
Autoría ditelliana: Vulcano, Gustavo
Otros autores: Jagabathula, Srikanth, Mitrofanov, Dmitry
Fecha de publicación: 2023
Versión final Publicada en: Operations Research (ISSN: 0030-
364X)
El presente documento es una versión aceptada del artículo publicado

¿Cómo citar este artículo?
Jagabathula, S., Mitrofanov, D., & Vulcano, G. (2023). Demand 
Estimation Under Uncertain Consideration Sets. Operations 
Research. https://doi.org/10.1287/opre.2022.0006

Típo de documento: Artículo

Demand Estimation Under 
Uncertain Consideration 
Sets

El presente documento se encuentra alojado en el Repositorio 
Digital de la Universidad Torcuato Di Tella bajo una licencia Creative 
Commons Atribución-No Comercial-Compartir Igual 2.5 Argentina (CC 
BY-NC-SA 2.5 AR)
Dirección: https://repositorio.utdt.edu/handle/20.500.13098/12107

Biblioteca Di Tella



Demand Estimation
under Uncertain Consideration Sets

Srikanth Jagabathula
Leonard N. Stern School of Business, New York University, New York, NY 10012, sjagabat@stern.nyu.edu

Dmitry Mitrofanov
Carroll School of Management, Boston College, Chesnut Hill, MA, dmitry.mitrofanov@bc.edu

Gustavo Vulcano
School of Business, Universidad Torcuato Di Tella,

and CONICET, Buenos Aires, Argentina, gvulcano@utdt.edu

To estimate customer demand, choice models rely both on what the individuals do and do not purchase. A

customer may not purchase a product because it was not o�ered, but also because it was not considered. To

account for this behavior, existing literature has proposed the so-called consider-then-choose (CTC) models,

which posit that customers sample a consideration set and then choose the most preferred product from the

intersection of the o�er set and the consideration set. CTC models have been studied quite extensively in the

marketing literature. More recently, they have gained popularity within the Operations Management (OM)

literature to make assortment and pricing decisions. Despite their richness, CTC models are di�cult to

estimate in practice because �rms typically do not observe customers' consideration sets. Therefore, the

common assumption in OM has been that customers consider everything on o�er, so the consideration set

is the same as the o�er set. This raises the following question: when �rms only collect transaction data,

do CTC models provide any predictive advantage over classic choice models? More precisely, under what

conditions do CTC models outperform (if ever) classic choice models in terms of prediction accuracy?

In this work, we study a general class of CTC models. We propose techniques to estimate these models

e�ciently from sales transaction data. We then compare their performance against the classic approach. We

�nd that CTC models outperform standard choice models when there is noise in the o�er set information and

the noise is asymmetric across the training and test o�er sets, but otherwise lead to no particular predictive

advantage over the classic approach. We also demonstrate the bene�ts of using CTC models in real-world

retail settings. In particular, we show that CTC models calibrated on retail transaction data are better at

long-term and warehouse level sales forecasts. We also evaluate their performance in the context of an online

platform setting: a peer-to-peer car sharing company. In this context, o�er sets are even di�cult to de�ne.

We observe a remarkable performance of CTC models over standard choice models therein.

Key words : choice-based demand, consideration sets, consider-then-choose models, peer-to-peer platforms,

retail operations, market analytics.
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1. Introduction

Over the last two decades there has been growing interest in the operations management (OM)

academic �eld and in the industry practice to incorporate sophisticated demand models, which

provide high-quality inputs for critical tasks such as inventory management, dynamic pricing and

assortment planning. Examples of such models include the multinomial logit (MNL), the nested

logit, the mixed logit and the latent class MNL, which are traditional in the marketing and eco-

nomics �elds but novel in terms of their applicability in operational contexts. These models have

been widely studied resulting in the development of speci�c estimation (e.g., Newman et al. (2014),

Vulcano et al. (2012), Jagabathula et al. (2020)) or assortment optimization algorithms (e.g., Tal-

luri and Van Ryzin (2004), Feldman and Topaloglu (2015), Davis et al. (2014)). More recently, new

demand models have been proposed (e.g., the Markov chain model by Blanchet et al. (2016)), and

others like the rank list-based model (e.g., Farias et al. (2013)) and the exponomial model (e.g.,

Alptekino�glu and Semple (2016)) have been revisited, jointly with the expansion of the application

of choice-based demand models to the operation of online platforms (e.g., Lee and Lee (2012)).

Companies in di�erent industry sectors, from airlines to retailers and more recently, online sharing

economy platforms, have been testing and incorporating some of these models into their operational

capabilities.

The usual data source to calibrate these demand models are records of past transactions, either

sales transaction data in the case of retail operations and revenue management, or bookings from

past interactions between peers in the case of online platforms. For each transaction, the under-

standing is that the client (or an agent in a platform) selected one option from a collection of

alternatives or offer set, which is usually de�ned as a full category assortment in the retail case, or

the full set of available options within an arbitrary radius in spatial choice models (e.g., car shar-

ing). Given the transaction data, most choice models are trained assuming that the chosen option

is preferred over all the other products on o�er. However, customers may not consider everything

on o�er. For instance, in retailing, a customer selecting from the co�ee category may not evaluate

the full assortment and might consider only a subset of products (e.g., decaf) in a choice instance.

In online platforms, even if we arbitrarily de�ne the o�er set as the cars available within a 0.2-mile

radius, an agent may evaluate only compact cars. If we ignore these consideration sets, we make the

incorrect inference that the chosen product is preferred over products not even considered, leading

to model bias. To deal with this issue, the so-called consider-then-choose (CTC) models have been

proposed in the literature. These models posit that customers sample a consideration set and then

choose the most preferred product from the intersection of the o�er set and the consideration set

(e.g., Howard and Sheth (1969), Alba and Chattopadhyay (1985), Hauser and Wernerfelt (1990)).
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CTC models have been studied quite extensively in the marketing literature (e.g., see Roberts and

Lattin (1997)). They also gained recent popularity within the OM literature to make assortment

and pricing decisions (e.g., see Feldman et al. (2019); Aouad et al. (2020)).

Despite their richness, CTC models are often di�cult to �t in practice because customers' consid-

eration sets are not observed {we know the customer choice and the o�er set, but the consideration

set itself could be any subset of the full category containing the chosen product. When consider-

ation sets are not observed, CTC models may not be identi�able and it is unclear what, if any,

predictive advantage they o�er over simply assuming that customers consider everything on o�er

as classic models do. Existing literature is mostly silent on these issues. It o�ers broad empirical

evidence that customers do indeed form consideration sets and studies speci�c instances of CTC

models. But it mostly takes it as given that �rms should �t CTC models over classic choice models

when consideration sets are not observed.

In this paper, we systematically study a very general class of CTC models when we only observe

customer choices and o�er sets. Theoretically, we observe that the general CTC model class is equiv-

alent to the random utility maximization (RUM) class of models (which assumes that customers

consider everything on o�er), indicating that CTC models span the same modeling scope as classic

choice models. We also show that CTC models in general are not identi�able from transaction data

alone, but some restricted versions of them indeed are.

To empirically evaluate the CTC models, we develop techniques to estimate them from transac-

tion data. Our numerical analysis on both synthetic and real-world data shows that CTC models

outperform classic choice models when o�er sets are not observed perfectly (i.e., they are \noisy")

and the noise is asymmetric between the training and test data. Here, the o�er set noise associated

with a product refers to a product being erroneously recorded as o�ered or stocked out when in fact

it was not. We say noise is asymmetric if the degree of the o�er set noise associated with a product

di�ers between training and test datasets (e.g., because factors a�ecting stockouts vary over time).

On the other hand, when the noise is symmetric, CTC models have comparable performance to

classic models, providing little to no predictive advantage over them.

Noise in o�er sets is quite common in practice. In retailing, for instance, o�er set descriptions are

often unreliable because of potential inventory inaccuracies (e.g., DeHoratius and Raman (2008)).

For example, Kang and Gershwin (2005) analyze the accuracy of inventory records of a global

retailer and �nd that only 51% of them match actual inventory on average, with the worst store

experiencing more than 67% mismatch. In online sharing platforms, offer or availability sets are

not even clearly de�ned. For example, in the context of a peer-to-peer car-sharing platform, an

o�er set can be de�ned as all the available car listings on the platform or more reasonably, as all
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the car listings within a radius of the customer's location. Either de�nition is arbitrary and prone

to errors.

Furthermore, the so-called \test o�er set" inputs used for predictions tend to be noisier (i.e.,

more di�erent from the actual ones) than the training o�er sets. Choice models must be given o�er

sets to make predictions but the �rm faces a high degree of uncertainty about future o�er sets.

For example, a retailer is uncertain about next week's o�er set because existing products may be

depleted, stocked-out products may be replenished, or new products might be introduced. Future

o�er sets are even more uncertain for online sharing platforms because availability is determined

in real-time not by the platform but by individual providers in the market whose decisions are

di�cult to predict. These observations make the sequence (i) consider, and (ii) choose, particularly

important when modeling customers' choices in practice.

1.1. Summary of results

Unlike existing literature which studies speci�c instances of CTC models, we study the following

general class. The population preferences are characterized by a joint distribution over rank lists of

the full set of products and over subsets of the product universe (i.e., over the consideration sets).

This joint distribution is common across all customers. In each choice instance, a customer samples

a consideration set and a preference list, and purchases the most preferred product in the choice

set, which results from the intersection between the sampled consideration set and the exhibited

o�er set, or does not purchase at all if neither of the considered products is o�ered.

We make the following remarks about our model. First, we note that we use a product-based

as opposed to a feature-based consideration set de�nition. In a product-based consideration set

de�nition, the model directly speci�es the probability of consideration for each product. By con-

trast, a feature-based de�nition assumes that customers screen on features, considering only those

products whose attributes are within pre-speci�ed acceptable ranges (e.g., see Jagabathula and

Rusmevichientong (2017)). Product-based consideration sets are more general and tractable to

analyze. They can also readily subsume feature-dependence, as we illustrate in this paper. Second,

a key distinguishing aspect of our model is that we allow the distribution over consideration sets

to be general, in contrast to the bulk of the existing literature which has generally restricted it to

belong to speci�c classes. Third, while the joint distribution can be general in principle, for the

purpose of estimation, we approximate it with an appropriately de�ned mixture distribution.

The main goal of our proposal is to characterize business environments under which the use of

CTC models may provide higher quality estimates to describe the choice behavior of the customer

basis, compared to RUM-based estimates. Speci�cally, we make the following contributions:
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• Statistical properties of CTC models. Recall that the RUM class is equivalently described by a

distribution over product preference lists (Block and Marschak (1960); Strauss (1979); Farias

et al. (2013)), so that customers choose the most preferred product among the available ones

according to the sampled ranking list.

We �rst show that the CTC model class is indeed equivalent to the RUM class, in that

the set of choice probabilities induced by the CTC model class is the same as those induced

by the RUM class (see Proposition 1). Yet, despite the equivalent explanatory power, CTC

may be more natural in terms of its practical usage when accommodating consideration set

formation becomes relevant (e.g., in a latent way, when customers do not consider all the

items on o�er; or in an explicit way, when having access to surveys where customers reveal

their consideration sets).

Given the equivalency to the RUM class, CTC models are not fully identi�able. But what

is somewhat surprising is that the marginal distribution over consideration sets is uniquely

identi�ed (see Proposition 3). We also investigate cases when consideration sets are \small"

(see Corollary 1 and Proposition 4), and show that we can compute the marginal distribution

over consideration sets e�ciently. Furthermore, if we restrict all the customers to choose using

the same preference list, then the ranking is also identi�able (see Proposition 5). We also

establish conditions to verify whether the observed data are consistent with a speci�c instance

of the CTC model class.

• Methodology to estimate the parameters of CTC models. For estimation, we approximate the

general CTC model class with a mixture of what we call independent consideration set (ICS)

models (see Section 4.1). An ICS model is speci�ed by a single ranking and an indepen-

dent distribution over consideration sets in which a customer samples a consideration set by

including each product independently with a certain probability. We propose an expectation-

maximization (EM) algorithm to estimate the mixture. For each mixture component, we

propose an outer-approximation algorithm to ensure convergence to the maximum likelihood

estimate.

• Numerical experiments on synthetic data: Because the consideration set formation is explicitly

modeled in consider-then-choose type of frameworks, it is likely that its predictive perfor-

mance is robust to the noise in the de�nition of the o�er sets in comparison with competitive

benchmarks (e.g., MNL and ranking-based models). We verify this conjecture by explicitly

adding noise, erroneously including or excluding products from the o�er sets. We �nd that the

CTC models outperform classic models when the noise is asymmetric between the training

and test o�er sets (e.g., the sets of items that are exposed to noise in both training and test

sets minimally intersect). Their performance on the other hand is comparable when noise is
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symmetric. This result shows that when using choice models in practice, it is not su�cient

to choose the model that provides the best predictive performance on the historical data set,

but it is important to also understand how the prediction task might di�er from the training

task in the data generation process (e.g., product availability).

• Empirical analysis: better demand predictions for the retail industry and online platforms. To

support our �ndings on synthetic data, we compare choice models under several real-world

scenarios in retailing and online platforms where we are likely to face signi�cant noise in the

o�er set de�nitions. On real-world grocery transaction data, we �nd that the relative perfor-

mance of CTC models over the benchmarks improves as the level of noise in the test o�er sets

increases, for instance, when making long-term predictions. On a data set obtained from an

online car-sharing platform, we show that CTC models outperform classic models because of

the signi�cant uncertainty in future availability sets. We also show that CTC models o�er the

exibility to use machine learning models, such as decision trees and random forests, in model-

ing the consideration set distribution. These models are more interpretable and lead to better

prediction accuracy than standard choice-based demand models (up to 53.7% improvement

in the root mean squared error metric).

We emphasize that CTC models have traditionally been used to account for uncertainty in what

the customers actually considered. In practice, decision-makers also face uncertainty about what

the customers were actually o�ered. To the best of our knowledge, we are the �rst to highlight

the uncertainty in o�er sets and show that CTC models can successfully deal with both types of

uncertainty.

The remainder of this paper is organized as follows. Section 2 positions our work within the

existing literature. Section 3 de�nes our model and some identi�cation results. We describe our

data model and estimation algorithm in Section 4. The evaluation of the model starts in Section 5

with synthetic data experiments, followed by experiments on real data in Sections 6 (retailing)

and 7 (online car sharing platform). Finally, our concluding remarks are discussed in Section 8.

2. Literature review

Consider-then-choose (CTC) models are built upon the key concept of consideration sets. This

notion has recently gained attention in the OM literature, but is well studied in the marketing and

psychology �elds, dating back to the papers by Campbell (1969), Howard and Sheth (1969) and

Wright and Barbour (1977).

It has long been recognized that consumers usually make choices in a two-stage process (Swait

and Ben-Akiva (1987); Lynch et al. (1991); Roberts and Lattin (1997)). First, they identify a
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small subset of products for further evaluation, the so-called consideration set, and then purchase

the most preferred product from this subset. It is hard to observe whether a product that is not

purchased has been included or not in a consumer's consideration set, as it might even depend on

a number of factors not necessarily related to the consumer's preferences. Nevertheless, there is

ample empirical evidence in the literature about the consider-then-choose behavior of customers.

In his seminal paper, Hauser (1978) shows that a model based on the consideration set concept

accounts for as much as 78% of the explainable uncertainty in purchase transaction data. Hauser

and Wernerfelt (1990) empirically observe that customers consider on average only 3 brands of

deodorants, 4 brands of shampoos, 4 brands of laundry detergents, and 4 brands of co�ee. In a

follow-up paper, Hauser (2014) reports that the average size of the consideration set of consumer

packaged goods in US is a tenth of the total number of brands in the product category. The

aforementioned papers provide a foundation for the belief that the distribution over consideration

sets in the CTC model, which encompasses all possible subsets, may be sparse in reality and hence,

tractable to estimate.

The notion of consideration sets might arise from the limited information-gathering ability of

consumers because they incur a search cost to learn detailed information about the products

(Ratchford (1982)). The underlying justi�cation is that consumers keep searching for products until

the marginal expected gain from the search is less than the marginal search cost. Another argument

to build consideration sets is related to cognitive heuristics, which are popular in the marketing

and psychology literature while being of great importance for managerial decisions in advertising,

product development, and strategic planning, e.g., conjunctive, disjunctive, compensatory, and

elimination by aspects heuristics (Tversky (1972); Montgomery and Svenson (1976); Hauser (2014);

Hogarth and Karelaia (2005)). Therefore, the theoretical groundwork from the �elds of marketing

and psychology strongly suggests that the set of products or services that people consider is highly

unlikely to be the same as the set of o�ered products.

In the OM-related literature, the prevailing assumption aligned with the classical discrete choice

literature has been that the consideration set is equivalent to the o�er set. It has only been recently

that more sophisticated consider-then-choose models of demand have been incorporated. Aouad

et al. (2020) study the problem of assortment optimization under several variants of a choice

model de�ned by two elements: a collection of consideration sets and a collection of customer

types represented by rank lists. Di�erent constraints in the de�nition of these collections lead to

di�erent special versions of the model (e.g., limiting the number of features that consumers use to

�lter a subset of alternatives). The authors develop a dynamic programming framework to study

the computational aspects of assortment optimization under variants of these consider-then-choose
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premises. They show that for many empirically vetted assumptions on how customers consider and

choose, their resulting dynamic program is e�cient.

Feldman and Topaloglu (2018) consider the assortment optimization problem under the MNL

model when consideration sets for di�erent customer types are nested, whereas Feldman et al.

(2019) focus on the assortment optimization problem when customers choose in accordance with

the rank list model of demand but under small consideration sets. Wang and Sahin (2018) present

a consider-then-choose model where the consideration set is formed by balancing the incremental

expected utility of a product and the related search cost. The subsequent choice behavior within a

consideration set is governed by the MNL model. Given the hardness of the assortment optimization

problem, they propose as an approximation a solution that may exclude some high-attractiveness

products from the o�er set. Jagabathula and Rusmevichientong (2017) propose a model where, �rst,

customers consider the set of products with prices less than a threshold, and then choose the most

preferred product from the set considered. They develop a tractable nonparametric expectation

maximization (EM) algorithm to �t the model to transaction data and design an e�cient algorithm

to determine the pro�t-maximizing combination of o�er sets and prices. Jagabathula and Vulcano

(2018) propose a framework to estimate individual consumer preferences under some heuristic

rules used by consumers to form their consideration sets (e.g., they consider only products under

promotion jointly with the ones purchased in the previous store visit). In spite of the recent

attention caught by CTC models in the OM �eld, most of the existing papers mainly focus on

various optimization problems under the CTC choice rule, ignoring the question of when this type

of model can stand out and outperform classical benchmarks. In contrast, in this paper, we want

to better understand the application area of CTC models and develop a methodology to calibrate

these models from sales transaction data.

Our proposal here follows a di�erent perspective and builds upon the modeling approach intro-

duced by Manzini and Mariotti (2014). These authors study a choice model where the consideration

set formation is stochastic and de�ned by the realization of the attention parameter of every alter-

native. This attention parameter is equivalent to our propensity parameter when the o�er set is

fully observable. After forming a consideration set, a consumer purchases the product that maxi-

mizes a preference relation within considered products. One of their main results states that this

random choice rule is the only one for which the impact of removing an alternative on the choice

probability of any other alternative, is asymmetric and menu-independent. The potential of the

Manzini-Mariotti model in operational contexts was �rst evaluated by Gallego and Li (2017), who

verify in a case study in the airline industry that its ability to �t booking data outperforms both

the MNL and mixtures of MNLs in most of the markets evaluated. They also show that the related

assortment optimization problem runs in polynomial time even with capacity constraints. In our
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paper, we study a more general class of CTC models and focus on understanding their predictive

power in di�erent operations contexts.

3. Model speci�cation and identi�cation conditions

In this section, we formally introduce consider-then-choose (CTC) models, followed by the presen-

tation of related identi�cation conditions.

3.1. Model description

We consider a universe N of products {a1; a2; : : : ; an}, in addition to the `no-purchase' or `outside'

option a0 (we use the terms \no-purchase" option and \outside" option interchangeably through-

out). We use N+ to denote the set N ∪{a0}.

Customers arrive at the store sequentially. In each choice instance, a customer is presented with

a subset S ⊆N of products and chooses either one of the products in S or the outside option a0. We

let Pj(S) denote the probability that a customer chooses product aj ∈ S and P0(S) the probability

that the customer chooses the outside option. Our goal is to model this choice process through a

stochastic model that speci�es all the choice probabilities {Pj(S):aj ∈ S+; S ⊆N}, where we use S+

to denote the set S∪{a0}. We assume that the choice probabilities satisfy the standard probability

laws: Pj(S)≥ 0 for all aj ∈ S+ and
∑

aj∈S+ Pj(S) = 1 for all S ⊆N .

To explicitly account for the fact that customers may not consider all products on o�er before

making a choice, we assume that their choice behavior follows a two-stage consider-then-choose

(CTC) model. In the �rst stage, the customer forms a consideration set C ⊆ N , and her own

preference is realized (we describe this mechanism below), and in the second stage, selects either

a product from the choice set S ∩C or the outside option a0. In other words, the customer picks

one element from the extended choice set (S ∩C)+ = (S ∩C)∪{a0}.

