 times with respect to Cplex.

Adding a large number of cuts may have a negative impact on the overall performance due
to the resulting enlargement of the linear programming models to be solved at each node in
the enumeration tree. Although the previous results suggest that executing roughly one cut
round per node is a good idea, it might be the case that the improvement is given only by the
best cuts and not by the sheer number of added cuts. In order to evaluate this situation, we
report experiments in which we discard a cut (12) separating the fractional solution (z∗, l∗, r∗)
if αr∗tc − βl∗tc −

∑n
i=1 γiz

∗
ic + δ ≥ −τ , for some parameter τ ≥ 0. The parameter τ specifies

the minimum cut depth in order to add a cut. Figure 6 shows (a) the number of added cuts
and (b) the total nodes in the enumeration tree as a function of τ for 20 similar instances
generated with different seeds, normalized by the number of cuts for τ = 0 for each instance,
so the measurements are comparable. As expected, the number of cuts decreases and the

19

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 0.5 1 1.5 2 2.5 3

C
u
ts

 (
n
o
rm

a
liz

e
d
)

Cut threshold

 0

 2

 4

 6

 8

 10

 12

 0 0.5 1 1.5 2 2.5 3

N
o
d
e
s
 (

n
o
rm

a
liz

e
d
)

Cut threshold

Figure 6: (a) Number of added cuts and (b) nodes in the enumeration tree for the branch
and cut procedure (with one cut round per node) as a function of the cuth depth threshold
τ over instances with d = 2, p = 5, q = 3, and n = 30, generated with 20 different seeds.

number of nodes increases as the threshold τ becomes more restrictive. Figure 7 reports the
total running time to optimality (again, normalized by the measurement for τ = 0) and, in
this case, the overall trend suggests that taking τ ∈ [0.5, 0.8] is a reasonable choice for this
parameter. A similar behavior was observed for instances generated with different parameters.
This suggests that limiting the added cuts may not be a good strategy. Since the separation
time is not negligible, discarding a cut that is not deep enough does not seem to be a good
idea once the separation procedure has been performed.

As mentioned in Section 3, the addition of the symmetry-breaking constraints (9)-(11) to
the formulation does not improve running times to optimality. Table 1 reports representative
experiments with instances from 10 to 60 points, with d = 2, p = 4, and q = 3. For the
original formulation and for the addition of each family of symmetry-breaking constraints,
the column “Time/Gap” shows the total time to optimality in seconds and, if the time limit of
600 seconds is attained, the optimality gap is reported as a percenteage. On the other hand,
the column “Nodes” reports the number of nodes in the enumeration tree. Quite surprisingly,
this table suggests that the addition of symmetry-breaking constraints has a negative effect
on the performance of the overall procedure. Similar results were obtained with instances
generated with different parameters and settings for cut rounds per node.

As a final experiment, Figure 8 compares the overall running time to optimality and
the number of nodes in the enumeration tree when the objective function (1) is replaced
by the quadratic objective function asking to minimize the total area of the hyper-rectangles
defining the clusters, namely

∑
c∈[p]

∏
t∈[d](rtc−ltc). Cplex can handle such a formulation with

both integer and continuous variables, and a quadratic objective function. As Figure 8(a)
shows, running times to optimality are much higher in this case than with the linear objective
function (1). Furthermore, although the dynamical addition of cuts (see Figure 8(b)) allows
to decrease the total number of nodes in the enumeration tree, the overall running time is
not greatly improved and is even increased in some cases.

20

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3

T
im

e
 (

n
o
rm

a
liz

e
d
)

Cut threshold

Figure 7: Time to optimality for the branch and cut procedure (with one cut round per node)
as a function of the cut depth threshold τ over instances with d = 2, p = 5, q = 3, and n = 30,
generated with 20 different seeds.

n
None (9) (10) (11)

Time/Gap Nodes Time/Gap Nodes Time/Gap Nodes Time/Gap Nodes
10 1.01 235 2.57 904 3.21 975 1.96 543
15 2.98 331 12.99 1755 15.43 2273 11.21 1037
20 6.14 413 46.36 2710 57.43 2679 56.47 2218
25 11.51 407 114.69 2979 148.07 4156 204.55 4016
30 16.67 482 110.69 2177 238.58 5786 291.99 3403
35 27.35 403 5.73% 2666 251.86 2560 5.68% 2539
40 46.64 382 6.10% 2071 13.72% 1951 7.44% 2057
45 104.59 819 17.98% 1267 29.92% 1553 32.41% 921
50 224.66 874 28.97% 1044 54.62% 1248 53.92% 820
55 257.34 909 42.71% 1355 74.55% 958 59.88% 684
60 1.05% 1168 62.97% 987 74.44% 864 98.54% 520

Avg. 1.05% 583.91 27.41% 1810.45 49.45% 2273.00 42.98% 1705.27

Table 1: Computational results with one cut round per node and with the addition of
symmetry-breaking constraints, for d = 2, p = 4, and q = 3.