In this model, for a product to be purchased, it must be both offered and considered. The seller

restricts customers' choices by deciding the set S of products to o�er. But the customer further

restricts her choices to just the ones in her consideration set C. Two usual reasons to justify this

approach are: (i) the customer has strong unobserved preferences (which prevent her from ever

buying certain products), or (ii) the cognitive overload that prevents her from evaluating all the

products on o�er before choosing.

To describe customer preferences, let Sn denote the set with cardinality n! of all full rankings

or permutations of products in N+ in which the outside option is ranked at the bottom. The

preference ordering or ranking of the products in N+ is described by a bijective ranking function

�:N+ → {1; : : : ; n+ 1} specifying a preference rank �(aj) for each product aj. The preference

ordering � induces an antireexive, antisymmetric, and transitive preference relation ��, de�ned
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Customer
arrives

Sampling of a 
consideration set 
and a ranking from 
the joint distribution

a1 a2 a3

a5

a1

a3

a4

a2

a0

Customer faces 
offer set S={a1, a2, a5}

a0 a1 a2 a3 a4 a5

Purchased
Consideration 
set C={a1, a2, a3}

Ranking σ

Extended choice set  
(S∩C)+={a0, a1, a2}

Figure 1 Choice process. There are n= 5 items in the product universe plus the no purchase option a0. A customer

samples a consideration set C = {a1, a2, a3} and a ranking σ according to some pre-speci�ed joint

distribution ν(σ,C). The o�er set is S = {a1, a2, a5}, leading to (S ∩C)+ = {a0, a1, a2}. The available

product in C that ranks highest in σ is a1. Therefore, item a1 is the product that the customer would

buy in this particular store visit.

as a�� b if and only if �(a)<�(b). Since we are �xing the position of the outside option to be at

the bottom of each ranking, we have that �(a0) = n+ 1 for all � ∈Sn. Customer preferences are

described by a joint probability distribution �:Sn×2N → [0;1], where 2N denotes the collection of

all subsets of the set N . In each choice instance, when confronted with an o�er set S, a customer

samples a ranking � and a consideration set C ⊆ N with probability �(�;C) and chooses the

product arg min{�(aj):aj ∈ (S ∩C)+}.

Figure 1 illustrates the choice process for a particular store visit given a joint distribution function

over consideration sets and full rankings from where the customer samples a consideration set C =

{a1; a2; a3} and a ranking �= (a5; a1; a3; a4; a2; a0), and where we are representing the ranking as a

tuple with the products listed in the order of their preference. The seller exhibits set S = {a1; a2; a5}.

In this choice instance, item a1 is purchased. If the sampled consideration set had been C = {a3; a4}

instead, then the customer would have gone for the \no-purchase" option.

Formally, the choice probability Pj(S) under this model is given by

Pj(S) =
∑
�∈Sn

∑
C⊆N

�(�;C) · I[aj ∈ (S ∩C)+] · I[aj �� ak ∀ak ∈ (S ∩C)+; ak 6= aj]; (1)

where I[A] is the standard indicator function taking the value 1 if condition A is satis�ed, and the

value 0 otherwise. We further assume that the empty condition A= ∅ is always satis�ed. We say

that choice data (Pj(S):aj ∈ S+; S ∈ S), for some collection of subsets S ⊆ 2N , is consistent with an

underlying CTC model if there exists a distribution �(·; ·) that satis�es equation (1) for all aj ∈ S

and S ∈ S.

The sampling of the ranking � as part of the choice process resembles the general random

utility maximization (RUM) framework (Block and Marschak, 1960). The RUM class is the most
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studied choice-based demand class in the literature and includes popular models such as the MNL,

the nested logit (NL), and the mixture of MNLs (MMNL) models. At the core, it assumes that

customers sample utility values for products from some underlying joint distribution and choose

the product with the highest utility. A natural question that may arise is how RUM and CTC

classes are related. We establish the following result.

Proposition 1. The collection of choice probabilities {Pj(S):aj ∈ S+; S ⊆N} is consistent with

an underlying RUM model if and only if it is also consistent with an underlying CTC model.

The proof of the proposition is rather straightforward and is provided in Appendix A2 for the

sake of completeness. The above result shows that the CTC model provides an equivalent but

alternative parameterization of the RUM class and hence o�ers the same explanatory power. Yet,

as we show below, this parameterization allows for a more compact representation of customers'

preferences, particularly, when they do indeed form consideration sets. It also allows us to use

product and customer-level features to explicitly explain how customers form consideration sets

and use data sources other than transaction data, such as survey data, to help infer customers'

consideration sets. Finally, it also seems particularly appropriate for some speci�c business contexts,

as we will illustrate in subsequent sections.

The CTC model as stated above is not amenable to estimation, and therefore, we parameterize

it as a mixture of what we call independent consideration set (ICS) models. As shown below, this

parameterization is without loss of generality. A single-class ICS model is de�ned by a single pref-

erence ordering � and a product form consideration set distribution. As above, the outside option

is ranked at the bottom of the preference list; that is, �(a0) = n+ 1. Further, each product aj ∈N

is associated with an inclusion probability (or propensity) parameter �j ∈ [0;1], which denotes the

probability that a customer includes product aj in her consideration set. Customers make product

inclusion decisions independently of each other, and therefore, the probability of sampling consid-

eration set C ⊆N is �(C) =
∏
aj∈C

�j
∏
aj∈N\C

(1− �j). The ICS model was studied in Manzini and

Mariotti (2014), and it can be shown that the probability of choosing product aj ∈ S+ from o�er

set S is

Pj(S) =

{∏
ai∈S

(1− �i); if aj = a0;

�j
∏
ai∈S:ai�σaj

(1− �i); otherwise;

where the �rst expression corresponds to the probability of the event that none of the o�ered

products are considered (which results in (S ∩C)+ = {a0}, and hence, the selection of the outside

option), and the second expression corresponds to the probability of the event that product aj is

considered but none of the products preferred over aj are. Finite mixtures of these models provide

more modeling exibility, and in fact, subsume the entire class of CTC models, as shown in the

proposition below.
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Proposition 2. Every CTC model with joint probability distribution �(·; ·) over consideration sets

and full rankings can be represented as a finite mixture of K ICS models with preference orders �h,

propensity parameters �h, and mixture weights �(�h;�h) for h ∈ {1; :::;K}, and for some value

of K.

The proof of this result is rather intuitive and the argument is as follows. Consider any CTC

model with underlying joint distribution �(·; ·) over consideration sets and preference lists. Let K

denote the support size of the distribution �(·; ·), so that �(�h;Ch)> 0 for some collection of tuples

{(�h;Ch):h= 1; : : : ;K}. Then, we can de�ne K independent ICS models with parameters �h and

�h, for every h∈ {1; :::;K} such that �hk = 1 if item ak belongs to the consideration set Ch, and 0

otherwise. The mixing distribution over the K classes is de�ned by �(�h;�h) such that �(�h;�h) =

�(�h;Ch).

Our next goal is to study the problem of identifying customer consideration sets from sales

transaction data alone.

3.2. Identi�cation conditions for the CTC model class

In this section, we derive various conditions under which the CTC models are identi�able. To this

end, our goal is to investigate if we can uniquely infer the parameters of the underlying CTC model

from the collection of choice probabilities {Pj(S):aj ∈ S+; S ⊆N}.

Our �rst results shows that the marginal distribution over consideration sets, de�ned as �(C) =∑
�∈Sn

�(�;C), is uniquely identi�able from the observed choice probabilities alone. Speci�cally,

we have the following result:

Proposition 3. Suppose that a collection of choice probabilities {P0(S):S ⊆N} are consistent

with an underlying CTC model �(·; ·). Then, the marginal distribution �(·) over consideration sets,

defined as �(C) =
∑

�∈Sn
�(�;C), is uniquely identified:

�(C) =
∑
X⊆C

(−1)|C|−|X|P0(N \X) ∀ C ⊆N:

This is a rather surprising result. Intuitively, it seems that consideration sets cannot be identi�ed

from choice observations alone: if all we know is that a customer chose product a from o�er set S,

then the customer may have considered any subset of products containing product a, all the way

from the singleton set {a} to the entire product universe N ; we would not have any basis to select

one subset over the other. While this intuition is correct for all the products in N , the choice of

the outside option reveals more.

To see this, note that in the de�nition of the CTC model class, we �x the position of the outside

option to be at the bottom (i.e., at position n+ 1) of all the preference lists. This does not restrict

Electronic copy available at: https://ssrn.com/abstract=3410019



Jagabathula, Mitrofanov, and Vulcano: Demand estimation under uncertain consideration sets
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 13

the generality of the CTC model class (cf. Proposition 1), yet provides us with valuable information

on the customers' consideration sets. Speci�cally, because the outside option is the least preferred

option, a customer chooses the outside option only if the sampled consideration set is disjoint from

the o�ered set. In other words, if S is the o�er set, then a customer choosing the outside option

must have sampled a consideration set C ⊆N \S. We, therefore, have that P0(S) =
∑

C⊆N\S �(C)1.

For example, when S =N , it follows that a customer will choose the outside option only if they

sample the empty set as the consideration set; therefore, P0(N) = �(∅). Similarly, if S =N \ {a1},

then the customer chooses the outside option only if their sampled consideration set is {a1} or

the empty set, which implies that P0(N \ {a1}) = �({a1}) + �(∅). From this, we can back out

the value of �({a1}). More generally, we use a particular form of the inclusion-exclusion principle

stated in Graham (1995) to back out the consideration set distribution. For any �nite set Z, if

f : 2Z → R and g: 2Z → R are two real-valued set functions de�ned on the subsets of Z such that

g(X) =
∑

Y⊆X f(Y ) for every X ⊆ Z, then the inclusion-exclusion principle states that f(Y ) =∑
X⊆Y (−1)|Y |−|X|g(X) for every Y ⊆ Z. Our result then follows from replacing f(Y ) with �(C)

and de�ning g(X) = P0(N \X) =
∑

C⊆X �(C). For completeness, we provide an alternative proof

of this result from the �rst principles in Appendix A2.

Although the marginal distribution over consideration sets is identi�able, the marginal distribu-

tion over rankings itself is not. This follows from an existing result in (Sher et al., 2011), which

shows that a general distribution over rankings (which is one of the building blocks of our CTC

class) is not uniquely identi�able from choice probabilities alone for n≥ 4. Therefore, the mixture

of ICS models is also non-identi�able given the result stated in Proposition 2.

Empirical evidence in the marketing literature suggests that the size of the consideration sets

for most customers in di�erent categories is relatively small, e.g., Hoyer (1984) concludes that the

median number of laundry detergents that a consumer considers before making a purchase is one.

When the size of consideration sets is bounded above by k, with k < n, it follows from Proposition 3

that to recover �, we need choice probabilities under o�er sets of size n− k or larger.

Corollary 1. Consider a CTC model in which customers sample consideration sets of size at

most k for some 1 ≤ k ≤ n; that is, �(C) = 0 whenever |C| > k. Furthermore, suppose that the

no-purchase option is the least preferred product in all the preference lists in the support. Then, the

distribution � over consideration sets can be identified using choice probabilities under offer sets of

size n− k or larger, i.e., from the collection {P0(S): |S| ≥ n− k}.

1 Note that we can obtain the system of 2n linear equations to estimate probabilities to sample 2n consideration sets
by writing down the system of equations P0(S) =

∑
C⊆N\S λ(C), for all possible o�er sets S.
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When the consideration sets are small, Corollary 1 argues that it is su�cient to collect choice

probabilities for the no-purchase alternative from large o�er sets. In many applications, however,

�rms cannot o�er very large o�er sets to their customers because of space constraints either in a

physical store or on the relevant locations (e.g., top slots) of a website. The next proposition shows

that when the consideration sets are of size at most k, then the consideration set distribution �

can be recovered using choice probabilities of o�er sets of size at most k.

Proposition 4. Consider a CTC model in which customers sample consideration sets of size at

most k for some 1≤ k ≤ n. Let {P0(S):S ⊆N; |S| ≤ k} be a collection of choice probabilities that

are consistent with such a CTC model. Then, we have

�(C) =
∑
X⊆N

∑
Y⊇X∪C

(−1)1+|Y |−|X�C| · I[|X ∪C| ≤ k < |Y |] ·P0(X);

where X�C denotes the symmetric difference (X \C)∪ (C \X).

The proof of the proposition is involved. It requires establishing several combinatorial identities.

We present it in Appendix A2.

3.3. The general consideration set (GCS) model

The results in the previous section focus on the recovery of the marginal distribution over con-

sideration sets. To ensure complete identi�cation, we need to restrict our CTC model further. We

consider the class of models in which customers are homogeneous in their preference orderings, that

is, the model is described by a single preference list, but is heterogeneous in their consideration

sets. We call this model the general consideration set (GCS) model. Similar to the CTC class, we

parameterize the GCS models as a mixture of ICS models sharing the same ranking.

More precisely, we assume that the GCS model is de�ned by a single preference ordering � and

a distribution �(·) over consideration sets. As before, the outside option is ranked at the bottom

of the preference list, and a customer samples a consideration set according to � and then chooses

the most preferred product according to � from the set (S ∩C)+. With this restriction, we show

that the choice rule is also identi�able:

Proposition 5. Suppose that the collection of choice probabilities {Pj(S):aj ∈ S; |S| ≤ 2} are con-

sistent with an underlying GCS model. Then, for all 1≤ i; j ≤ n and i 6= j, we have that if Pi({ai})>
Pi({ai; aj}), then �(aj)<�(ai).

The argument is intuitive. Given that there is a single preference list shared by all the consumers,

if, for any given ai alone, the presence of another aj lowers its probability of being chosen, it is

because aj is preferred over it.

Unsurprisingly, the GCS model is not as rich as the CTC model class. In particular, it is a special

case of the RUM choice rule.
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Proposition 6. The GCS choice model is a special case of the RUM choice rule, that is, GCS ⊆

RUM , but GCS 6=RUM .

The proof of the proposition is provided in Appendix A2 and uses the result in Proposition 5. It

exhibits an example of a choice model that belongs to the RUM class but not to the GCS class.

Going back to Proposition 5, we assumed therein that the collection of observed choice probabil-

ities is consistent with an underlying GCS model. To verify if that is indeed the case, we establish

here a set of necessary and su�cient conditions that the observed choice probabilities must satisfy.

Proposition 7. The collection of choice probabilities {Pj(S):aj ∈ S+; S ⊆N} is consistent with a

GCS model with unique parameters � and consideration set distribution � such that �(C)> 0 for

all |C| ≤ 3 and �(C)≥ 0 whenever |C|> 3 if and only if it satisfies the following conditions:

Condition 1. For all offer sets S ⊆N and a1; a2 ∈ S such that a1 6= a2: if P1(S \ {a2}) 6= P1(S),

then it must hold that P2(S \ {a1}) = P2(S).

Condition 2. For all offer sets S;S′ ⊆N and a1; a2 ∈ S ∩S′ such that a1 6= a2:

if P1(S \ {a2})>P1(S), then it must hold that P1(S′ \ {a2})>P1(S′); and

if P1(S \ {a2})=P1(S), then it must hold that P1(S′ \ {a2})=P1(S′).

Condition 3. For all offer sets S ⊆N , we have that
∑

X⊆S(−1)|S|−|X|P0(N \X)≥ 0 with a strict

inequality when |S| ≤ 3.

Proposition 7 is similar to the set of conditions established in Manzini and Mariotti (2014) (see

Theorem 1) for the case when the consideration set distribution � has the product form due to the

independence of the attention (or propensity) parameters. Our result consists of new conditions

applied to a general consideration set distribution �. Condition 1 is similar to the I-Asymmetry

assumption in Manzini and Mariotti (2014), which states that either product a2 inuences the

sales of product a1 or vice versa, but not both (note that the inuence may either be an increase

or decrease). In other words, inuence is one-directional and two products cannot inuence the

sales of each other. Condition 2 states that if product a2 inuences the sales of product a1 in one

o�er set, then it must continue to do that in all the o�er sets. That is, the direction of inuence

is consistent across all the o�er sets. Condition 3 is a technical restriction to ensure the existence

of a valid probability distribution function � over the consideration sets. The strict inequality in

Condition 3 is needed to ensure that the preference list over products in N satis�es the transitivity

requirement. The proof of Proposition 7 is presented in Appendix A2. As it can be observed therein,

establishing necessity is straightforward, but establishing su�ciency requires signi�cant work.
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4. Data model and estimation methodology

In this section, we propose techniques to estimate the general CTC model and its restricted versions

presented above, from sales transaction data. The building block is an algorithm to �t a single-

class, ICS model, which we then extend using the expectation-maximization (EM) framework to

�t a �nite mixture of them.

Throughout the section, we assume access to sales data consisting of purchase transactions over T

periods. Every purchasing instance is represented by a tuple (ajt ; St) for t ∈ {1; :::; T}, where St

denotes the subset of products o�ered in period t and ajt denotes the product purchased.

We highlight here that the CTC model is amenable to incorporating product features. In

Appendix A3.1 we illustrate how to do it using three popular methods in machine learning |

logistic, decision tree, and random forest- regressions.

4.1. Independent consideration set (ICS) model

To formulate the likelihood function under this model, we de�ne binary linear ordering variables �kj,

∀ j; k; k 6= j; where �kj = 1 if product ak is preferred over product aj in the preference list �
(or, equivalently, �), and �kj = 0 otherwise. Note that � is an alternative parameterization of the

preference order �. Then, the log-likelihood function under the single class ICS model can be

shown to be

L (�;�) =
T∑
t=1

[
log �jt +

∑
ak∈St:
k 6=jt

[�kjt log(1− �k)]
]
;

and the maximum likelihood estimation (MLE) problem can be formulated as follows:

max
θ;δ

L (�;�)

s.t.: �jk + �kj = 1; ∀ j; k; j < k; (2)

�jk + �kp + �pj ≤ 2; ∀ j; k; p; j 6= k 6= p; (3)

�jk ∈ {0;1}; ∀ j; k; (4)

0≤ �j ≤ 1; ∀ j; (5)

where constraints (2) and (3) ensure that � indeed represents a total order. In particular, the set of

constraints (2) ensures that either aj is preferred over ak or vice versa, and the set of constraints (3)

imposes the total ordering among any three products.

4.1.1. Estimation methodology. To be able to solve the above problem, we reformulate

it as follows. First, we introduce a new variable � de�ned as �kj = �kj�k, ∀ j; k and rewrite the

likelihood function in the following way

L (�;� ) =
T∑
t=1

[
log �jt +

∑
ak∈St:
k 6=jt

log(1− �kjt)
]
:
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Note that with this change of variable, the log-likelihood function becomes jointly concave in �

and � . We can then formulate the MLE problem in terms of the variables (�;� ;�):

max
θ;τ ;δ

L (�;� )

s.t.: �kj ≤ �k; ∀ j; k; (6)

�kj ≤ �kj; ∀ j; k; (7)

�kj ≥ �k + �kj − 1; ∀ j; k; (8)

�kj ≥ 0; ∀ j; k; (9)

(�; �) satisfy (2)− (5);

where linear constraints (6)-(9) ensure that �kj = �kj�k, ∀ j; k, given that �kj is a binary variable,

and constraints (2) and (3) ensure again a total order on �. We reformulate the MLE problem to

have a linear objective function:

max
θ;τ ;δ;�

� (10)

subject to (�;� ;�) satisfy (2)− (5) and (6)− (9);

�≤L (�;� ): (11)

Note that if we know the ranking �, then optimization problem (10) reduces to solving a globally

concave maximization problem with a unique, closed form solution given by

�j =

∑T

t=1 I[ajt = aj]∑T

t=1 I[ajt = aj] +
∑T

t=1 I[aj ∈ St; aj � ajt ]
: (12)

Next, we show how to apply the outer-approximation method of Duran and Grossmann (1986) to

solve the optimization problem (10)-(11). The proposed algorithm e�ectively exploits its structure,

where we have linearity of the constraints involving the binary variables �, and convexity of the

non-linear constraint (11) which only depends on continuous variables � and � . In order to linearize

the optimization problem, we use the outer-approximation of a convex set by the intersection of

the collection of its supporting half-spaces. The broad idea of this algorithm is to approximate

the convex constraint in the MINLP (i.e., constraint (11)) with a set of linear constraints. As a

result, solving the MINLP reduces to solving a sequence of MILPs, where at each iteration we add

only one linear constraint to the MILP formulated in the previous iteration. Next, we provide the

details of how to apply the outer-approximation algorithm to our MLE problem.

Let C[x;y] denote a constraint which is a linear approximation of the constraint (11) at a point

(x;y), i.e.,

C[x;y] :=

{
�≤L (x;y) +

T∑
t=1

1

xjt
· (�jt −xjt) +

T∑
t=1

∑
ak∈St:
k 6=jt

1

ykjt − 1
· (�kjt − ykjt)

}
:
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Then we de�ne the following optimization problem

max
θ;τ ;δ;�

� (13)

subject to (�;� ;�) satisfy (2)− (5) and (6)− (9);

C[x;y] ∀ (x;y)∈A (14)

�L ≤ �≤ �U ;

where we have replaced constraint (11) with the �nite collection of linear constraints (14) at points

in a set A that is incrementally built. It follows from the convexity of constraint (11) that every

point that satis�es constraint (11) also satis�es the collection of constraints (14) for every �nite set

A. We thus obtain an outer approximation. We also add bounds �L and �U to the log-likelihood

function, which will be chosen in each iteration to tighten the interval containing the solution. This

outer approximation de�nes the optimization subproblem as an MILP. Because of the potentially

many continuous points required for outer-approximation, we solve a sequence of MILPs to build

up increasingly tight relaxations of the original MINLP. The algorithm to calibrate the ICS model

is provided below.

ICS model calibration algorithm

Input Given sales transaction data, do:

Step 1 Sort products in decreasing number of sales and let �(0) (i.e., �(0)) denote the corresponding ranking.

Compute �(0) using equation (12) given �(0).

Step 2 Obtain all possible rankings �(1);�(2); :::;�(m), by swapping positions of any pair or two pairs of

items in �(0). Compute �(i) using equation (12) given �(i) for all i∈ {1;2; :::;m}.

Step 3 Set �
(i)
kj := �

(i)
kj �

(i)
k , ∀ j; k and for all i ∈ {0;1;2; :::;m}. Recall that �(i) is an alternative parameteri-

zation of the ranking �(i). Set �L := max
0≤i≤m

L (�(i);� (i)) and �U :=∞. Set i :=m.

Step 4 While |�U −�L|> " and running time did not exceed the limit, do:

• Set i := i+ 1.

• Solve optimization problem (13) with set A{(�(k);� (k))}|i−1k=0 and obtain solution �(i); �(i). Note

that in each iteration, we only add one constraint to the optimization problem solved in the

previous iteration.

• Update �(i) using equation (12) given �(i).

• Set �
(i)
kj := �

(i)
kj �

(i)
k , ∀ j; k.

• Set �L :=max {L (�(i);� (i)); �L} and �U = �(i).

Endwhile

Step 5 Find solution �∗ = �(i
∗) and �∗ = �(i

∗) where i∗ := argmax
0≤k≤i

L (�(k);� (k)).

Step 6 Stop.
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Overall, the proposed algorithm consists of solving a �nite sequence of MILPs. The size of

each MILP scales in n, quadratically in the number of variables and cubically in the number of

constraints. It follows from existing results in Duran and Grossmann (1986) that this algorithm

converges to the global optimum in the long run.

Empirically, we analyze the performance of the proposed algorithm to estimate the ICS model

on the IRI Academic dataset (to be described later in Section 6). We limited its running time

to 3 hours, and the precision was set to "= 1e− 6. It follows from Figure A4 in Appendix A3 that

the optimality gap of the outer approximation algorithm (1) to calibrate the ICS model is 3.3%

on average over 20 product categories, determined by the time limit, which indicates that this

algorithm provides quite a reasonable performance in our setting. We also implemented a cutting

plane method as an alternative algorithm (details also provided in Appendix A3), but the results

were of slightly lower quality.

4.2. CTC model calibration: EM algorithm

To make estimation tractable, we represent the general distribution �(·; ·) using a �nite mixture

of ICS models and then apply the EM algorithm. In a nutshell, this method starts from arbitrary

parameter estimates x̂(0). Then, it computes the conditional expected value of the log-likelihood

function E[log L (x)|x̂(0)] (the \E", expectation, step). Next, the resulting expected log-likelihood

function is maximized to compute new estimates x̂(1) (the \M", maximization, step), and both

steps are repeated within a loop until convergence or a time limit is reached, to get a sequence of

estimates {x̂(q); q= 1;2; :::}.

The log-likelihood function to be maximized can be represented in the following way:

log L (;�;�) =
T∑
t=1

log
( K∑
h=1

h�h;jt
∏
aj∈St:

aj �h ajt

(1− �hj)
)
;

where h ≥ 0 is the weight of the class h, s.t.
∑K

h=1 h = 1; St denotes the set of o�ered items at

time t; ajt denotes the product purchased at time t; and T denotes the number of transactions.

We next briey outline the E-step and M-step of every iteration and how we start the algorithm in

the context of our CTC estimation problem. Further speci�c details are relegated to Appendix A3.5.

Initialization: we randomly allocate sales transaction to one of the K classes which allows us

to compute initial mixing point probabilities (0), and estimate initial parameters: �
(0)
h and �

(0)
h

for all h∈ {1; :::;K}. To this end, we use the outer approximation algorithm for the ICS model on

each class.

Then, we iterate over the sequence of the following E- and M-steps:
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E-step: we compute the probability of every transaction at time t to come from a segment h

customer, based on the parameter estimates ((q−1); �
(q−1)
h ;�

(q−1)
h ) of the previous iteration, and

the transaction data.

M-step: �rst, we update the mixing distribution (
(q)
h ) of every segment h ∈ {1;2; :::;K} based

on the E-step membership probabilities, and then optimize the resulting conditional expected value

of the log-likelihood function by using the outer approximation algorithm on each segment. This

way we obtain �
(q)
h and �

(q)
h for all h∈ {1; :::;K}.

Even though it is well acknowledged that the convergence of EM algorithms is not guaranteed a

priori, it was veri�ed consistently in all our experiments.

A key observation is that we can calibrate the CTC model by estimating the following parameters

at the segment level: (1) membership probability h, (2) propensity parameter �h, and (3) rank-

ing �h. Therefore, the approach is convenient when we have a small to moderate support of customer

segments.

In a similar way, we can also calibrate the GCS model with the EM algorithm (see Appendix A3.4

for details). Note that it is very straightforward to build upon Proposition 2 and show that GCS

model can also be represented as a mixture of ICS models sharing the same rank list �.

For both the CTC and the GCS models, in our implementation, we consider a mixture of up

to K = 5 classes and report out-of-sample results for the number of mixtures that drove to best

in-sample results.

5. Study based on synthetic data: Robustness to noise in o�er sets

In this section, we describe the results of an extensive simulation study, the main purpose of which

is to characterize the performance of CTC models relative to the classical RUM models under

various noise regimes. We �nd that CTC models are generally more robust to noise in the o�er sets

and outperform the classical RUM models when noise a�ects training and test o�er sets di�erently.

To streamline the analysis of this simulation study, we assume three ground truth, RUM-based

models of demand: the classical MNL, the rank list, and the LC-MNL . To showcase the potential

of CTC models, we start here from the restricted, single-class, ICS model. Given the similarity of

the insights obtained, here we report results for the MNL ground truth model and defer results

based on the rank-based and LC-MNL ground truth models to Appendix A4.1.

In our simulations, customers have perfect information of the o�er sets and consider all the items

on o�er. Given the o�er set S, the customer chooses product aj with probability vj=
(

1 +
∑

ai∈S
vi

)
,

where the parameter vi > 0 is the \weight" or the attraction value corresponding to product ai,

and the 1 stands for the weight of the outside option. The modeler observes customer choices but
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does not observe the o�er sets perfectly. In fact, the assumed o�er sets could be a superset of the

true o�er set, consistently with the common inventory inaccuracy problems. In the presence of

such noise, we compare the predictions of an MNL model against an ICS model, both �tted to the

choice observations, to understand the conditions under which one outperforms the other one.

In our setup, the benchmark MNL model does not su�er from model misspec�cation but does

su�er from noise in the o�er sets. The ICS model, on the other hand, su�ers from both model

misspeci�cation and noise in the de�nition of the o�er sets, but it is designed to handle the latter

more e�ectively.

Our main �nding is that the ICS model signi�cantly outperforms the ground-truth MNL model

when the noise is asymmetric between the training and test data sets. In other words, if product

availability is hard to predict (because it might look di�erent from the training data), then models

based on the consider-then-choose framework outperform classical RUM models.

5.1. Synthetic data generation process

We assume that we have n= 15 items in the product universe. For each product aj, we sample its

nominal utility uj uniformly at random from the interval [1; 2] and set its MNL weight vj = exp(uj).

We normalize the MNL weight of the outside option to 1. We parameterize the level of noise in

the de�nition of the o�er set using two parameters: the noise exposure parameter,  ∈ [0;1], and

the noise intensity parameter, � ∈ [0;1]. The noise exposure parameter determines if a product

is exposed to noise. Intuitively, the noise exposure parameter is designed to control the degree

of asymmetry in the level of noise between the training and testing datasets. The noise intensity

parameter speci�es the conditional noise level, as described below. Next, for given values of  and �,

and realized parameters v of the MNL model, the data simulation proceeds as follows:

1. We sample 100 o�er sets, {Sm}|100
m=1, uniformly at random, which correspond to the underlying

`true' o�er sets.

2. For each o�er set Sm, we generate 10,000 sales transactions according to the MNL model with

parameter values v.

3. We generate a single exposure set SX containing products exposed to noise by including each

product aj ∈N with probability .

4. We generate noisy o�er set observations by modifying each `true' o�er set Sm. To this end,

we add extra products from the exposure set SX with probability �; speci�cally, we obtain the

noisy o�er set ~Sm by adding each product aj ∈ SX \Sm with probability � to the set Sm.

We generated both training and test datasets for 200 di�erent combinations of  and �:  ∈

{0:05;0:1; :::;1} and � ∈ {0:1;0:2; :::;1}. First, we generated 100 realizations of MNL parameters.
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Next, for given values  and � and for each MNL ground truth realization, using the procedure

above, we generated both training and test synthetic instances of the same size. Each instance

consists of 100 randomly generated o�er sets, and for each o�er set, 100,000 transactions, giving

a total of 10,000,000 transaction records. All our algorithms were coded in Python (version 2.7.2)

using Gurobi (version 7.0) as the optimization engine, and run on a 3.0Ghz processor with 16GB

of RAM.

Our simulation setup is designed to capture not only di�erent noise intensities but also di�erent

degrees of noise asymmetry between the training and test datasets. The noise exposure parameter 

captures this asymmetry as follows. Letting STr
X and ST

X denote the training and test exposure sets,

respectively, the cardinality of the symmetric di�erence (STr
X \ST

X)∪(ST
X \STr

X ) captures the number

of products that are exposed to noise in only one of the datasets. In expectation, this cardinality

is equal to 2(1− )n because the probability that a product is exposed to noise in only one of

the data sets is equal to (1− ) + (1− ) = 2(1− ). Therefore, the degree of asymmetry in

the level of noise between the training and testing datasets is highest when  = 0:5 and lowest

when  = 0 or  = 1. Furthermore, the o�er sets are perfectly observed in both the training and

test datasets when  = 0 or � = 0, and the noise is perfectly symmetric when  = 1. In practice,

noise may be asymmetric when calibrating future demand forecasts because promotion strategies,

product availability, or replenishment processes may change over time.

5.2. Prediction scores

We evaluate our models on two standard metrics, the mean absolute percentage error (MAPE)

and the root mean square error (RMSE), de�ned as follows (in percentage points):

MAPE =
100

|N |
∑
aj∈N

|nj − n̂j|
10 +nj

RMSE =
100∑

aj∈N
nj

√√√√ 1

|N |
∑
aj∈N

(nj − n̂j)2
; (15)

where nj denotes the observed sales for aj ∈N in the test dataset and n̂j denotes our prediction.

We make predictions on noisy test o�er sets, so n̂j = 10000 ·
∑100

m=1 f(aj; ~Sm), where ~Sm is the noisy

test o�er set and f(aj; ~Sm) is the probability that product aj will be purchased from o�er set ~Sm

under the �tted model. Note that we add 10 in the denominator of MAPE to deal with unde�ned

instances, and we divide the RMSE score by the total number of observed sales in the test data

set to make it a relative metric so that it is more interpretable.

Intuitively, both scores quantify the power of the model combinations to predict the market

shares for each product, with lower scores indicating a better prediction accuracy.
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5.3. Results and discussion

In Figure 2 we present a heatmap of the prediction scores under an MNL model �tted to the training

data where each column corresponds to a particular noise intensity � and each row corresponds to

a particular noise exposure . We focus on the MAPE and RMSE prediction scores in the left and

right panels, respectively. Recall that the MNL model is the ground truth model for this simulation

study. As expected, the MNL model captures the ground-truth choice probabilities almost exactly

when  = 0:05 and �= 0:1, i.e., there is only a small amount of noise added to the sales transaction

data. However, the MNL prediction scores worsen with higher noise intensity for a given level of

noise exposure. Interestingly, it can also be seen that MNL prediction scores are not monotonic

with respect to the noise exposure level, i.e., the scores �rst increase and then decrease with the

noise exposure level, for a given noise intensity. The �tted MNL model performs the worst at noise

exposure level  = 0:5, which as noted above, corresponds to the highest degree of noise asymmetry

between the training and test data sets, whereas the performance is relatively good even at high

noise intensity levels when the degree of asymmetry is low ( is close to 0 or 1).

To provide a quantitative understanding of the variation of the model performance with respect

to the two noise parameters  and �, we carry out the following linear regression:

Yik = �0 +�1 · �i +�2 · �2
i +�3 ·Asymmk +�4 · Sharedk + "ik; (16)

where the index i stands for the noise intensity �i ∈ {0:1;0:2; :::;1}, and the index k stands for the

noise exposure k ∈ {0:05;0:1; :::;1}. The outcome variable Yik is the MAPE prediction score of the

corresponding cell.

The �rst two terms in the regression capture dependence on the noise intensity level �i and the

last two terms capture dependence on the noise exposure level k. We add a quadratic term in the

noise intensity level to capture any potential non-linear response to the noise intensity level. We

also separate out the dependence on  into degree of asymmetry and degree of overlap in noise.

The covariate Asymmk is the probability that an item in the product universe is exposed to noise

only in the test dataset or only in the training dataset, and the covariate Sharedk is the probability

that an item in the product universe is exposed to noise both in the test and training datasets.

Note that Asymmk = k(1− k) + (1− k)k = 2k(1− k) and Sharedk = 2
k, where k is the noise

exposure.

The results for the regression (16) are reported in the last column of Table 1. It follows from there

that the noise intensity � deteriorates the predictive performance of the MNL model in a non-linear

way, with the coe�cient for the linear term being positive and the coe�cient for the quadratic term

being negative. The variables Asymmk (i.e., degree of noise asymmetry) and Sharedk (i.e, the degree
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Figure 2 Heatmap of the prediction scores under MNL model where each column corresponds to a particular

noise intensity η, and each row corresponds to a particular noise exposure γ. We focus on the MAPE

and RMSE scores in left and right panels, respectively. The lower the score, the better.

of the shared noise) are positively correlated with the MAPE score, which also implies that the

prediction performance of the MNL model worsens as the number of items in the product universe

that are exposed to noise increases. Interestingly, the coe�cient of the variable Asymm has more

than seven times higher magnitude than the coe�cient of the variable Shared, even though both

variables have a comparable range of possible values (e.g., Asymm varies from 0 to 0.5 and Shared

varies from 0 to 1), which indicates that the benchmark (i.e, MNL model) struggles the most in

making accurate predictions when the impact of the noise is asymmetric between the training and

test sales transactions. Note that the independent variables in the regression model (16), included

as Model (5) in Table 1, explain most of the variation in the MAPE score under the MNL model,

i.e., R2
adj = 0:93.

These regression results indicate that it is not the noise per se, but the asymmetry in noise that

is hurting model performance. The reason is that when noise is symmetric, model estimates are

biased but the bias is in the correct direction. For example, if a product is frequently stocked out

but the model does not know about it, then the model attributes low sales to a low attraction value

as opposed to a stockout, resulting in an MNL weight that is biased downward. If the product

continues to be frequently stocked out in the test data set, then the model should continue to

forecast low sales, which would happen with a downward-biased MNL weight. On the other hand,

if the stockout frequency is asymmetric and, say, reduces in the test data set (perhaps because of

better replenishment), then the MNL model forecasts would be incorrectly biased downward.

In Figure 3, we compare the performances of the MNL and the ICS models under di�erent noise

regimes. Each cell presents the improvement obtained by the ICS model over the MNL model,

computed as the di�erence in the corresponding prediction scores, so that higher values are better
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Model (1) Model (2) Model (3) Model (4) Model (5)
Score Score Score Score Score

Intensity 27.336*** 42.079***
(17.997) (14.246)

Intensity2 22.929*** -13.403***
(15.755) (-5.122)

Asymm 34.662*** 39.320***
(8.677) (28.338)

Shared -2.590 5.385***
(-1.143) (8.015)

const 6.260*** 12.467*** 9.770*** 22.224*** -11.694***
(6.643) (17.021) (6.698) (20.645) (-12.579)

No. Observations: 200 200 200 200 200
R-squared: 0.621 0.556 0.275 0.007 0.929
Adj. R-squared: 0.619 0.554 0.272 0.002 0.928

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 1 Regression models where the dependent variable is the MAPE score under the MNL model.

for the ICS model. Unsurprisingly, the MNL model is sign�cantly better than the ICS model when

the level of noise is small (small values of both  and �) because the ICS model is misspeci�ed.

But, at high values of noise intensity �, and values of  close to 0:5, we see that the ICS model

outperforms the MNL model. Table 2 presents the results from regressing the improvement scores

according to regression equation (16). As above, we �nd that the bene�ts of the ICS model are most

signi�cant when the noise is asymmetric between the training and test o�er sets. Although not

shown here, the pattern of the heatmap for the ICS model looks similar to that of the MNL model

in Figure 2. However, the ICS model is more robust to noise (both the intensity and the degree

of asymmetry) and its performance does not deteriorate as much, because of which it outperforms

the MNL model in asymmetric and high noise regimes.

We highlight that the results in this section are robust to di�erent asymmetric scenarios of noise

as well (see Figure A10 in Appendix A4.1).

In order to shed some light on one potential mechanism that drives the superior performance

of ICS over the MNL model, we present a stylized study in Appendix A4.2. The main insight we

obtain is that the one-dimensional cannibalization property of the ICS model makes it robust to

o�er set noise. This property states that the presence or absence of lower-ranked products does

not a�ect the demand for higher-ranked products. As a result, o�er set noise mainly impacts the

lower-ranked products, limiting the overall error rates. See Appendix A4.2 for details.
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Figure 3 Heatmap of the prediction score improvements of the ICS model versus MNL, where each column

corresponds to a particular noise intensity η, and each row corresponds to a particular noise exposure γ.

We focus on the MAPE and RMSE scores in left and right panels, respectively. The higher the score,

the better.

Model (1) Model (2) Model (3) Model (4) Model (5)
Impr. Impr. Impr. Impr. Impr.

Intensity 4.162*** 16.621***
(7.883) (17.214)

Intensity2 3.025*** -11.327***
(6.157) (-13.241)

Asymm 7.311*** 11.530***
(7.112) (25.421)

Shared 2.539*** 4.878***
(4.811) (22.207)

const -2.966*** -1.842*** -3.108*** -1.588*** -11.042***
(-9.055) (-7.449) (-8.281) (-6.332) (-36.333)

No. Observations: 200 200 200 200 200
R-squared: 0.239 0.161 0.203 0.105 0.874
Adj. R-squared: 0.235 0.156 0.199 0.100 0.871

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2 Regression models where the dependent variable is the MAPE score improvement of the ICS model

over the MNL model.

6. Case study on retail data

Our analysis so far has been based on synthetic data, establishing that even the restricted ICS

model outperforms classic choice models when o�er sets are uncertain and the noise is asymmetric

between the training and test o�er sets. We now present a real-world case study where such

conditions are met.

Electronic copy available at: https://ssrn.com/abstract=3410019



Jagabathula, Mitrofanov, and Vulcano: Demand estimation under uncertain consideration sets
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 27

For our study here, we use the household purchase panel and store data from the IRI Academic

Dataset (Bronnenberg et al. (2008)). This panel dataset keeps track of the household purchase

histories for grocery and drug store chains, collected from the two largest Behavior Scan markets

in the US over the years 2001-2011. We also use the GCS model, more general than the previous

ICS, as a baseline to conduct our analysis. Because we now have access to panel data, we also

implement a variant of the EM algorithm for the estimation of the parameters of the GCS model,

as described in Appendix A3.4.2.

The purpose of this empirical study is threefold: (i) provide various real-world scenarios based

on the IRI dataset where we are likely to face signi�cant noise in the o�er set de�nitions when

making the long-term demand predictions, (ii) investigate the prediction performance of choice

models under di�erent noise regimes, e.g., quantify the improvement of the GCS model over the

latent class MNL (LC-MNL) model on panel data under several real-world scenarios with various

noise intensities, and (iii) compare the GCS model studied in this paper with the more restricted

ICS model of Manzini and Mariotti (2014).

Our main �ndings are as follows: (a) the improvements of GCS versus the benchmark LC-

MNL are higher for scenarios in which the o�er sets have a high level of noise, (b) the predictive

performance of the GCS model is robust to the noise level in the o�er sets, and (c) the GCS model

signi�cantly outperforms the ICS model in prediction accuracy, indicating that the independent

consideration set model is indeed restrictive.

In this section, we present all the comparisons with respect to the GCS model (see the GCS model

estimation details in Appendix A3.4.2). It is natural to wonder if the more general CTC model

(see Section 4.2 above for the CTC model estimation framework), which allows for heterogeneity

in customer preference orders, o�ers additional gains in prediction performance. To this end, we

carried out a similar analysis with the CTC model; see Appendix A3.6 for details. From our results,

we can not claim dominance of GCS or CTC; that is, the GCS model dominates the CTC model

under the �rst noise generation process whereas the CTC model outperforms the GCS model under

the second noise generation process. Based on this �nding, we focus our analysis and discussions

mainly on the more parsimonious GCS model.