21

 0

 50

 100

 150

 200

 250

 300

 10 15 20 25 30

T
im

e
 (

s
e
c
.)

n

Cplex
B& C

 0

 20000

 40000

 60000

 80000

 100000

 120000

 10 15 20 25 30

N
o
d
e
s

n

Cplex
B& C

Figure 8: (a) Overall running time to optimality and (b) nodes in the enumeration tree for
the quadratic objective function asking to minimize the total area of the hyper-rectangles
defining the clusters, for Cplex with default parameters and with the dynamical addition of
cuts, respectively, for d = 2, p = 2, and q = 3, and n = 5, . . . , 30.

6 Concluding remarks

In this work we have started a polyhedral study of the hyper-rectangular clustering problem
with axis-parallel clusters and outliers, showing that the dynamical addition of cuts to a
natural integer programming formulation of this problem may be effective in practice. The
results in this work push the instance size solvable with optimality within a reasonable time
a little further away, with respect to the use of a state-of-the-art integer programming solver.
In this sense, it would be interesting to continue this study in order to explore how far can
integer-programming-based techniques can reach at solving this problem.

As future work, it is important to consider better separation strategies, since the separation
overhead degrades the overall performance for large instances. It would also be interesting
to consider valid inequalities involving more than one cluster. Preliminary explorations of
the associated polytopes show that they admit many facet-inducing inequalities with such
properties, so it could be worthwhile to perform this study. If a potential family of such
inequalities can be separated exactly with techniques similar to the ones presented in this
work, this could also provide interesting practical benefits.

An undesirable property of the formulation (2)-(8) is the presence of symmetry among the
clusters. Unfortunately, the addition of straightforward symmetry-breaking constraints does
not seem to improve running times in our experiments, having in fact the opposite effect.
In this setting, it may be worthwhile to explore column-generation-based procedures over
extended formulations, although it is not clear how to branch within such a procedure and
thus achieving optimality may turn out to be a nontrivial issue. The exploration of effective
symmetry-breaking techniques for this formulation is of interest in this context, and is left as
future work.

The size of instances solvable with optimality with the current techniques is rather small,
and the above-mentioned potential lines for future research could make progress in this sense.
However, optimality for large instances may possibly be out of reach. If this is the case, then
it could also be relevant to explore integer-programming-based heuristics, maybe relying on

22

the solution of the linear relaxation of a compact formulation or on a small subset of columns
within an extended formulation. Given the interest in clustering methods, this line of research
could be potentially very relevant for the data science community.

Acknowledgement. The author would like to express his gratitude towards the anony-
mous reviewers, whose comments and remarks greatly helped to improve this manuscript.

References

[1] Bertsimas, D., Dunn, J.: Optimal classification trees. Machine Learning 106 1039–1082
(2017).

[2] Bertsimas, D., Shioda, R.: Classification and regression via integer optimization. Opera-
tions Research 55-2 252–271 (2007).

[3] Bhatia, A., Garg, V., Haves, P., Pudi, V.: Explainable clustering using hyper-rectangles
for building energy simulation data. IOP Conference Series: Earth and Environmental
Science 238 012–068 (2019).

[4] Brandes, U., Holm, E., Karrenbauer, A.: Cliques in regular graphs and the core-periphery
problem in social networks. COCOA 2016: Combinatorial Optimization and Applications
175–186 (2016).

[5] Carrizosa, E., Romero Morales, D.: Supervised classification and mathematical optimiza-
tion. Computers and Operations Research 40-1 150–165 (2013).

[6] Gambella, C., Ghaddar, B., Naoum-Sawaya, J.: Optimization problems for machine learn-
ing: A survey. European Journal of Operational Research 290-3 807–828 (2021).

[7] Gao, B.: Hyper-rectangle-based discriminative data generalization and applications in
data mining. PhD Thesis, Simon Fraser University, 2007.

[8] Lee, S., Chung, C.: Hyper-rectangle based segmentation and clustering of large video data
sets. Information Sciences 141 (1-2) 139–168 (2002).

[9] Mago, V., Bhatia, N., Park, S.: Classification with axis-aligned rectangular boundaries.
In: Mago, V., Bhatia, N. (eds.) “Cross-Disciplinary Applications of Artificial Intelligence
and Pattern Recognition”, Information Science Reference (2012).

[10] Ordóñez, C., Omiecinski, E., Navathe, S., Ezquerra, N.: A clustering algorithm to dis-
cover low and high density hyper-rectangles in subspaces of multidimensional data. Geor-
gia Institute of Technology Technical Report GIT-CC-99-20 (1999).

[11] Park, S., Kim, J.: Unsupervised clustering with axis-aligned rectangular regions. Stan-
ford University Technical Report (2009).

[12] Verwer, S., Zhang, Y.: Learning optimal classification trees using a binary linear program
formulation. Proceedings of the AAAI Conference on Artificial Intelligence 33-01 1625–
1632 (2019).

23