6.1. Data preprocessing

The dataset consists of weekly sales transactions. We analyze a total of 20 categories, presented

in Table A1. We focus on sales transaction data from the calendar year 2007. For every store

visit, we are given the following information: the Universal Product Code (UPC) and price of the

purchased item, a binary indicator if the product is on price or display promotion, the purchased

quantity, the customer ID, the store ID, and the week when the purchase was made. Since we
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are not given explicit information about the subset of items o�ered to each individual upon her

store visit, we follow existing literature (e.g., Jagabathula and Vulcano (2018)) and construct this

subset by aggregating all the transactions made in a particular store within a given category

during a particular week. We also aggregate items with the same vendor code (i.e., items that are

associated with the same brand name) into a single product due to data sparsity and divide the

sales transaction data into two parts: the training set, which consists of the �rst 26 weeks of sales

observations; and the test set, which consists of the last 26 weeks of sales observations. Note that

we exploit the panel data structure in the predictive performance analyses below.

6.2. Benchmark models

We compare the GCS model with the benchmark: the LC-MNL choice model with K latent classes.

In this model, each customer belongs to one unobservable class, and customers from class h ∈

{1;2; ::;K} make purchases according to the MNL model associated with that class. The model is

described by the parameters of the MNL model characterizing each class and by the prior proba-

bilities of customers belonging to each of the classes. Once the model parameters are estimated, we

make transaction-level predictions for each customer by averaging the predictions from K single-

class models, weighted by the posterior probability of class membership. Similarly to the GCS

model, we estimated the model for K = 1;2; :::;5, and report the best performance measure from

these 5 variants, for each of the performance metrics introduced in Section 5.2. Because we have

panel data, we make individual-level predictions and consequently, the number of predicted sales

n̂j for product aj is now calculated as n̂j =
∑
i∈U

Ti∑
t=1

fi(aj; ~St), where U is the set of all customers,

Ti is the number of transactions of customer i, and fi(aj; ~St) is the predicted probability that

customer i purchases item aj from noisy o�er set estimate ~St. Note that we do not have access to

the `no-purchase' observations in our dataset and thus our prediction metrics do not include them.

6.3. Results and discussion

Demand predictions or forecasts using choice models implicitly involve two steps: (a) forecasting

the o�er set and (b) predicting the demand for each product given the forecasted o�er set. Most

existing literature on choice models has only focused on the second step, implicitly assuming that

the future o�er set is accurately speci�ed. In practice, one must also forecast future o�er sets and

these forecasts often contain errors. In our study, we follow these two steps explicitly to study the

impact of forecast errors in the �rst step on the overall accuracy of predictions.
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6.3.1. Different data aggregations towards offer set forecasting. We consider three

di�erent prediction tasks that naturally arise in practical retail contexts and which di�er in the

level of di�culty of forecasting the o�er sets.

1. Short-term forecasts. Often, store managers want to make short- or immediate-term forecasts,

say, for the next week, to help with inventory and promotion planning. For these forecasts,

the manager has a reasonably accurate estimate of the product assortment or o�er set.

2. Long-term forecasts. To be successful in major strategic and investment decisions, a store

manager must also make long-term demand forecasts, say, over the next quarter or the next

year. For making these forecasts, the retailer often does not have a good sense of how the

product assortment evolves over the forecasting horizon because of product replenishment and

stockouts, which manifest as errors in o�er set forecasts.

3. Warehouse forecasts. Another scenario is when the warehouse of the retail chain distributes

products to the stores and makes centralized decisions on the inventory level in the warehouse.

In this case, the warehouse is likely to make predictions at the centralized level without

knowing the up-to-date information on product assortments in every store.

In each of these scenarios, the retailer has access to the same purchase observations to train

models on. It is the �rst step, that of forecasting the o�er sets, that these scenarios di�er on. As

we shall see, the CTC models and the classic choice models di�er on their ability to deal with noise

in o�er set forecasts.

We simulate these scenarios using the purchase observations we have as follows. As mentioned

above, we split the purchase transactions into training and test sets. In the training set, the

purchased product and the corresponding o�er set are known. Because of the way the o�er set was

inferred, it may contain errors, but we train all the models disregarding any potential errors. Note

that this process reects the standard way in which choice models are trained in the literature

and in practice. In addition to a trained choice model, the retailer must build what we call an

`OSForecaster' or an offer set forecaster. We abstract away from details of how such a forecaster

might be constructed and instead peek in our test dataset to simulate one. Speci�cally, let Srt

denote the set of o�ered products at store r and period t in the test horizon. Further, let Ttest

denote the set of test time periods.

For short-term forecasts, we provide the retailer with the number of purchasing customers at

each store r and period t, and the retailer must predict the sales for each of the products. In

practice, this will entail making sales predictions for the next week for each of the stores. To make

this prediction, the retailer must �rst forecast an o�er set for each store and time period during

the test horizon. To reect the fact that the retailer makes few errors in forecasting the next week's

o�er set, we assume that the short-term OSForecaster returns the `true' o�er set Srt when queried
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with a store r and time period t. The predictions of the OSForecaster are more complex for the

other two scenarios. In particular, to reect the di�culty of making such o�er set forecasts, we

assume that the OSForecaster provides not a point forecast, but a distribution over possible o�er

sets. We describe below how we use the test data to construct these distributions.

For long-term forecasts, we provide the retailer with the total number of purchasing customers at

each store over the 26 weeks (≈ 6 months) comprising the entire test horizon, and the retailer must

predict the sales for each of the products. To make these predictions, the retailer must �rst forecast

an o�er set to use for each store. We assume that when queried with a store r, the OSForecaster

returns a uniform distribution over 20 assortments, each of which is constructed as follows: we

�rst construct a random collection A of o�er sets by including o�er set Srt for each t ∈ Ttest with

probability 0:5 and then obtain one o�er set by taking the union of all sets in the collection A. Note

that every o�er set in the OSForecaster is obtained from sampling a new random collection A of

o�er sets. This construction is designed to reect the possibility that the retailer is able to forecast

some of the stock out and replenishment events, but not all.

The procedure we use for warehouse forecasts is similar. The retailer must generate sales forecasts

for each period t, across all the stores in the corpus, for which the retailer must forecast an o�er

set for each period t. We assume that when queried with a period t, the OSForecaster returns a

uniform distribution over 20 assortments, each of which is constructed as follows: we construct a

random collection A of o�er sets by including o�er set Srt for each store r with probability 0:5,

and then obtain one o�er set by taking the union of all sets in the collection A. This construction

is designed to reect the possibility that the retailer has information on the o�er sets at some of

the stores but not all.

6.3.2. Performance assessment. We evaluate all three scenarios in terms of the accuracy of

predicting the total sales of each product across the entire test horizon, as described in Section 5.2.

When the OSForecaster outputs a distribution, our predictions will be averaged over all the o�er

sets in the distribution. In Figure 4 we present scatter plots of the improvements of the GCS model

versus the LC-MNL model across 20 product categories under the three forecast scenarios discussed

above. In the left and right panels we measure the predictive performance of the models under

the MAPE and RMSE metrics, respectively, as de�ned in (15) (see Appendix A4.3 for alternative

de�nitions of these metrics and corresponding results). We observe that GCS outperforms LC-

MNL for around half of product categories for short-term forecasts, and for almost all product

categories under the second and third forecast types. Note that we have dots located to the right

of pluses with crosses being in between, under both MAPE and RMSE scores and across most

of the product categories. It reveals that the improvement of GCS over LC-MNL across product

Electronic copy available at: https://ssrn.com/abstract=3410019



Jagabathula, Mitrofanov, and Vulcano: Demand estimation under uncertain consideration sets
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 31

Figure 4 Scatter plots of the prediction score improvements (score di�erence) of GCS model over LC-MNL across

20 product categories. We focus on the MAPE and RMSE scores in left and right panels, respectively.

We illustrate three scenarios in each panel: (1) short-term forecasts, represented by pluses, (2) long-term

forecasts, represented by crosses, and (3) warehouse forecasts, represented by dots.

categories increases when we switch from short- to long-term, and from long-term to warehouse

forecasts.

Figure 5 exhibits MAPE (left panel) and RMSE (right panel) scores of the GCS and LC-MNL

models, averaging across 20 product categories, for the three di�erent scenarios. We observe that

the performance of the LC-MNL model deteriorates once we shift from short to long-term, and

from long-term to warehouse forecasts. On the other hand, the predictive performance of the GCS

model only moderately decreases once we switch to the noisy scenarios, i.e., the performances stays

rather at for all three scenarios. From the panels in Figure 5 we observe that the improvements

of GCS over LC-MNL are -5.6% (-0.027%), 5.3% (0.081%), and 33.5% (0.56%) under the �rst,

second, and third scenarios, respectively, based on the MAPE (RMSE) score.
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Figure 5 Average prediction scores over 20 product categories under GCS and LC-MNL choice models represented

by dashed bars and solid bars respectively. We focus on MAPE and RMSE scores in left and right panels

respectively. The lower the score the better.

The above observations show that the GCS model does not o�er much in terms of performance

gains when the test o�er sets can be forecasted accurately. It is only when one makes signi�cant

errors in forecasting the test o�er sets that we see a deterioration in the performance of the LC-MNL

model, while the performance of the GCS model remains robust to noise.

Turning back to Figure 4, we notice that the improvement of GCS over LC-MNL varies across

product categories for a given scenario. To better explain this variation, we regress the improvement

of GCS over LC-MNL for each category against the noise intensity, which captures how much the

forecasted o�er set di�ers from the true o�er set. We only consider the scenarios of long-term and

warehouse forecasts for this analysis because the noise intensity for short-term forecasts is zero by

de�nition. We de�ne noise intensity at the transaction level and aggregate the metric across all

the transactions. For each transaction, � in the test set, let S� denote the true o�er set and ~S�

denote the forecasted o�er set. For the transaction occurring at store r in period t, the forecasted

o�er set ~S� takes the value OSForecaster(r) and OSForecaster(t) for long-term and warehouse

predictions, respectively. We then use the following natural de�nition for noise intensity:

noise intensity =
1

# of test transactions

∑
�

E

[
| ~S� \S� |
| ~S� |

]
;

where the expectation is with respect to the distribution of the o�er set predictions ~S� . Intuitively,

for long-term forecasts, the noise intensity captures how much the o�er set at a store varies over

time; if there are very few stockouts, then the o�er set remains stable and the noise intensity is

close to zero, but if there are many stock outs then the o�er set varies a lot and the noise intensity
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Figure 6 Scatter plots and linear regressions of the MAPE score improvement of GCS vs. LC-MNL over the noise

intensity in the definition of offer sets across 20 product categories. Improvements are defined as the

difference between two scores. In the left and right panels, we focus on the long-term and warehouse

forecast scenarios, respectively.

is large. Similarly, for warehouse forecasts, the noise intensity captures how much the offer sets

vary across stores. The left and right panels in Figure 6 illustrate the regression under the long-

term and warehouse forecast scenarios, respectively. We see a clear positive correlation between the

improvement of GCS over LC-MNL and noise intensity in both panels, suggesting the improvement

becomes more significant with higher noise intensity in the product category.

In sum, our results all indicate that the CTC models have an advantage over the classic choice

models when we expect the forecasted offer sets to be noisy. We make a few remarks. First, it is

natural to wonder if our results are sensitive to the specific OSForecaster model we have used.

To alleviate this concern, we repeat the above analysis with a ‘black-box’ noise model for the

OSForecaster, where we generate the forecasted offer set S̃rt for each store r and test period t

by randomly adding products to the ‘true’ offer set Srt, as done in the simulation study. The

qualitative insights continue to hold; see Appendix A4.4. Our study also highlights the need to

invest efforts into forecasting future offer sets more accurately; few, if any, such studies are available

in the existing literature, indicating a natural direction for future work.

Second, we highlight the following peculiarity of our study: for long-term and warehouse forecast

scenarios, the models are trained on noiseless offer sets but then tested on noisy offer sets. This is

clearly in contrast to standard practice where efforts are made to train models on the same setups

that they are tested on. Would not it then be better to ignore the fact that we have noiseless

offer sets and instead train our models also on ‘forecasted’ offer sets? In Appendix A4.5, we repeat
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Figure 7 Scatter plots of the MAPE scores of 20 product categories under the ICS vs. GCS models. The left,

middle, and right panels correspond to the cases of short-term, long-term, and warehouse forecast

scenarios, respectively. Lower is better; therefore, GCS outperforms ICS for points above the 45◦ line.

our analysis by training all the models on offer sets obtained by applying the OSForecaster (as

described above) to the training data2. We observe that the GCS model’s performance increases

slightly, but the improvement in the LC-MNL model’s performance is significant. However, despite

the substantial improvement in the LC-MNL model’s performance, it is still unable to fully bridge

the gap. We interpret this result as follows. If the underlying noise process is known, then it makes

sense to incorporate it in the training process. But in practice, the noise process cannot be fully

modeled because the factors affecting offer set noise (e.g., stock out and replenishment processes)

vary over time, in which case the CTC models offer some protection against noise.

We conclude this section by comparing the predictive performance of the GCS model against a

single-class ICS model; see Figure 7. We observe that the GCS model outperforms the ICS model

on the MAPE metric by 12.8%, 17.5%, and 5.1% under the short-term, long-term, and warehouse

forecast scenarios, respectively, on average, across 20 product categories. This finding suggests that

a mixture of product-form consideration set distributions captures customer heterogeneity better,

even when preferences are governed by a single rank list.

7. Case study on the car sharing dataset

The issue of noise in future offer sets is particularly acute for online platforms because product

availability is determined by the market in real-time and is often hard to predict. In this sec-

tion, we apply our consider-then-choose framework to a dataset from an industry partner, which

runs an online peer-to-peer car-sharing platform. Our main finding is that consider-then-choose

frameworks significantly outperform classical RUM models for predicting demand in these business

environments.

2 We thank an anonymous referee for suggesting this study.
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In the rest of the section, we �rst provide some background information on our industry partner.

Then, we describe the data and present our modeling assumptions. We incorporate the product

feature information into the models in order to gain insights about consideration set formation.

Then, we calibrate di�erent variations of consider-then-choose models and a competitive, classical

RUM benchmark model from the platform data and compare their predictive performance.

7.1. Industry partner and data analysis

Our industry partner is an online, peer-to-peer car-sharing service that enables drivers to rent

cars from private car owners, and owners to rent out their cars. The company o�ers its users a

smartphone application to match car owners with renters on-demand. Car owners can use the

application to list their vehicles by posting a picture of the vehicle and providing its detailed

characteristics. In addition, car owners set the availability of their cars, hourly or daily prices, and

potential conditions for sharing them. Every listed car has a device installed into it so that the

renters are able to locate and unlock cars through the same application. As a car renter, the user

of the platform can easily search for cars nearby and book the available alternative by entering the

license number and credit card information.

For the empirical analysis in this section, we use a historical dataset including a sample of the

rentals completed in a major US city over a period of two years. Each observation in the dataset is

a rental (i.e., a renter who booked the listed car from a particular location given the set of available

alternatives on a speci�c day/time). Our dataset includes 26.8K rentals from around �ve hundred

car providers. For each rental, we have access to several observable features, such as car owner ID,

hourly rental price, car access (i.e., open or closed), car location hours (i.e., 24 hours or restricted),

car location type (i.e., garage, street, surface lot, or valet), car brand (e.g, BMW, Tesla, MINI),

car type (i.e., economy, standard, full size, SUV, trucks, luxury), car age, and some other various

binary car features such as transmission, premium wheels, power seats, bluetooth/wireless, leather

interior, sunroof/moonroof, premium sound, power windows, GPS navigation system, roof rack,

tinted windows. In Appendix A5.1 we examine the extent to which various features speci�ed above

(e.g., hourly rental price) impact the consideration set structure of renters. A detailed summary of

the data is provided in Table A5 in Appendix A5. We split the dataset into two parts: the �rst 80%,

in-sample, rental observations, and the remaining 20%, out-of-sample transactions.

7.2. Modeling assumptions

The dataset consists of the rental request observations such that for every transaction we know

which car was reserved and we can infer the set of available cars, listed in the online platform

at the time of the request, with their characteristics. The o�er sets are approximately built by
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aggregating all listed and available cars within 0.3 miles distance from the location of the car which

was in fact rented, de�ning tuples of the form (ajt; St), where ajt is the chosen car and St is the

set of cars available at the reservation time t.

In general, in order to calibrate feature-based consider-then-choose models with our dataset, we

need to estimate two types of parameters: the ranking � over all cars listed in the online platform

(514 cars in total), and the parameters associated with the consideration set formation of renters.

In order to simplify the estimation procedure, we assume that the ranking � is known a priori.

Speci�cally, the cars are ranked according to their popularity among renters, de�ned as the number

of times the vehicle was rented over the training dataset. Modeling the second stage choice process

this way, we do not parameterize the ranking � which implies that the cars are assumed to have

the same attributes over time, set at their average values. However, according to our dataset, this

assumption is justi�ed (see Appendix A5.2.1 for details).

Based on this popularity-based single ranking �, we estimate three variants of the CTC frame-

work that account for product features with the purpose of characterizing the distribution over

consideration sets: i) a GCS model de�ned as a mixture of logistic-based ICS (L-ICS) models, ii) a

decision tree-based ICS (DT-ICS), and iii) a random forest-based ICS (RF-ICS). Details about the

estimation of the L-ICS, DT-ICS, and RF-ICS models can be found in Appendix A3.1.

Our benchmark RUM model is the classic and competitive, feature-based LC-MNL model. For

both GCS and LC-MNL, we tried up to K = 5 classes to �nd the optimal mixing distribution and

report out-of-sample results for the number of mixtures that drove to best in-sample results.

7.3. Feature-based predictive accuracy results

Next, we conduct an out-of-sample prediction testing of the analyzed models on the accuracy of

two prediction measures: MAPE and RMSE (see Section 5.2), where lower scores stand for better

prediction.

In order to optimize strategic and marketing decisions, the online platform needs to make long-

term (or medium-term) demand forecasts for the cars listed on the online application. In real-world

settings, the company can not rely on accurate data on car availabilities over time for the distant

future, i.e., we can not test the prediction power of choice models by using the o�er sets from the

test dataset described above. Instead, the company might divide the city into several geographical

areas and make predictions based on the aggregate assortment of cars listed in each area over the

test time horizon. For our case study, we divide the city in 42 equal-spaced areas and estimate the

assortments of cars by taking the superset of all the cars on o�er over the entire horizon captured

by the hold-out data for each area. Note that in this way we have 42 di�erent o�er sets (each

corresponding to a particular area) while making predictions.
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Figure 8 Prediction results under Consider-then-Choose (CTC) and LC-MNL models with features based on

MAPE and RMSE scores, aggregated over car brands.

In Figure 8, we present the prediction performance results of the models based on MAPE

(left panel) and RMSE (right panel) scores, averaged across all car brands. The MAPE score of

consider-then-choose models exhibits an improvement of 16.7%, 23.4%, and 43.3% over LC-MNL

for GCS, DT-ICS and RF-ICS, respectively. We also observe that consider-then-choose models

obtain improvements of 6.2%, 10.9%, and 53.7% over LC-MNL for GCS, DT-ICS, and RF-ICS,

respectively, based on RMSE metrics.

Figure 9 exhibits MAPE scores computed for every brand separately under the RF-ICS and LC-

MNL models, where the brands are ordered according to their popularity (i.e., percentage of the

total number of reservations in the training dataset coming from every brand), e.g., Honda is the

most popular brand while Mercury is the least popular brand in the dataset. We note that the RF-

ICS model outperforms the benchmark LC-MNL model almost consistently across all the brands.

The panels also illustrate that MAPE scores vary signi�cantly across brands both for RF-ICS and

LC-MNL models. To further analyze this variation, in Figure 10 we regressed the improvement

of RF-ICS over LC-MNL against the popularity of brands (left panel), and the improvement of

RF-ICS over LC-MNL against the MAPE score of the LC-MNL model (right panel). We observe a

clear positive correlation between MAPE score improvements and the popularity of brands, which

indicates that we can better predict the demand for more popular brands. We can also see a clear

positive correlation between the improvements and MAPE score under the LC-MNL model, allow-

ing us to conclude that consider-then-choose type of models are especially relevant in prediction

tasks, i.e., CTC models dominate LC-MNL, when the LC-MNL model provides a relatively poor

prediction performance. Being robust to the noise, consider-then-choose models (and in particular,

RF-ICS) provide signi�cantly better predictive performance under these circumstances. Note that

these insights are consistent with our numerical study based on the synthetic dataset in Section 5.
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Figure 9 MAPE scores of 32 brands under RF-ICS and LC-MNL models.

The results above indicate that consider-then-choose models forecast customer choices consid-

erably better than the traditional LC-MNL model under both RMSE and MAPE scores. First

of all, accounting for the consideration set formation with the linear-in-parameters GCS model

with the logistically distributed error term, we can better predict the choices of customers. This

improvement can be attributed to the e�ectiveness of consider-then-choose models to alleviate the

noise impact on the o�er set de�nition from sales transaction data. Moreover, we can further boost

the predictive performance of the CTC models by modeling the consideration set formation in

a nonlinear-in-parameters way, with decision trees or random forests. After calibrating DT-ICS

and RF-ICS models we can get some insights of how customers form their consideration sets. In

particular, Figure A17 in Appendix A5 illustrates an instance of the decision tree obtained after

�tting the DT-ICS model.

8. Conclusion

In this paper, we analyze the importance of modeling customer choices by accounting for unobserved

consideration sets. Even though consider-then-choose (CTC) models are gaining popularity in the
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Figure 10 Left panel: scatter plot and linear regression of the percentage improvement of RF-ICS versus LC-

MNL over brand popularity (i.e., percentage of total number of reservations in the training dataset),

across 32 car brands. Right panel: scatter plot and linear regression of the percentage improvement of

RF-ICS versus LC-MNL over LC-MNL prediction accuracy, across 32 car brands. In both panels, the

prediction accuracy is measured by the MAPE score aggregated for every brand.

OM field, it is not clear from the existing literature when CTC models can outperform the classical

models in the prediction performance if companies collect only transaction data. We show how one

can effectively estimate a general class of CTC models and also address the problem of identifying

such models when relying only on sales transaction data. We check the performance of the proposed

methodology under a synthetic data setting where we control for different levels of noise and

asymmetries of noise between the training and the testing data. Next, we apply CTC models to

two real-world contexts: a retail operation and a car-sharing platform.

Our empirical results suggest that the predictive performance of CTC models significantly out-

performs state-of-the-art RUM-based benchmarks widely used in marketing, economics, and more

recently, in OM literature when there is noise in the data describing the offer sets. Moreover,

we show that the relative improvement of consider-then-choose models in predictive performance

becomes even more significant when there exist asymmetries between the accuracy of the descrip-

tion of the offer sets used to train the model, and the accuracy of the description of the offer sets

used in the hold-out sample to derive forecasts. These results make our methodology promising

for researchers interested in choice-based demand estimation, particularly for cases where the offer

sets are not fully observable or whose definition is hard to anticipate looking forward.
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A1. Preliminaries on Consider-then-Choose models

For completeness, we summarize the relevant notation from the main body and also introduce

additional notation. We consider a universe N of n products {a1; a2; : : : ; an}. We let a0 denote the

`no-purchase' or the `outside' option. A customer is presented with a subset S ⊆ N of products

and the customer chooses either one of the products in S or the outside option a0. We let Pj(S)

denote the probability that a customer chooses product aj ∈ S and P0(S) the probability that

the customer chooses the outside option. We use S+ to denote the set S ∪ {a0}. Let �: 2N → [0;1]

de�ne a distribution over consideration sets such that
∑

C⊆N �(C) = 1. The preference relation �

speci�es a rank ordering � over n+ 1 items which consist of the products in N plus `no-purchase'

option a0 with �(ai) denoting the preference rank of product ai. The lower the rank of the product,

the higher the preference, so that a customer's ranking � indicates that product a is preferred to

product b if and only if �(a)<�(b), or equivalently a�� b. We assume that there is a distribution

� : Sn→ [0;1] over Sn, which is the set of all full rankings or permutations of products in N+ with

cardinality (n+ 1)!.

To simplify the exposition, we also let �X :=N \X, X+ :=X ∪{a0}, and Pi(X) = Pr(ai|X+). Let

〈S〉 denote the power set of S, i.e., 〈S〉= 2S, and let A]B denote {a∪ b : a∈A;b∈B} for any sets

A;B.

A2. Proofs of Technical Results

A2.1. Proofs of the Propositions in Section 3.1

Proof of Proposition 1: First, we argue that if choice data are consistent with an underlying

RUM model, then they are also consistent with a CTC model. To this end, let the distribution �(·)

be a member of the RUM class. It de�nes a distribution over the (n+1)! preference lists of products
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in N+, which includes all the products in N and the outside option. We map each ranking � in

the support of �(·) to the tuple (�;C) as follows: (a) C consists of all the products in � that are

preferred over the outside option; that is, C = {aj ∈ N : �(aj) < �(a0)} and (b) � is the ranking

obtained by moving the outside option to the last position (i.e., the (n+ 1)th position) in ranking

� . We then de�ne the CTC model �(·; ·) such that �(�;C) = �(�). It is straightforward to check

that for any o�er set S, the ranking � and the corresponding tuple (�;C) result in the same choice.

As a result, the choice probabilities under both �(·) and �(·; ·) should match.

We are now left to prove the other direction. Consider a CTC model �(·; ·) that de�nes a joint

distribution over the preference lists of the products in N+ that rank the outside option at the

bottom, and the subsets of N . We map each tuple (�;C) in the support of �(·; ·) to the ranking

� over the products in N+ by repositioning the products not in C to be below the outside option

in the ranking �. More precisely, we have that �(ai)< �(aj) if and only if �(ai)<�(aj) whenever

ai; aj ∈ C or ai; aj =∈ C. In addition �(a0) < �(aj) whenever aj =∈ C and �(aj) < �(a0) whenever

aj ∈C. We then de�ne the RUM model �(·) such that �(�) = �(�;C). Again, it is straightforward

to check that both � and the tuple (�;C) result in the same choice from each o�er set S. It thus

follows that the choice probabilities under both �(·; ·) and �(·) match.

The result of the proposition now follows. �

A2.2. Proofs of the propositions in Section 3.2

We start this subsection by presenting Lemma A1 which shows how we can prove Proposition 3 by

invoking a particular form of the inclusion-exclusion principle stated by Graham (1995). Then, we

show how to prove Proposition 3 from �rst principles. Finally, we present Lemma A2 followed by

the proof of Proposition 4 which relies on the proof of the combinatorial identity in Lemma A2.

Lemma A1. For any sets Z ⊆N and Y ⊆Z, and the function f : 2N →R, we have∑
P⊆Y

∑
X⊆P

(−1)|P |−|X| · f(Z \X) = f(Z \Y ): (A1)

Proof: First, consider the inclusion-exclusion principle stated by Graham (1995) in the following

form. Let N be a �nite set and g : 2N →R be a real-valued function de�ned on the subsets of N .

De�ne the function h : 2N →R by h(X) :=
∑

Y⊆X g(Y ), then g(X) :=
∑

Y⊆X(−1)|X|−|Y |h(Y ).

Then we show that the lemma follows from the stated above inclusion-exclusion principle. Let

g(X) := f(Z \X), and h(P ) := (−1)|P |
∑

X⊆P (−1)|X| · g(X), which implies that

h(P ) · (−1)|P | =
∑
X⊆P

(−1)|X| · g(X); by invoking the inclusion-exclusion principle we obtain that

(−1)−|Y | · g(Y ) =
∑
P⊆Y

(−1)|Y |−|P | ·h(P ) · (−1)|P |; which implies that
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f(Z \Y ) = g(Y ) =
∑
P⊆Y

h(P ) =
∑
P⊆Y

(−1)|P |
∑
X⊆P

(−1)|X| · g(X) =
∑
P⊆Y

∑
X⊆P

(−1)|P |−|X| · g(X)

=
∑
P⊆Y

∑
X⊆P

(−1)|P |−|X| · f(Z \X):

�

Proof of Proposition 3: For every C ⊆ N we de�ne boolean functions �C : 2N → R and  C :

2N →R by

�C(X) = (−1)|C| · I[C ⊆X];

 C(X) = (−1)|X| · I[X ⊆C];

where I[A] is an indicator function that is equal to 1, if condition A is satis�ed, and 0 otherwise.

Then for all C1;C2 ⊆N we claim that

∑
X⊆N

�C1
(X) · C2

(X) =

{
1; if C1 =C2;

0; otherwise;
(A2)

First, we show that
∑

X⊆N �C(X) · C(X) = 1 for every C ⊆N :∑
X⊆N

�C(X) · C(X) =
∑
X⊆N

I[C ⊆X] · (−1)|C|+|X|I[X ⊆C] = (−1)|C|+|C| = 1

Then we show that
∑

X⊆N �C1
(X) · C2

(X) = 1 for all C1;C2 ⊆N s.t. C1 6=C2:∑
X⊆N

�C1
(X) · C2

(X) =
∑
X⊆N

I[C1 ⊆X] · (−1)|C1|+|X|I[X ⊆C2]

= (−1)|C1| ·
∑
X⊆N

(−1)|X|I[C1 ⊆X ⊆C2]

= (−1)|C1| · (−1)|C1| ·
|C2|−|C1|∑
k=0

(−1)kC|C2|−|C1|
k ; where Cnk =

n!

k! (n− k)![
since the expression depends only on the cardinality of sets, the summation over the sets

is reduced to the summation over the cardinality of sets
]

= (−1)2|C1| · (1− 1)|C2|−|C1| = 0:

Consequently, the probability to choose the \no purchase" option a0 from the o�er set {N \X}+

is given by

P0(N \X) =
∑
C⊆X

�(C) =
∑
C⊆N

�(C) · (−1)2|C| · I[C ⊆X] (A3)

=
∑
C⊆N

�(C) · (−1)|C| ·�C(X):
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Then it follows that∑
X⊆C

(−1)|C|−|X| ·P0(N \X) =
∑
X⊆N

P0(N \X) · (−1)|C|+|X|I[X ⊆C] (A4)

= (−1)|C| ·
∑
X⊆N

P0(N \X) · C(X)

= (−1)|C| ·
∑
X⊆N

∑
C1⊆N

�(C1) · (−1)|C1| ·�C1
(X) · C(X)[

by Equation (A3)

]
= (−1)|C| ·

∑
C1⊆N

�(C1) · (−1)|C1| ·
∑
X⊆N

�C1
(X) · C(X)

= (−1)|C| ·�(C) · (−1)|C|;

[
by Equation (A2)

]
= �(C):

Now it remains to prove the uniqueness of probability distribution function � obtained from pur-

chasing transactions data under the CTC choice model. Note that Equation (A3) relates probability

distribution � over consideration sets to the choice frequencies P0(N \X) through the system of

linear equations:

P0(N \X) =
∑
C⊆N

�(C) · (−1)|C| ·�C(X); ∀ X ⊆N ⇐⇒ y=A ·�; (A5)

where y = (yX)X⊆N denotes the |2N | × 1 vector of choice fractions and �= (�C)C⊆N denotes the

|2N | × 1 vector that represents the probability distribution function over consideration sets. A is

the |2N | × |2N | matrix such that A's entry corresponding to the row X and column C is equal to

(−1)|C| ·�C(X). Therefore, the relation between the choice frequencies and the underlying model

can be represented in a compact form as y=A ·�. Then the proof of the uniqueness of � reduces

to showing that det(A) 6= 0. From Equation (A4) we have

�(C) = (−1)|C| ·
∑
X⊆N

Pr0(N \X) · C(X); ∀C ⊆N ⇐⇒�=B ·y;

which establishes alternative linear relationship between choice frequencies Pr0(N \X) and the

model parameters � in a compact form as �=B · y, where B is the |2N | × |2N | matrix such that

B's entry corresponding to the row C and column X is equal to (−1)|C| · C(X). Therefore, we get

�=B ·y=B ·A ·�;
[
by Equation (A5)

]
=⇒ I =B ·A=⇒ det(I) = det(B) · det(A)

=⇒ 1 = det(B) · det(A) =⇒ det(A) 6= 0:

�
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The next result will be invoked in the proof of upcoming Proposition 4.

Lemma A2. The combinatorial identity below is valid

−
min(r;w)∑
�=0

Cw� ·
[ u−�∑
�=r+1−�

(−1)�Cu−��

]
=

{
1; if w= u;

0; if w<u;
(A6)

where r <w when w= u.

Proof: Let us consider two cases:

Case 1: w= u. In this case r <w by invoking the assumptions of the lemma.

−
r∑

�=0

Cw� ·
[ u−�∑
�=r+1−�

(−1)�Cu−��

]
=−

r∑
�=0

Cu� ·
[ u−�∑
�=r+1−�

(−1)�Cu−��

]

=−
r∑

�=0

u−�∑
�=r+1−�

(−1)� · u!

�!�! (u−�−�)!
= 1;

where the last equality is proved by induction on s= u− r:
Base case: s= 1.

−
r∑

�=0

u−�∑
�=r+1−�

(−1)� · u!

�!�! (u−�−�)!
=−

u−1∑
�=0

(−1)u−�Cu� = (−1)u+1 ·
u−1∑
�=0

(−1)�Cu�

= (−1)u+1 · ((1− 1)u− (−1)u) = 1:

Induction hypothesis: s= p.

Induction step: s= p+ 1.

−
u−p−1∑
�=0

u−�∑
�=u−p−�

(−1)� · u!

�!�! (u−�−�)!
[since r= u− p− 1]

=−
u−p∑
�=0

u−�∑
�=u−p−�

(−1)� · u!

�!�! (u−�−�)!
+

p∑
�=0

(−1)� · u!

�! (u− p)! (p−�)!

=−
u−p∑
�=0

u−�∑
�=u−p−�

(−1)� · u!

�!�! (u−�−�)!
+

u!

p! (u− p)!
·

p∑
�=0

(−1)� · p!

�! (p−�)!

=−
u−p∑
�=0

u−�∑
�=u−p−�

(−1)� · u!

�!�! (u−�−�)!

=−
u−p∑
�=0

u−�∑
�=u−p+1−�

(−1)� · u!

�!�! (u−�−�)!
−

u−p∑
�=0

(−1)u−p−� · u!

(u− p−�)!�!p!

= 1−
u−p∑
�=0

(−1)u−p−� · u!

(u− p−�)!�!p!
; [by induction hypothesis, r= u− p]

= 1 + (−1)u−p−1 · u!

(u− p)!
·
u−p∑
�=0

(−1)� · (u− p)!
(u− p−�)!�!

= 1:
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Case 2: w<u. the last equality is proved by induction on s= u− r:
Base case: s= 1. Then r= u− 1≥w, so that min(r;w) =w. And we have that

−
min(r;w)∑
�=0

Cw� ·
[ u−�∑
�=r+1−�

(−1)�Cu−��

]
=−

w∑
�=0

Cw� ·
[ u−�∑
�=u−�

(−1)�Cu−��

]

= (−1)1+u

w∑
�=0

(−1)�Cw� = 0:

Induction hypothesis: s= p.

Induction step: s= p+ 1.

Condition 1: u− p >w. Then min(u− p;w) =w and min(u− p− 1;w) =w. We have that

−
w∑
�=0

Cw� ·
[ u−�∑
�=r+1−�

(−1)�Cu−��

]
=−

w∑
�=0

Cw� ·
[ u−�∑
�=u−p−�

(−1)�Cu−��

]
[since r= u− p− 1]

=−
w∑
�=0

Cw� ·
[ u−�∑
�=u−p+1−�

(−1)�Cu−��

]
−

w∑
�=0

Cw� · (−1)u−p−� · Cu−�u−�−p

=−
w∑
�=0

Cw� · (−1)u−p−� · Cu−�u−�−p; [ by induction hypothesis, r= u− p]

= (−1)1+u−p ·
w∑
�=0

(−1)� · Cw� · C
u−�
u−�−p = (−1)1+u−p · w!

p!
·
w∑
�=0

(−1)� · (u−�)!

�! (w−�)! (u− p−�)!
:

Now it is su�cient to show that
∑w

�=0(−1)� · (u−�)!

�!(w−�)!(u−p−�)!
= 0. We prove it by induction on p. For

p= 0, it follows that
∑w

�=0(−1)� · (u−�)!

�!(w−�)!(u−p−�)!
=
∑w

�=0(−1)� · 1
�!(w−�)!

= 1
w!

∑w

�=0(−1)� · Cw� = 0.

Assuming that the result holds for p=m, we prove it for p=m+ 1:
w∑
�=0

(−1)� · (u−�)!

�! (w−�)! (u−m− 1−�)!
=

w∑
�=0

(−1)� · (u−�)! (u−m−�)

�! (w−�)! (u−m−�)!

= (u−m) ·
w∑
�=0

(−1)� · (u−�)!

�! (w−�)! (u−m−�)!
−

w∑
�=0

(−1)� · (u−�)!�

�! (w−�)! (u−m−�)!

=−
w∑
�=0

(−1)� · (u−�)!�

�! (w−�)! (u−m−�)!
; [by induction hypothesis, p=m]

=−
w∑
�=1

(−1)� · (u−�)!�

�! (w−�)! (u−m−�)!

=−
w∑
�=1

(−1)� · (u−�)!

(�− 1)! (w−�)! (u−m−�)!

=
w−1∑
�=0

(−1)� · (u− 1−�)!

�! (w− 1−�)! (u−m− 1−�)!

=

(w−1)∑
�=0

(−1)� · ((u− 1)−�)!

�! ((w− 1)−�)! ((u− 1)−m−�)!

= 0; [by induction hypothesis, p=m]:
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Condition 2: u− p≤w. Then min(u− p;w) = u− p and min(u− p− 1;w) = u− p− 1. We have

that

−
u−p−1∑
�=0

Cw� ·
[ u−�∑
�=u−p−�

(−1)�Cu−��

]
=−

u−p∑
�=0

Cw� ·
[ u−�∑
�=u−p−�

(−1)�Cu−��

]
+

p∑
�=0

(−1)�Cp�

=−
u−p∑
�=0

Cw� ·
[ u−�∑
�=u−p−�

(−1)�Cu−��

]

=−
u−p∑
�=0

Cw� ·
[ u−�∑
�=u−p+1−�

(−1)�Cu−��

]
−

u−p∑
�=0

Cw� · (−1)u−p−� · Cu−�u−�−p

=−
u−p∑
�=0

Cw� · (−1)u−p−� · Cu−�u−�−p; [by induction hypothesis, r= u− p]

= (−1)u−p+1 ·
u−p∑
�=0

(−1)� · Cw� · C
u−�
u−�−p = (−1)1+u−p · w!

p!
·
u−p∑
�=0

(−1)� · (u−�)!

�! (w−�)! (u− p−�)!
:

Now it is su�cient to prove that
∑u−p

�=0(−1)� · (u−�)!

�!(w−�)!(u−p−�)!
= 0. We prove it by induction

on u − w. For u − w = 0, it follows that
∑u−p

�=0(−1)� · (u−�)!

�!(w−�)!(u−p−�)!
=
∑u−p

�=0(−1)� · 1
�!(u−p−�)!

=

1
(u−p)!

∑u−p
�=0(−1)� · Cu−p� = 0. Assuming that the result holds for u−w=m, we prove it for u−w=

m+ 1:

u−p∑
�=0

(−1)� · (u−�)!

�! (u−m− 1−�)! (u− p−�)!
=

u−p∑
�=0

(−1)� · (u−�)! (u−m−�)

�! (u−m−�)! (u− p−�)!

= (u−m) ·
u−p∑
�=0

(−1)� · (u−�)!

�! (u−m−�)! (u− p−�)!
−

u−p∑
�=0

(−1)� · (u−�)!�

�! (u−m−�)! (u− p−�)!

=−
u−p∑
�=0

(−1)� · (u−�)!�

�! (u−m−�)! (u− p−�)!
; [by induction hypothesis, w= u−m]

=−
u−p∑
�=1

(−1)� · (u−�)!�

�! (u−m−�)! (u− p−�)!

=−
u−p∑
�=1

(−1)� · (u−�)!

(�− 1)! (u−m−�)! (u− p−�)!

=

u−p−1∑
�=0

(−1)� · (u− 1−�)!

�! (u−m− 1−�)! (u− p− 1−�)!

=

(u−1)−p∑
�=0

(−1)� · ((u− 1)−�)!

�! ((u− 1)−m−�)! ((u− 1)− p−�)!

= 0; [by induction hypothesis]:

�
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Proof of Proposition 4: It follows from the proposition that

�(C) =
∑
X⊆N

∑
Y⊇X∪C

(−1)1+|Y |−|X�C| ·P0(X) · I[|X ∪C| ≤ k < |Y |]

=
∑
X⊆N

∑
Y⊇X∪C

P0(X) · (−1)1+|X∩C| · (−1)|Y |−|X∪C| · I[|X ∪C| ≤ k < |Y |]

=
∑
X⊆N

P0(X) · (−1)1+|X∩C| · I[|X ∪C| ≤ k] ·
∑

Y⊇X∪C

(−1)|Y |−|X∪C| · I[|Y |>k][
since the expression depends only on the cardinality of sets Y , the summation over the sets Y

is reduced to the summation over the cardinality of sets Y
]

=
∑
X⊆N

P0(X) · (−1)1+|X∩C| · I[|X ∪C| ≤ k] ·
n−|X∪C|∑

�=k+1−|X∪C|

(−1)�Cn−|X∪C|� ;[
where Cnk =

n!

k! (n− k)!
:

]
For every C ⊆N we de�ne boolean functions �C : 2N →R and  C : 2N →R by

�C(X) = I[C ⊆ �X; |C| ≤ k];

 C(X) = (−1)1+|X∩C| · I[|X ∪C| ≤ k] ·
n−|X∪C|∑

�=k+1−|X∪C|

(−1)�Cn−|X∪C|� :

Restricting consideration sets and o�er sets by the size of up to k (by the assumption of the

proposition), we represent the probability to choose the \no purchase" option a0 from the o�er set

X+ through a linear combination of boolean functions �C(X) as follows:

P0(X) =
∑
C⊆N

�(C) · I[C ⊆ �X; |C| ≤ k] =
∑
C⊆N

�(C) ·�C(X): (A7)

Then for all C1;C2 ⊆N such that |C1|; |C2| ≤ k < n we claim that

∑
X⊆N

�C1
(X) · C2

(X) =

{
1; if C1 =C2;

0; otherwise:
(A8)

Consequently, it follows from the claim that

∑
X⊆N

P0(X) · (−1)1+|X∩C| · I[|X ∪C| ≤ k] ·
n−|X∪C|∑

�=k+1−|X∪C|

(−1)�Cn−|X∪C|� (A9)

=
∑
X⊆N

P0(X) · C(X) =
∑
X⊆N

∑
C1⊆N

�(C1) ·�C1
(X) · C(X)

=
∑
C1⊆N

�(C1) ·
∑
X⊆N

�C1
(X) · C(X) = �(C);

[
by Equation (A8)

]
:
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Figure A1 In this �gure C1 6⊂C2 and n− |C1| − |C5|> 0. We have that C5 =C2 \ {C1 ∩C2}, Y =X ∩C5, Z =

X \Y , where γ and β correspond to the cardinalities of Y and Z respectively.

Now to complete the proof of the proposition, it is su�cient to prove the claim and show the

uniqueness of the solution. We prove the claim by considering two di�erent cases.

Case 1: C2 ⊆C1.∑
X⊆N

�C1
(X) · C2

(X) =
∑
X⊆N

(−1)1 · I[|C1| ≤ k] · I[X ∩C1 = ∅] · I[|X| ≤ k− |C2|]

×
n−|X|−|C2|∑

�=k+1−|X|−|C2|

(−1)�Cn−|X|−|C2|
�[

in this case, X ∩C1 = ∅, |X ∩C1|= 0, |X ∩C2|= 0, and |X ∪C2|= |X|+ |C2|
]

=−
∑
X⊆N

I[|C1| ≤ k] · I[X ∩C1 = ∅] · I[|X| ≤ k− |C2|] ·
n−|C2|−|X|∑

�=k−|C2|+1−|X|

(−1)�Cn−|C2|−|X|
� ;[

since the expression depends only on the cardinality of sets, the summation over the sets

is reduced to the summation over the cardinality of sets
]

=−
min(k−|C2|;n−|C1|)∑

�=0

Cn−|C1|
� ·

[ n−|C2|−�∑
�=k−|C2|+1−�

(−1)�Cn−|C2|−�
�

]
;
[

where � - cardinality of set X
]

=

{
1; if C1 =C2;

0; if C1 ⊂C2;

where the last equality follows by invoking Lemma A2, where w = n − |C1|, r = k − |C2|, and

u= n− |C2|.
Case 2: C2 6⊆C1.∑

X⊆N

�C1
(X) · C2

(X) =
∑
X⊆N

(−1)1+|X∩C2| · I
[
X ∩C1 = ∅; |C1| ≤ k

]
· I
[
|X ∪C2| ≤ k

]

×
n−|X∪C2|∑

�=k+1−|X∪C2|

(−1)�Cn−|X∪C2|
�[

since the expression depends only on the cardinality of sets, the summation over the sets

is reduced to the summation over the cardinality of sets
]
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Figure A2 In this �gure C1 ⊂C2, then since k < n by assumption of the proposition it follows that n−|C1|−|C5|>

0. We have that C5 = C2 \ {C1 ∩ C2}, Y = X ∩ C5, Z = X \ Y , where γ and β correspond to the

cardinalities of Y and Z respectively.

Figure A3 In this �gure C1 6⊂ C2 and n− |C1| − |C5| = 0. We have that C5 = C2 \ {C1 ∩ C2},X ⊆ C5, and γ

corresponds to the cardinality of X.

=



∑|C5|
=0(−1)1+ · C|C5|

 ·

[∑min(k−|C2|;n−|C1|−|C5|)
�=0 Cn−|C1|−|C5|

� ·
[∑n−�−|C2|

�=k+1−�−|C2|(−1)�Cn−�−|C2|
�

]]
;

if C1 6⊂C2 and n− |C1| − |C5|> 0; see Figure A1∑|C5|
=0(−1)1+ · C|C5|

 ·

[∑min(k−|C2|;n−|C2|)
�=0 Cn−|C2|

� ·
[∑n−�−|C2|

�=k+1−�−|C2|(−1)�Cn−�−|C2|
�

]]
if C1 ⊂C2; see Figure A2∑|C5|

=0(−1)1+ · C|C5|
 ·

[∑n−|C2|
�=k+1−|C2|(−1)�Cn−|C2|

�

]
;

if C1 6⊂C2 and n− |C1| − |C5|= 0; see Figure A3[
where C5 =C2 \ {C1 ∩C2}

]

=



[
−
∑|C5|

=0(−1) · C|C5|


]
·

[∑min(k−|C2|;n−|C1|−|C5|)
�=0 Cn−|C1|−|C5|

� ·
[∑n−�−|C2|

�=k+1−�−|C2|(−1)�Cn−�−|C2|
�

]]
;

if C1 6⊂C2 and n− |C1| − |C5|> 0;[
−
∑|C5|

=0(−1) · C|C5|


]
·

[∑min(k−|C2|;n−|C2|)
�=0 Cn−|C2|

� ·
[∑n−�−|C2|

�=k+1−�−|C2|(−1)�Cn−�−|C2|
�

]]
if C1 ⊂C2;[

−
∑|C5|

=0(−1) · C|C5|


]
·
[∑n−|C2|

�=k+1−|C2|(−1)�Cn−|C2|
�

]
; if C1 6⊂C2 and n− |C1| − |C5|= 0;

= 0;
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where the last equality follows since |C5|> 0, and
∑|C5|

=0(−1) · C|C5|
 = 0.

In order to complete the proof, we show the uniqueness of the probability distribution function �

in our setting. First, note that Equation (A7) relates probability distribution � over consideration

sets to the choice frequencies Pr (a0|X) through the system of linear equations:

P0(X) =
∑
C⊆N

�(C) ·�C(X); ∀ X ⊆N ⇐⇒ y=A ·�; (A10)

where y = (yX)X⊆N denotes the |2N | × 1 vector of choice fractions and �= (�C)C⊆N denotes the

|2N | × 1 vector that represents the probability distribution function over consideration sets. A is

the |2N | × |2N | matrix such that A's entry corresponding to the row X and column C is equal

to �C(X). As a result, the relation between the choice frequencies and the underlying model can

be represented in a compact form as y =A ·�. Then the proof of the uniqueness of � reduces to

showing that det(A) 6= 0. It follows from Equation (A9) that

�(C) =
∑
X⊆N

P0(X) · C(X); ∀C ⊆N ⇐⇒�=B ·y;

which provides another relationship between choice frequencies P0(X) and the model parameters

� in a linear form as �=B ·y, where B is the |2N |× |2N | matrix such that B's entry corresponding

to the row C and column X is equal to  C(X). Therefore, we get

�=B ·y=B ·A ·�;
[
by Equation (A10)

]
=⇒ I =B ·A=⇒ det(I) = det(B) · det(A)

=⇒ 1 = det(B) · det(A) =⇒ det(A) 6= 0:

�

A2.3. Proofs of the propositions in Section 3.3

We start this subsection with the proof of Proposition 6. We then prove Lemmas A3, A4, and A5

followed by the proof of Proposition 7 which invokes these lemmas.

Proof of Proposition 6: It follows directly from the proof of Proposition 1 that GCS ⊆RUM .

Then, it remains to show that the RUM model class is not a speci�c case of the GCS model class.

To this end, we provide a particular example of the RUM model class resulting in customers' choice

frequencies that are inconsistent with the GCS choice rule.

Let N = {a1; a2}, and recall the presence of the \no purchase" option a0. Then let � : L3 →

[0;1] denote a speci�cation of RUM class such that customers sample either preference list �1 =

{a1; a2; a0} with probability �1 ∈ (0;1) or preference list �2 = {a2; a1; a0} with probability 1− �1.
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Consequently, probability distribution function � over preference lists results in the following choice

frequencies:

P1({a1; a2}) = �1; P1({a1}) = 1⇒ a2 is preferred to a1 (by Proposition 5),

P2({a1; a2}) = 1−�1; P2({a2}) = 1⇒ a1 is preferred to a2 (by Proposition 5).

These choice frequencies are inconsistent with GCS model class, which only allows a unique prefer-

ence order of products, i.e., according to GCS choice rule either product a1 is preferred to product

a2 or product a2 is preferred to product a1. �

Lemma A3. Assume that for all consideration sets C ⊆N we have that∑
X⊆C

(−1)|C|−|X|P0(N \X)≥ 0;

with strict inequality for consideration sets of the size up to three, i.e., if |C|≤ 3, then for all

consideration sets C ⊆ S s.t. S ⊆N it follows that∑
X⊆C

(−1)|C|−|X|P0(S \X)≥ 0;

with strict inequality for consideration sets of the size up to three, i.e., if |C|≤ 3.

Proof: Suppose that C ⊆ S and S ⊆N . Let �S denote N \S. We can now establish the following

chain of equalities:∑
B⊆C

(−1)|C|−|B|P0(S \B) =
∑
B⊆C

(−1)|C|−|B| ·P0({N \ �S} \B)

=
∑
B⊆C

(−1)|C|−|B| ·P0({N \B} \ �S)

=
∑
B⊆C

∑
A⊆ �S

∑
D⊆A

(−1)|A|−|D| · (−1)|C|−|B| ·P0({N \B} \D)[
by invoking Lemma A1 for every B ⊆C, where Z =N \B; Y = �S;

P =A; and f(Z \Y ) = (−1)|C|−|B| ·P0({N \B} \ �S)

]
=
∑
A⊆ �S

∑
D⊆A

∑
B⊆C

(−1)|C|+|A|−|D|−|B| ·P0({N \B} \D)

=
∑
A⊆ �S

∑
X∈
〈
A∪C

〉(−1)|C|+|A|−|X| ·P0(N \X)

[
where X =D∪B, since A∩C = ∅

]

=
∑
A⊆ �S

∑
X∈
〈
A∪C

〉(−1)|C∪A|−|X| ·P0(N \X)

[
since A∩C = ∅

]
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=
∑
A⊆ �S

∑
X⊆C′

(−1)|C
′|−|X| ·P0(N \X)

[
where C ′ =A∪C

]
≥ 0; with strict inequality when |C|≤ 3;

[
by assumptions of the Lemma,

since
∑
X⊆C′

(−1)|C
′|−|X| ·P0(N \X)≥ 0 with strict inequality when |C ′|≤ 3

]
:

�

The following three lemmas will be used in the proof of upcoming Proposition 7.

Lemma A4. If a sample of sales transaction data satisfies Conditions 1, 2, and 3, then for all

ai ∈ S1 ∩S2 where S1; S2 ⊆N and S1 ⊆ S2 we have that Pi(S1)≥ Pi(S2). .

Proof: Prove the result by induction on the n=|S2|− |S1|. We consider a1 ∈ S1∩S2 and S1 ⊆ S2.

For the base case n= 0 we have that S1 = S2 and P1(S1) = P1(S2). Assume that the result holds for

n= k, i.e., S2 = S and |S| − |S1|= k. Then we prove it for n= k+ 1. Let us suppose w.l.o.g. that

S2 = S∪{a2} and a2 6∈ S. Next, assume, by contradiction, that P1(S2\{a2})< P1(S2). Consequently,

by Condition 2 it follows that P1({a1})< P1({a1; a2}). Then by Condition 1 we have that

P2({a2}) = P2({a1; a2}): (A11)

It now follows that

P1({a1})−P1({a1; a2})

=

(
1−P0({a1})

)
−
(

1−P0({a1; a2})−P2({a1; a2})
)
; [ by standard probability property]

=

(
1−P0({a1})

)
−
(

1−P0({a1; a2})−P2({a2})
)
;

[
by Equation (A11)

]
=

(
1−P0({a1})

)
−
(
P0({a2})−P0({a1; a2})

)
; [by standard probability property]

= 1−P0({a1})−P0({a2}) +P0({a1; a2})> 0;

[
by Condition 3 and Lemma A3, when C = S = {a1; a2}

]
;

which contradicts to P1({a1})< P1({a1; a2}). Then we have

P1(S2)≤ P1(S2 \ {a2}) = P1(S); [note that |S| − |S1|= k]

≤ P1(S1); [by induction hypothesis]:

Therefore, the result now follows by induction. �

Lemma A5. Consider a1; a2 ∈ S; S ⊆N; a1 6= a2. Then GCS choice model, with strict preference

list � and distribution over consideration sets � where �(C) > 0 if |C| ≤ 3, implies the following

list of implications:
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a) P1(S \ {a2})> P1(S) =⇒ a2 � a1; and ∀S′ ⊆N s:t: a1; a2 ∈ S′ : P1(S′ \ {a2})> P1(S′),

b) P1(S \ {a2}) = P1(S) =⇒ a1 � a2; and ∀S′ ⊆N s:t: a1; a2 ∈ S′ : P1(S′ \ {a2}) = P1(S′);

c) P1(S \ {a2}) 6= P1(S) =⇒ P2(S \ {a1}) = P2(S).

Proof: a) Suppose that P1(S \ {a2}) > P1(S). Assume, by contradiction, that a1 � a2. Then

it can be inferred from purchase probability de�nition under the GCS, see Equation (1), that

P1(S \ {a2}) = P1(S), which leads to a contradiction. As a result, we have that a2 � a1 since

preferences are strict and asymmetric. Then ∀S′ ⊆N s:t: a1; a2 ∈ S′ we establish that

P1(S′ \ {a2})−P1(S′)≥ �({a1; a2});
[
by Equation (1)

]
> 0;

[
by Assumption that �(C)> 0 if |C| ≤ 3

]
:

b) Suppose that P1(S \ {a2}) = P1(S). Assume, by contradiction, that a2 � a1. Then it follows

that

P1(S \ {a2})−P1(S)≥ �({a1; a2});
[
by Equation (1)

]
> 0;

[
by Assumption that �(C)> 0 if |C| ≤ 3

]
:

which contradicts to the assumption above. As a result, we have that a1 � a2, since preferences are

strict and asymmetric. Then by Equation (1) we have that ∀S′ ⊆N s:t: a1; a2 ∈ S′: P1(S′ \ {a2}) =

P1(S′).

c) Suppose that P1(S \ {a2}) 6= P1(S). Then it is straightforward to verify that P1(S \ {a2}) >

P1(S), since the following inequality holds from the Lemma A4: P1(S \{a2})≥ P1(S). Consequently,

invoking the implication from part a), we have a2 � a1, and by Equation (1) we obtain that

P2(S \ {a1}) = P2(S): �

Proof of Proposition 7: Necessity: if purchasing transactions data is consistent with the GCS

choice model with strict preference list � and distribution over consideration sets � where �(C)> 0

if |C| ≤ 3, then we claim that three axioms Condition 1, Condition 2, and Condition 3 are satis�ed.

First, it follows from Proposition 3 that Condition 3 is satis�ed. Then Condition 1 and Condition

2 are satis�ed by Lemma A5.

Sufficiency: we claim that the choice rule that satis�es Condition 1, Condition 2, and Condition

3 is a GCS choice model with the strict preference list � where no purchase option is the least

preferred item, and probability distribution function � over consideration sets such that �(C)> 0

if |C| ≤ 3.

De�ne a binary relation �ij between products ai; aj ⊆N;ai 6= aj, where �ij = 1 if Pj(S \ {ai})>

Pj(S) for some S ⊆ N s.t. ai; aj ∈ S (note, by Condition 2 it implies that Pj(S \ {ai}) > Pj(S)
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for all S ⊆N s.t. ai; aj ∈ S), and zero otherwise. We claim that �ij is complete, asymmetric, and

transitive binary relation.

First, we prove that this binary relation is complete, i.e., either �ij = 1 or �ji = 1. Suppose

that Pj(S \ {ai})≤ Pj(S) for some S ⊆N , i.e., �ij = 0. Then it follows from the Lemma A4 that

Pj(S \ {ai}) = Pj(S). Moreover, by Condition 2 we have that Pj({aj}) = Pj({ai; aj}). We can now

establish the following chain of equalities:

Pi({ai})−Pi({ai; aj})

=

(
1−P0({ai})

)
−
(

1−P0({ai; aj})−Pj({ai; aj})
)
; [by standard probability property]

=

(
1−P0({ai})

)
−
(

1−P0({ai; aj})−Pj({aj})
)
;

[
by Condition 2, see above

]
=

(
1−P0({ai})

)
−
(
P0({aj})−P0({ai; aj})

)
; [by standard probability property]

= 1−P0({ai})−P0({aj}) +P0({ai; aj})> 0;

[
by Condition 3 and Lemma A3, where C = S = {ai; aj}

]
;

which concludes that �ji = 1. Therefore, completeness of binary relation �ij now follows.

Second, we establish that the de�ned binary relation � is asymmetric, i.e., if �ij = 1 then �ji = 0.

Suppose that Pj(S \ {ai})> Pj(S) for some S ⊆N , i.e., �ij = 1. Then by Condition 1 we have that

Pi(S \{aj}) = Pi(S) (note, by Condition 2 we have that for all S′ ⊆N s.t. a1; a2 ∈ S′: Pi(S′ \{aj}) =

Pi(S′)), which further implies that �ji = 0. As a result, asymmetry of binary relation �ij now follows.

Third, we show the transitivity of binary relation �, i.e., if �ij = 1 and �jk = 1 then �ik = 1 for all

ai; aj; ak ∈N . Assume by contradiction that binary relation � is not transitive. To this end, there

exist ai; aj; ak ∈N such that �ij = 1, �jk = 1, �ik = 0 with the following list of implications:

�ij = 1⇒ Pj(S \ {ai})> Pj(S); [ for some S ⊆N ]

⇒ Pj({aj; ak})> Pj({ai; aj; ak});
[
by Condition 2

]
⇒ Pi({ai; ak}) = Pi({aj; ai; ak});

[
by Condition 1

]
(A12)

⇒ Pi({ai}) = Pi({aj; ai});
[
by Condition 2

]
; (A13)

�jk = 1⇒ Pk(S \ {aj})> Pk(S); [ for some S ⊆N ]

⇒ Pk({ai; ak})> Pk({ai; aj; ak});
[
by Condition 2

]
⇒ Pj({ai; aj}) = Pj({ai; aj; ak});

[
by Condition 1

]
(A14)

⇒ Pj({aj}) = Pj({aj; ak});
[
by Condition 2

]
; (A15)

�ik = 0⇒ Pk(S \ {ai})≤ Pk(S); [ for some S ⊆N ]
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⇒ Pk(S \ {ai}) = Pk(S);

[
by Lemma A4

]
(A16)

⇒ Pk({ak}) = Pk({ai; ak});
[
by Condition 2

]
: (A17)

Using the property of the choice rule, i.e., ∀ S ⊆N :
∑

ar∈S+ Pr(S) = 1, for o�er sets S1 = {ai; aj},

S2 = {aj; ak}, S3 = {ai; ak}, and S4 = {ai; aj; ak} we further establish the following list of implica-

tions:

For S1 = {ai; aj} : Pi(S1) +Pj(S1) +P0(S1) = 1

⇒ Pi({ai}) +Pj(S1) +P0(S1) = 1;

[
by Equation (A13)

]
⇒ Pi({ai}) +Pj(S4) +P0(S1) = 1;

[
by Equation (A14)

]
⇒ Pj(S4) = P0({ai})−P0(S1); [by standard probability property]: (A18)

For S2 = {aj; ak} : Pj(S2) +Pk(S2) +P0(S2) = 1

⇒ Pj({aj}) +Pk(S2) +P0(S2) = 1;

[
by Equation (A15)

]
⇒ Pj({aj}) +Pk(S4) +P0(S2) = 1;

[
by Equation (A16)

]
⇒ Pk(S4) = P0({aj})−P0(S2); [by standard probability property]: (A19)

For S3 = {ai; ak} : Pk(S3) +Pi(S3) +P0(S3) = 1

⇒ Pk({ak}) +Pi(S3) +P0(S3) = 1;

[
by Equation (A17)

]
⇒ Pk({ak}) +Pi(S4) +P0(S3) = 1;

[
by Equation (A12)

]
⇒ Pi(S4) = P0({ak})−P0(S3); [by standard probability property]: (A20)

For S4 = {ai; aj; ak} : Pi(S4) +Pj(S4) +Pk(S4) +P0(S4) = 1

⇒ 0 = P0(∅)−P0({ai})−P0({aj})−P0({ak}) +P0(S1) +P0(S2)

+P0(S3)−P0(S4);

[
since P0(∅) = 1, and by Equations (A18)-(A20)

]
> 0;

[
by Condition 3 and Lemma A3, where C = S = S4

]
;

which leads to a contradiction. Therefore, the preference relation � is transitive. Since we proved

that binary relation � is complete, asymmetric, and transitive, it speci�es strict preference list �

over products in N , s.t. ai � aj i� �ij = 1. In addition, it immediately follows from the axioms that
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a0 is the least preferred item in the product universe according to the preference list �, i.e., for all

ai ∈N we have that �0i = 0:

P0(∅)−P0({ai})> 0;

[
by Condition 3 and Lemma A3, where C = S = {ai}

]
;

which implies that �0i = 0 by de�nition.

Next, we prove that

Pr(S) = P0(S′ \ {ar})−P0(S′); ∀ ar ∈ S s.t. S ⊆N;

where S′ is the set of products that consists of product ar and all the items in S that are preferred to

item ar, i.e., S′ = {aj ∈ S : aj � ar}∪{ar}. The argument is proved by induction on the cardinality

k of the o�er set S, i.e., k = |S|. For the base case, k = 1, we have Pr({ar}) = 1 − P0({ar}) =

P0(∅)−P0({ar}). Suppose the result follows for k≤ p, then we prove it for k= p+ 1. We consider

two cases.

Case 1: product ar is not the least preferred item in S. In other words there exists aj ∈ S s.t.

ar � aj. Then by de�nition of the binary relation � we have that Pj(S \ {ar}) > Pj(S), and the

result now follows:

Pr(S) = Pr(S \ {aj}); [by Condition 1 ]

= P0(S′ \ {ar})−P0(S′); [by induction hypothesis,

and note that aj =∈ S′ since ar � aj]:

Case 2: product ar is the least preferred item in S. Consider o�er set S = {ar; a1; a2:::; ap−1} such

that w.l.o.g. ap−1 � :::� a2 � a1 � ar. Assuming ar ∈ S, we can now establish the following chain

of equalities:

Pr(S) = 1−P0(S)−
p−1∑
i=1

Pi(S)

=−P0(S) +P0(∅)−
p−1∑
i=1

Pi({ar; a1; a2:::; ap−1})

=−P0(S) +P0(∅)−
p−1∑
i=1

Pi({ai; ai+1:::; ap−1});
[

by Condition 1

]

=−P0(S) +P0(∅)−
p−1∑
i=1

(
P0({ai+1:::; ap−1})−P0({ai; ai+1:::; ap−1})

)
;

[by induction hypothesis]

=−P0(S) +P0({a1; a2:::; ap−1})

= P0({a1; a2:::; ap−1})−P0({ar; a1; a2:::; ap−1}) = P0(S′ \ {ar})−P0(S′):
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Let us denote two particular sets Ŝ and �S′ as follows: Ŝ =N \{S′ \{ar}}, �S′ =N \S′. We can now

establish the following chain of equalities:

Pr(S) = P0(S′ \ {ar})−P0(S′)

= P0(S′ \ {ar}) +

( ∑
C⊆Ŝ

∑
X⊆C

(−1)|C|−|X| ·P0(N \X)−P0(N \ Ŝ)

)
−P0(S′)

[
by invoking Lemma A1, where Z =N; Y = Ŝ; P =C;and f(Z \Y ) = P0(N \ Ŝ)

]
=
∑
C⊆Ŝ

∑
X⊆C

(−1)|C|−|X| ·P0(N \X)−P0(S′)

[
since N \ Ŝ = S′ \ {ar}

]

=
∑
C⊆Ŝ

∑
X⊆C

(−1)|C|−|X| ·P0(N \X)−
( ∑
C⊆ �S′

∑
X⊆C

(−1)|C|−|X| ·P0(N \X)

−P0(N \ �S′)

)
−P0(S′)[

by invoking Lemma A1, where Z =N; Y = �S′; P =C;and f(Z \Y ) = P0(N \ �S′)

]
=
∑
C⊆Ŝ

∑
X⊆C

(−1)|C|−|X| ·P0(N \X)−
∑
C⊆ �S′

∑
X⊆C

(−1)|C|−|X| ·P0(N \X)

[
since N \ �S′ = S′

]

=
∑

C∈〈 �S′∪{ar}〉

∑
X⊆C

(−1)|C|−|X| ·P0(N \X)−
∑
C⊆ �S′

∑
X⊆C

(−1)|C|−|X| ·P0(N \X)

[
since Ŝ = �S′ ∪{ar}

]
=

∑
C∈〈 �S′〉]{ar}

∑
X⊆C

(−1)|C|−|X|P0(N \X)

=
∑

C∈〈 �S′〉]{ar}

�(C); where �(C) =
∑
X⊆C

(−1)|C|−|X|P0(N \X)

=
∑
C⊆N

�(C) · I[ar ∈C] · I[C ∈ 〈 �S′〉 ] {ar}]

=
∑
C⊆N

�(C) · I[ar ∈C] · I[ar � ak ∀ak ∈ S ∩C;ak 6= ar]

=
∑
C⊆N

�(C) · I[ar ∈ S ∩C] · I[ar � ak ∀ak ∈ S ∩C;ak 6= ar]

[
since we assume that ar ∈ S,

otherwise the choice probability is 0

]
;

which is exactly the equation to compute the probability to purchase ar ∈ S for the o�er set

S ⊆N under the GCS choice model. As a result, we also have P0(S) =
∑

C⊆N �(C) · I[S ∩C = ∅]

becasue of the standard probability law, i.e., P0(S) = 1−
∑

ar∈S Pr(S). Note that the above chain of

equations speci�es probability distribution function � over consideration sets. Moreover, it follows

from Proposition 3 that � is de�ned uniquely. In order to complete the proof, we show that the

preference relation � is also de�ned uniquely. Suppose, by contradiction, there is another strict
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preference order �′ such that �′ 6=� and P·(·)�′;� = P·(·)�;�. Therefore there exist items ai; aj ∈N

s.t. ai � aj and aj �′ ai. By de�nition of the GCS choice rule, we have

Pi({ai; aj})�;� =
∑
C⊆N

I[ai ∈C] ·�(C);

Pi({ai; aj})�′;� =
∑
C⊆N

I[ai ∈C] · I[aj =∈C] ·�(C):

As a result, we can establish now the following chain of inequalities:

Pi({ai; aj})�;�−Pi({ai; aj})�′;� ≥ �({ai; aj})> 0;

[
by Condition 3

]
;

which contradicts to P·(·)�′;� = P·(·)�;�. �

A3. Estimation Approaches for Consider-then-Choose models

We start this section by showing how we can capture the impact of product features on considera-

tion set formation and by providing the MINLP formulation for the estimation of the single class,

logistic-based ICS (L-ICS) model. Then we describe the outer-approximation algorithm which is

used to calibrate di�erent variants of consider-then-choose models followed by the empirical val-

idation of this algorithm. We �nish this section by describing the EM algorithm to calibrate the

GCS and CTC models.

A3.1. Feature-based modeling

To capture the impact of product features on consideration set formation, we use the following

three ways to make propensity parameter �j a function of the product features, where xjk is the

observed kth feature of product aj:

• Logistic-based ICS model (L-ICS). We assume that customers have linear-in-parameters utility

Uj from considering product aj ∈N , given by

Uj = �0
j +
∑
k

�kxjk + "j;

where "j is a random variable distributed as a standard logistics, i.e., "j ∼ Logistic(1). There-

fore, product aj is considered by an individual if and only if the utility from paying attention

on it is non-negative, i.e.,

aj ∈C i� Uj = �0
j +
∑
k

�kxjk + "j ≥ 0:

Then the propensity of product aj is given by

�j = Pr[aj ∈C] =
exp
(
�0
j +
∑

k �kxjk
)

1 + exp
(
�0
j +
∑

k �kxjk
) :
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• Decision tree-based ICS model (DT-ICS). Here it is assumed that individuals decide which

items to consider based on a tree with leaves m∈ {1;2:::;M} to which we can associate a mean

probability wm of whether the item is going to be considered or not (see Murphy (2012)).

Then we can write the probability to consider the item aj in the following way:

�j = Pr[aj ∈C] =
M∑
m=1

wmI[xj ∈Rm] =
M∑
m=1

wm�(xj;vm);

where Rm is the mth region, i.e., the mth leaf; vm encodes the choice of features to split on

and their threshold values, on the path from the root to the mth leaf; and �(xj;vm) is equal

to 1 if xj belongs to the mth leaf, and equal to 0 otherwise.

• Random forest-based ICS model (RF-ICS). In this case, we assume that individuals �rst ran-

domly sample a tree and then decide which items to consider based on the sampled tree (see

Murphy (2012)). Note that random forest avoids the over�tting problem of decision trees by

adding more trees instead of building one big tree. We can write the probability of considering

the item aj as follows:

�j = Pr[aj ∈C] =
K∑
k=1

1

K
fk(xj);

where fk(xj) is the probability of considering item aj according to the kth decision tree.

Estimation methodology. In a similar spirit to the preliminaries in Section 4.1, we can for-

mulate the maximum likelihood estimation problem for the single class, logistic-based ICS (L-ICS)

model with product features in such a way so that we can apply the outer-approximation algorithm

in Appendix A3.2 in order to calibrate it.

On the other hand, the calibration of the DT-ICS and RF-ICS models is more challenging.

To this end, we need to estimate both the ranking � and the decision tree (or random forest).

Intuitively, both decision trees and random forests are not limited to the generalized linear model

class. Instead, they can model the relationship between the features in a non-linear way by bisecting

the space into smaller and smaller regions. Note that if the ranking � is known, then the log-

likelihood optimization is equivalent to calibrating a classi�cation decision tree or random forest

with the splitting criteria based on the entropy function. Then, given a decision tree or a random

forest, the log-likelihood optimization problem reduces to solving a MILP to �nd �. We could then

heuristically iterate between these two steps of �nding � and � until �nding a �xed-point or a

time limit is reached. As a practical matter in Section 7, we assume that the ranking � is known

a priori (see Section A5.2 for the details).
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A3.2. MINLP formulation: Logistic-based ICS model.

In this part of the section we formulate the maximum likelihood estimation problem for the logistic-

based ICS (L-ICS), and then simplify it in such a way so that we can apply the outer-approximation

algorithm in Section A3.3 in order to calibrate it. Recall that �kj, ∀ j; k; k 6= j; is binary linear

ordering variable such that �kj = 1 if product ak goes before product aj in the preference list �

(or, equivalently, �), and �kj = 0 otherwise. The data log-likelihood function under this model is

given by

L (�;�) =
T∑
t=1

[
log

eβXjt

1 + eβXjt
+
∑
ak∈St:
k 6=jt

[�kjt log
1

1 + eβXkt
]
]
;

and the ML problem can be represented in the following way

max
β;δ

L (�;�) (A21)

s.t.: �jk + �kj = 1; ∀ j; k; j ≤ k;

�jk + �kp + �pj ≤ 2; ∀ j; k; p j 6= k 6= p;

�jk ∈ {0;1}; ∀ j; k;

where the constraints ensure that � indeed represents a total order. In particular, the �rst set of

constraints ensures that either aj is preferred over ak or vice versa, and the second set of constraints

imposes the total ordering among any three products. To simplify the likelihood function, we

introduce a new variable � de�ned as �ikj = �kj�i, ∀ i; j; k and rewrite the likelihood function in

the following way

L (�;�;� ) =
T∑
t=1

[
log

eβXjt

1 + eβXjt
+
∑
ak∈St:
k 6=jt

(�kjt − 1) log

(
1

2

)
+
∑
ak∈St:
k 6=jt

[ log
1

1 + e
∑
i �ikjtXikt

]
]
;

since if �kjt = 1 we have that �ikjt = �i; ∀ i, and

�kjt log
1

1 + eβXkt
= log

1

1 + eβXkt
= log

1

1 + e
∑
i �ikjtXikt

= (�kjt − 1) log

(
1

2

)
+ log

1

1 + e
∑
i �ikjtXikt

;

if �kjt = 0 we have that �ikjt = 0; ∀ i, and

�kjt log
1

1 + eβXkt
= 0 =− log

(
1

2

)
+ log

1

1 + e0
= (�kjt − 1) log

(
1

2

)
+ log

1

1 + e
∑
i �ikjtXikt

:

Let M be the value of the largest component in vector �, i.e., M =max
i

�i. And we also de�ne

L (�;� ) in the following way

L (�;� ) =
T∑
t=1

[
log

eβXjt

1 + eβXjt
+
∑
ak∈St:
k 6=jt

[ log
1

1 + e
∑
i �ikjtXikt

]
]
:
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We can then formulate the MLE problem in terms of the variables (�;�;� ):

max
β;τ ;δ

L (�;� ) +
∑
ak∈St:
k 6=jt

(�kjt − 1) log

(
1

2

)
(A22)

s.t.: �ikj ≤ �i; ∀ i; j; k;

�ikj ≤M�kj; ∀ i; j; k;

�ikj ≥ �i +M�kj −M; ∀ i; j; k;

�kj ≥−M�kj; ∀ j; k;

�jk + �kj = 1; ∀ j; k; j ≤ k;

�jk + �kp + �pj ≤ 2; ∀ j; k; p j 6= k 6= p;

�jk ∈ {0;1}; ∀ j; k;

where the �rst four sets of linear constraints ensure that �ikj = �kj�i, ∀ i; j; k, given that � is a

binary variable.

A3.3. Estimation methodology: Outer-approximation algorithm

The high level idea behind outer-approximation algorithm is to approximate the convex constraint

in MINLP by the set of linear constraints. This way we can solve the MINLP by solving the

sequence of MILPs. In particular, we start with a feasible solution of MINLP. Then, we linearize

the convex constraint at the previously obtained feasible solution. The next step is to solve MILP

with a linearized convex constraint and obtain an additional point to linearize the convex constraint

and continue iteratively. Note that, at each iteration, we add only one additional constraint to the

optimization problem, solved at previous iteration. More formally, suppose that the problem is to

solve the MINLP (P) de�ned below.

max
θ;τ ;δ;�;�1

� (P)

s.t.: �1 ≤L (�;� );

A�+B� +C�≤ 0;

�= �1 +E�;

�L ≤ �≤ �U ;

�jk ∈ {0;1}; ∀ j; k;

where L (�;� ) is a concave function; �, � , �, and �1 are continuous decision variables; � is a binary

variable; A, B, C, and E are constant vectors; and �L and �U are lower and upper bounds of �,
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respectively. Note that optimization problems (10) and (A22) have a similar structure and can be

represented as the above mentioned MINLP (P) without loss of generality.

Before we provide the details of the outer-approximation algorithm, let us de�ne the linear

constraint D(�i;� i) that is added to the optimization problem at the ith iteration for given (�i;� i),

i.e., we linearize the convex constraint at (�i;� i):

D(�i;� i) = {�;� : L (�i;� i) +
@L (�i;� i)

@�
+
@L (�i;� i)

@�
−�1 ≥ 0; �∈R1}:

The broad idea of the outer-approximation algorithm is that at the ith iteration, we substitute

convex constraint �1 ≤L (�;� ) with a set of linear constraints 
i = {D(�k;� k)}|ik=0.

Next we de�ne two subproblems S(�i) and M i of the optimization problem (P) that are used

to describe the Algorithm 1, which exploits the outer-approximation technique. First, let us de�ne

the concave subproblem S(�i) for given �i (i.e., if �i is known) in the following way

max
θ;τ ;�;�1

� (S(�i))

s.t.: �1 ≤L (�;� );

A�+B� +C�i ≤ 0:

�= �1 +E�i:

Note that solving MINLP (P) reduces to solving concave subproblem above if � is known. Second,

let us de�ne the MILP subproblem M i for given 
i; �iL; and �iU as follows

max
θ;τ ;δ;�;�1

� (M i)

s.t.: (�;� ; �1)∈
i;

A�+B� +C�≤ 0;

�= �1 +E�;

�L ≤ �≤ �U ;

�jk ∈ {0;1}; ∀ j; k:

Note that solving MINLP (P) reduces to solving MILP subproblem if we approximate convex

constraint �1 ≤L (�;� ) with a set of linear constraints 
i.

Now we can formally apply the outer-approximation method (Duran and Grossmann, 1986) to

solve the optimization problem (P), see Algorithm 1. The proposed algorithm e�ectively exploits

the structure of the optimization problem (P) where we have a linearity of the binary variables

and convexity of the non-linear constraint which only depends on continuous variables. In order to
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linearize the optimization problem, we use the outer-approximation of a convex set by the inter-

section of its collection of supporting half-spaces. To this end, the outer approximation de�nes the

optimization problem (M i) as MILP. Because of the potentially many continuous points required

for outer-approximation, we solve a sequence of MILPs to build up increasingly tight relaxation

of the original MINLP. Overall, the proposed Algorithm 1 consists of solving a �nite sequence of

convex problems (S(�i)) and relaxed versions of a MILP (M i).

Algorithm 1 Outer-Approximation algorithm for optimization problem (P)

1: procedure Outer-Approximation(P)

2: 
0 =Rn×Rm, �L =−∞, �U =∞, i= 1

3: Select arbitrary �1, i.e., it can be arbitrary full ranking

4: while |�U −�L|> " do

5: Solve concave subproblem S(�i) such that �L = �∗ (i.e., the optimal objective function

of S(�i)), and (�i;� i) = (�∗;� ∗) (i.e., the optimal solution of S(�i))

6: Set 
i = 
i−1 ∩D(�i;� i)

7: Solve MILP subproblem M i such that �U = �∗ (i.e., the optimal objective function of

M i), and (�i;� i;�i) = (�∗;� ∗;�∗) (i.e., the optimal solution of M i))

8: i= i+ 1

9: return (�i;� i;�i).

A3.3.1. Outer-approximation algorithm vs. cutting plane algorithm Note that Algo-

rithm 1 to solve the optimization problem (P) requires the solution of both convex optimization

problem (S(�i)) and MILP (M i). The solution of the convex optimization problem (S(�i)) in each

iteration might be extremely computationally demanding, while in solving the MILP (M i) the

computational work, on the other hand, might be more moderate, because for every iteration i we

need to solve the MILP problem (M i) which is the previous MILP problem (M i−1) with only one

additional linear constraint added. Therefore, we propose to use the cutting plane algorithm to

solve the MINLP in this case (Westerlund and Pettersson, 1995), which would require the solution

of only the �nite sequence of MILP problem (M i), see Algorithm 2. Note that Algorithm 2 is iden-

tical to the Algorithm 1 except that we skip Step 5 in the cutting plane Algorithm 2. Even though

the main iteration loop of Algorithm 1 is, generally, more e�cient, we have global convergence for

both Algorithms 1 and 2.
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Algorithm 2 Cutting plane algorithm for optimization problem (P)

1: procedure Cutting plane(P)

2: 
0 =Rn×Rm, �L =−∞, �U =∞, i= 1

3: Select arbitrary �1, i.e., it can be arbitrary full ranking

4: Select arbitrary �1, i.e., it can be arbitrary distribution over consideration sets

5: Set � 1 = �1 ·�1, �0
U =−∞, �1

U =∞

6: while
∣∣�iU −�i−1

U

∣∣> " do

7: Set 
i = 
i−1 ∩D(�i;� i)

8: Solve MILP subproblem M i such that �U = �∗, �iU = �∗ (i.e., the optimal objective

function of M i), and (�i;� i;�i) = (�∗;� ∗;�∗) (i.e., the optimal solution of M i))

9: i= i+ 1

10: return (�i;� i;�i).

A3.3.2. Empirical validation of the algorithms. In this section, we analyze the perfor-

mance of outer-approximation algorithm (1) and cutting plane algorithm (2) to estimate ICS model

with IRI Academic dataset (see data descriptive statistics in Table A1). We limited the running

time of the algorithms by 3 hours, and the precision was set to 1e-6. It follows from Figure A4

that the optimality gap of the outer approximation algorithm (1) to calibrate the ICS model is

3.3% on average over 20 product categories. On the other hand, it is shown in Figure A5 that the

optimality gap of the cutting plane algorithm (2) to calibrate the ICS model is 4.5% on average

over 20 product categories. Following these �ndings, we apply outer-approximation algorithm (1)

to calibrate the ICS model in our analysis as it provides signi�cantly faster convergence to the

optimal solution, which is consistent with previous studies.

A3.4. GCS Estimation methodology: EM algorithm

In this section, we present the EM algorithm to calibrate the GCS model. We provide two versions

of this algorithm that can be applied to the aggregate-level and individual-level sales transaction

data.

A3.4.1. Estimation with aggregate level data. The log-likelihood function to calibrate

the GCS model, after we reparametrize it by dividing all the transactions into K segments, is given

by

log L (�;;��) =
T∑
t=1

log
( K∑
h=1

h�h;jt
∏
aj∈St:
aj�σajt

(1− �hj)
)
; (A23)
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Figure A4 Results of applying the outer-approximation algorithm to estimate ICS model with IRI Academic

dataset. We present the number of iterations completed in the algorithm, the upper and lower bounds

of the objective functions, and the average computational time in minutes for each iteration at the

left, middle, and right panels respectively. Note that in the middle column, the absolute value of the

optimality gap is equal to the distance between the cross and the dot.

Figure A5 Results of applying the cutting plane algorithm to estimate ICS model with IRI Academic dataset.

We present the number of iterations completed in the algorithm, the upper and lower bounds of the

objective functions, and the average computational time in minutes for each iteration at the left,

middle, and right panels respectively. Note that in the middle column, the absolute value of the

optimality gap is equal to the distance between the cross and the dot.

where h ≥ 0 is the weight of the class h a priory, s.t.
∑K

h=1 h = 1; St denotes the set of o�ered

items at time t; ajt denotes the product purchased at time t; T denotes the time horizon.

Unsurprisingly, the above likelihood function is nonconcave. In order to alleviate the complexity

of solving the MLE problem directly, we use the Expectation Maximization (EM) algorithm. First,

let us outline the main principles of EM procedure. We start with arbitrary initial parameter

estimates x̂(0). Then, we compute the conditional expected value of the log-likelihood function

E[log L (x)|x̂(0)] (the \E", expectation, step). Next, the resulting expected log-likelihood function

is maximized to compute new estimates x̂(1) (the \M", maximization, step), and we repeat the
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Category Shorthand Expanded Name # vend OS size # cust. # trans.

1 blades Blades 10 4.18 703 1084

2 cigets Cigarettes 18 7.14 452 2343

3 co�ee Co�ee 73 19.80 3101 11526

4 coldcer Cold cereal 45 17.66 4438 26701

5 deod Deodorant 36 14.55 1345 2383

6 diapers Diapers 8 3.30 337 919

7 fzpizza Frozen pizza 47 15.50 3460 13431

8 hotdog Hot dogs 44 16.81 3318 8886

9 laundet Laundry detergent 24 10.08 3196 8698

10 margbutr Margarine/Butter 19 10.35 3474 14596

11 mayo Mayonnaise 19 6.86 3761 8676

12 mustketc Mustard 60 17.07 3728 9238

13 peanbutr Peanut butter 25 7.99 3153 8059

14 shamp Shampoo 81 18.74 1466 2884

15 spagsauc Spaghetti/Italian sauce 74 17.85 3473 11879

16 sugarsub Sugar substitutes 17 5.05 750 1406

17 toitisu Toilet tissue 13 7.66 3760 14411

18 toothbr Toothbrushes 52 15.86 1115 1810

19 toothpa Toothpaste 38 12.05 2110 4482

20 yogurt Yogurt 32 9.84 3766 24096

Table A1 Summary statistics of the data used in the IRI case study.

algorithm until convergence to get a sequence of estimates {x̂(q); q = 1;2; :::}. We further describe

the E-step and M-step of every iteration and how we start the algorithm in the context of our

estimation problem.

Initialization: we initialize the EM with a random allocation of observations to one of the K

classes, resulting in an initial allocation D1;D2; : : : ;DK , which form a partition of the collection

of all the transactions. Then we set 
(0)
h = |Dh|=(

∑K

d=1 |Dd|). Then �(0) (i.e., �(0)
� ) and �

(0)
hj for all

h∈ {1; :::;K}, aj ∈N+ are obtained by solving the following optimization problem:

max
�;θh

∑
t∈Dh

(
log �h;jt +

∑
aj∈St:
aj�σajt

log(1− �hj)
)
;

which is solved by using the outer approximation algorithm in Section A3.3.

E-step: we compute P
(q)
ht , which is the membership probability of every transaction at time t to

belong to the segment h (i.e., t ∈ �h, where �h is the set of transactions in class h) based on the

parameter estimates {�(q−1);�(q−1);(q−1)} and the purchasing transactions data (ajt ; St)|Tt=1:

P
(q)
ht = Pr

(
t∈ �h

∣∣∣∣�(q−1);�(q−1);(q−1); (ajt ; St)|Tt=1

)
= Pr

(
t∈ �h

∣∣∣∣�(q−1);�(q−1);(q−1); (ajt ; St)

)
[ independence of purchases]
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=

Pr

(
(ajt ; St)

∣∣∣∣�(q−1);�(q−1);(q−1); t∈ �h

)
·Pr

(
t∈ �h

∣∣∣∣�(q−1);�(q−1);(q−1)

)
Pr

(
(ajt ; St)|

∣∣∣∣�(q−1);�(q−1);(q−1)

) [ Bayes' theorem ]

=

Pr

(
(ajt ; St)

∣∣∣∣�(q−1);�(q−1);(q−1); t∈ �h

)
·Pr

(
t∈ �h

∣∣∣∣�(q−1);�(q−1);(q−1)

)
∑K

r=1 Pr

(
(ajt ; St)

∣∣∣∣�(q−1);�(q−1);(q−1); t∈ �r

)
·Pr

(
t∈ �r

∣∣∣∣�(q−1);�(q−1);(q−1)

)
[ Law of total probability ]

=


(q−1)
h

[
�

(q−1)
h;jt

∏
aj∈St:

aj �(q−1) ajt

(1− �(q−1)
hj )

]
∑K

r=1

[


(q−1)
r

(
�

(q−1)
r;jt

∏
aj∈St:

aj �(q−1) ajt

(1− �(q−1)
rj )

)] :

As a result, the conditional expected value of the log-likelihood function is given by

K∑
h=1

T∑
t=1

P
(q)
ht log

(
�h;jt

∏
aj∈St:
aj�σajt

(1− �hj)
)
:

M-step: �rst, we update class membership probabilities for every segment h∈ {1;2; :::;K}:


(q)
h =

∑T

t=1P
(q)
ht

T
;

and then optimize the conditional expected value of the log-likelihood function, obtained in the

previous step, in terms of � and �:

max
�;θ

K∑
h=1

T∑
t=1

P
(q)
ht log

(
�h;jt

∏
aj∈St:
aj�σajt

(1− �hj)
)
;

which is solved using outer-approximation algorithm in Section A3.3.

A3.4.2. Estimation with panel data. In the EM algorithm above we assumed access to the

aggregate level sales transaction data (i.e., sales transaction data without access to the customer

tags). The EM algorithm is updated in the following way if we have access to the individual-level

sales transaction data with m customers:

Initialization: we initialize the EM with a random allocation of individuals to one of the K

classes, resulting in an initial allocation D1;D2; : : : ;DK , which form a partition of the collection
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of all the individuals. Then we set 
(0)
h = |Dh|=(

∑K

d=1 |Dd|). Then � (i.e., ��) and �
(0)
hj for all

h∈ {1; :::;K}, aj ∈N+ are obtained by solving the following optimization problem:

max
�;θh

∑
i∈Dh

(
log �h;jit +

∑
aj∈Sit:
aj�σajit

log(1− �hj)
)
;

which is solved by using the outer approximation algorithm in Section A3.3.

E-step: we compute P
(q)
hi , which is the membership probability of every individual i to belong to the

segment h based on the parameter estimates {�(q−1);�(q−1);(q−1)} and the purchasing transactions

data (ajit ; Sit)|
Ti
t=1:

P
(q)
hi =


(q−1)
h

∏Ti
t=1

[
�

(q−1)
h;jit

∏
aj∈Sit:

aj �(q−1) ajit

(1− �(q−1)
hj )

]
∑K

r=1

[


(q−1)
r

∏Ti
t=1

(
�

(q−1)
r;jit

∏
aj∈Sit:

aj �(q−1) ajit

(1− �(q−1)
rj )

)] :

M-step: �rst, we update class membership probabilities for every segment h∈ {1;2; :::;K}:


(q)
h =

∑m

i=1P
(q)
hi

m
;

and then optimize the conditional expected value of the log-likelihood function, obtained in the

previous step, in terms of � and �:

max
�;θ

m∑
i=1

K∑
h=1

P
(q)
hi

Ti∑
t=1

log
(
�h;jit

∏
aj∈Sit:
aj�σajit

(1− �hj)
)
;

which is solved using the outer-approximation algorithm in Section A3.3. In order to simplify the

optimization of the aforementioned conditional expected value of the log-likelihood function in

Section 6, we assume that the ranking � is known a priori, i.e., the products are assumed to be

ranked according to their sales.

A3.4.3. EM algorithm heuristics. Note that the proposed EM algorithm might become

computationally challenging for large-scale problems as we need to run an outer-approximation

algorithm for every qth iteration. Alternatively, we might further assume that the preference order

� (i.e., ��) over items in the product universe is known, e.g., we can rank the products according

to their popularity in the sales transaction data or we can estimate the ranking from calibrating

single class ICS model (see Section 4.1). In this case, the "M" step for qth iteration in the EM
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algorithm reduces to solving a globally concave maximization problem with a unique, closed form

solution (i.e., we don't need to apply an outer-approximation algorithm) given by:

�
(q)
hj =

∑T

t=1P
(q)
ht I[ajt = aj]∑T

t=1P
(q)
ht I[ajt = aj] +

∑T

t=1P
(q)
ht I[aj ∈ St; aj �� ajt ]

;

which can be applied with aggregate level data (see Section A3.4.1), and

�
(q)
hj =

∑m

i=1

∑Ti
t=1P

(q)
hi I[ajit = aj]∑m

i=1

∑Ti
t=1P

(q)
hi I[ajit = aj] +

∑m

i=1

∑Ti
t=1P

(q)
hi I[aj ∈ Sit; aj �� ajit ]

;

which can be applied with panel data (see Section A3.4.2).

A3.5. CTC model: Estimation methodology

The CTC (i.e., general consideration - then - general choice) is the broadest class of consider-then-

choose type of models where customers have heterogeneous preferences and consideration sets, i.e.,

before making a choice customers sample their preference order � over the items in the product

universe and the subset of items C to consider from the general distributions over product rankings

and consideration sets respectively.

A3.5.1. Estimation with aggregate level data. Similarly to the Section A3.4, we calibrate

the CTC model by dividing transactions into K segments such that customers in segment h sample

their consideration sets based on the attention parameters �h and have their preferences charac-

terized by the ranking �h. Then the log-likelihood function can be represented in the following

way

log L (;�;�) =
T∑
t=1

log
( K∑
h=1

h�h;jt
∏
aj∈St:

aj �h ajt

(1− �hj)
)
; (A24)

where h ≥ 0 is the weight of the class h, s.t.
∑K

h=1 h = 1; St denotes the set of o�ered items at

time t; ajt denotes the product purchased at time t; T denotes the time horizon. Conceptually, we

can obtain all the parameters of the CTC model (i.e., distributions over the preference lists and

considerations sets) by maximizing the log-likelihood function above for a su�ciently large K.

Next we provide the initialization of the EM algorithm to calibrate the CTC model followed by

the \E" and \M" steps of every iteration.

Initialization: we randomly allocate sales transaction to one of the K classes, resulting in an

initial allocation D1;D2; : : : ;DK , which form a partition of the collection of all the transactions.

Consequently, we set 
(0)
h = |Dh|=(

∑K

d=1 |Dd|). Then �h (i.e., �h) and �
(0)
hj for all h ∈ {1; :::;K},

aj ∈N+ are obtained by solving the following optimization problem:

max
�h;θh

∑
t∈Dh

(
log �h;jt +

∑
aj∈St:

aj �h ajt

log(1− �hj)
)
;
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which is solved by using the outer approximation algorithm for the ICS model in Section A3.3.

E-step: we compute P
(q)
ht , which is the membership probability of every transaction at time t to

belong to the segment h based on the parameter estimates {

boldsymbol(q−1); boldsymbol�(q−1);�(q−1)} and the purchasing transactions data (ajt ; St)|Tt=1:

P
(q)
ht =


(q−1)
h

[
�

(q−1)
h;jt

∏
aj∈St:

aj �
(q−1)
h

ajt

(1− �(q−1)
hj )

]
∑K

r=1

[


(q−1)
h

(
�

(q−1)
r;jt

∏
aj∈St:

aj �
(q−1)
h

ajt

(1− �(q−1)
rj )

)] :

M-step: �rst, we update class membership probabilities for every segment h∈ {1;2; :::;K}:


(q)
h =

∑T

t=1P
(q)
ht

T
;

and then optimize the conditional expected value of the log-likelihood function, obtained in the

previous step, in terms of �h and �h for all h∈ {1; :::;K}:

max
�h;θh

T∑
t=1

P
(q)
ht log

(
�h;jt

∏
aj∈St:
aj�hajt

(1− �hj)
)
;

which is solved by using the outer approximation algorithm for the ICS model in Section A3.3.

Note that in the proposed EM algorithm we need to apply the outer-approximation algorithm

for every iteration. In order to reduce the computation time for the large-scale problems we might

solve the optimization problem at \M"-step by ranking the products according to their popularity

for each segment h. This way we can obtain the preference order �
(q)
h for every segment h for q−th

iteration. In this case, the \M" step in the EM algorithm reduces to solving a globally concave

maximization problem with a unique and closed form solution given by:

�
(q)
hj =

∑T

t=1P
(q)
ht I[ajt = aj]∑T

t=1P
(q)
ht I[ajt = aj] +

∑T

t=1P
(q)
ht I[aj ∈ St; aj �(q)

h ajt ]
:

A3.5.2. Estimation with panel data. We update the EM algorithm above in the following

way:

Initialization: we randomly allocate individuals to one of the K classes, resulting in an initial

allocation D1;D2; : : : ;DK . Consequently, we set 
(0)
h = |Dh|=(

∑K

d=1 |Dd|). Then �h (i.e., �h) and �
(0)
hj

for all h∈ {1; :::;K}, aj ∈N+ are obtained by solving the following optimization problem:

max
�h;θh

∑
i∈Dh

(
log �h;jit +

∑
aj∈Sit:

aj �h ajit

log(1− �hj)
)
;
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which is solved by using the outer approximation algorithm for the ICS model in Section A3.3.

E-step: we compute P
(q)
hi , which is the membership probability of every individual i to belong to

segment h based on the parameter estimates {(q−1);�(q−1);�(q−1)} and the purchasing transactions

data (ajt ; St)|
Ti
t=1:

P
(q)
hi =


(q−1)
h

∏Ti
t=1

[
�

(q−1)
h;jit

∏
aj∈Sit:

aj �
(q−1)
h

ajit

(1− �(q−1)
hj )

]
∑K

r=1

∏Ti
t=1

[


(q−1)
h

(
�

(q−1)
r;jit

∏
aj∈Sit:

aj �
(q−1)
h

ajit

(1− �(q−1)
rj )

)] :

M-step: �rst, we update class membership probabilities for every segment h∈ {1;2; :::;K}:


(q)
h =

∑m

i=1P
(q)
ht

m
;

and then optimize the conditional expected value of the log-likelihood function, obtained in the

previous step, in terms of �h and �h for all h∈ {1; :::;K}:

max
�h;θh

m∑
i=1

P
(q)
hi

Ti∑
t=1

log
(
�h;jit

∏
aj∈Sit:
aj�hajit

(1− �hj)
)
;

which is solved by using the outer approximation algorithm for the ICS model in Section A3.3.

A3.6. Comparison between CTC and GCS models

In this section, we compare the prediction performance of the GCS with the CTC based on IRI

dataset. It follows from Figures A6 and A7 that the GCS provides higher prediction accuracy than

the CTC under the long-term forecast scenario whereas the CTC outperforms the GCS under the

warehouse forecast scenario. As a result, we can not claim dominance of the GCS or the CTC.

A4. Robustness Checks

A4.1. Study based on synthetic data: Robustness to the ground truth model and benchmarks

In this section, we summarize the results of the extensive synthetic experiments conducted in order

to check the robustness of the simulation results reported in Section 5, when we use the rank-based

model as ground truth instead of the MNL. Recall that in Section 5, we compared the predictions

of the MNL model against the ICS model to understand the conditions under which the MNL

benchmark outperforms the consider-then-choose model in the presence of noise in the o�er sets.

The setup of the experiments in this section is identical to the one in Section 5. In the new set

of experiments we simulate sales transaction data according to the rank-based model with �fteen
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Figure A6 Scatter plots of the prediction score improvements of GCS model over CTC across 20 product cate-

gories. Improvements are de�ned as the di�erence between two scores. We focus on the MAPE and

RMSE scores in the left and right panels respectively. We illustrate three scenarios in each panel:

(1) short-term forecasts represented by pluses, (2) long-term forecasts represented by crosses, and (3)

warehouse forecasts represented by dots.

Figure A7 The average prediction scores over 20 product categories under GCS and CTC choice models repre-

sented by dashed bars and solid bars respectively. We focus on MAPE and RMSE scores in the left

and right panels respectively. The lower the score the better.
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Figure A8 Heatmap of the prediction scores under the rank-based model where each column corresponds to a

particular noise intensity and each row corresponds to a particular noise exposure. We focus on the

MAPE and RMSE scores in the left and right panels respectively. The lower the score the better.

customer types where type i customers are making purchases according to the ranking �i, i.e., when

faced with a given choice set customers are assumed to purchase the available option that ranks

highest in their preference list. To this end, we randomly sample the set of �fteen rankings, each

corresponding to a particular class, and also assume the equal probability of each class. In order to

calibrate this rank-based model we exploit the EM algorithm proposed by van Ryzin and Vulcano

(2017). This algorithm relies on the assumption that the set of rankings is known. Therefore, we

initialize this algorithm with thirty preference orders such that �fteen of them are the rankings

from the ground truth and the remaining �fteen rankings are sampled randomly. Moreover, we

start the EM algorithm with an equal probability of sampling each preference list.

Similarly to Section 5, in Figures A8 and A9 we present the heatmaps of the prediction scores

under the rank-based model, and the prediction scores improvements of the ICS model versus the

rank-based model, respectively. And in Tables A2 and A3, we report the results for the regres-

sion (16), where the dependent variables are the prediction scores and the improvement scores,

respectively. The main insights remain the same { the results of this extensive simulation study

demonstrate that choice models based on the consider-then-choose framework are more robust to

noise in o�er sets than their classical counterparts, i.e., the ICS model outperforms the ground

truth rank-based model under noisier regimes.

With the objective of benchmarking the ICS model with a more competitive variant of the

MNL, we resort to the LC-MNL. As it was mentioned above, we estimate the LC-MNL model for

K = 1;2; :::;5, classes and report the best performance measure from these �ve variants. Figure A11

illustrates the heatmaps of the MAPE and RMSE prediction score improvements of the ICS model

Electronic copy available at: https://ssrn.com/abstract=3410019



Jagabathula, Mitrofanov, and Vulcano: Demand estimation under uncertain consideration sets
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) A35

Model (1) Model (2) Model (3) Model (4) Model (5)
Score Score Score Score Score

Intensity 38.341*** 48.526***
(23.312) (15.904)

Intensity2 32.639*** -9.259***
(20.358) (-3.425)

Asymm 30.882*** 42.516***
(5.470) (29.661)

Shared 4.827* 13.450***
(1.657) (19.378)

const 7.072*** 15.593*** 17.891*** 26.428*** -13.927***
(6.930) (19.324) (8.679) (19.091) (-14.501)

No. Observations: 200 200 200 200 200
R-squared: 0.733 0.677 0.131 0.014 0.955
Adj. R-squared: 0.732 0.675 0.127 0.009 0.954

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A2 Regression models where the dependent variable is the MAPE score under the rank-based model.
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Figure A9 Heatmap of the prediction scores improvements under the ICS model versus the rank-based model

where each column corresponds to a particular noise intensity and each row corresponds to a particular

noise exposure. We focus on the MAPE and RMSE scores in the left and right panels respectively.

versus the LC-MNL when the ground truth is an MNL model as in Section 5. As expected, Fig-

ure A11 con�rms that the LC-MNL is a more competitive benchmark. However, our qualitative

results remain the same: the ICS model outperforms the LC-MNL model, which subsumes the

ground truth MNL model, under su�ciently noisy regimes.
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Model (1) Model (2) Model (3) Model (4) Model (5)
Impr. Impr. Impr. Impr. Impr.

Intensity 16.211*** 23.908***
(16.814) (13.640)

Intensity2 13.646*** -6.997***
(14.968) (-4.506)

Asymm 1.991 12.733***
(0.697) (15.464)

Shared 9.837*** 12.419***
(8.231) (31.147)

const -12.304*** -8.641*** -4.050*** -6.917*** -22.532***
(-20.567) (-18.832) (-3.884) (-12.178) (-40.841)

No. Observations: 200 200 200 200 200
R-squared: 0.588 0.531 0.002 0.255 0.933
Adj. R-squared: 0.586 0.528 -0.003 0.251 0.931

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A3 Regression models where the dependent variable is the MAPE score improvement of the ICS model

over the rank-based model.
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Figure A10 Heatmap of the prediction scores improvements under the ICS model versus the MNL where each

column corresponds to a particular noise intensity η and each row corresponds to a particular noise

exposure γ in the test dataset. For every scenario noise exposure in the training dataset is 10% lower

than in the test dataset. We focus on the MAPE and RMSE scores in the left and right panels,

respectively.

A4.2. Study based on synthetic data: Explanation about the superior performance of the ICS

model in noisy regimes.

In this section, we provide more details on how the one-directional cannibalization property of the

ICS model helps it to outperform the ground-truth MNL model in the simulation study in Section 5.
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Figure A11 Heatmap of the prediction scores improvements under the ICS model versus the LC-MNL where

each column corresponds to a particular noise intensity η and each row corresponds to a particular

noise exposure γ. We focus on the MAPE and RMSE scores in the left and right panels, respectively.

This is just one potential mechanism that can explain the superior performance of the ICS model

in noisy regimes. To streamline our analysis, we focus on the speci�c case of the simulation study

in Section 5 where  = 0:5 and � = 1, which corresponds to the case of maximum asymmetry

between the training and testing datasets (i.e., the probability that a product is only o�ered in

either the training or the testing dataset is 0.5, and every product in the exposure set will be added

to either the training or the testing datasets). As it was mentioned in Section 5, the one-directional

cannibalization property of the ICS model provides robustness to the noise in the o�er sets because

it alleviates its impact on the demand prediction for the higher ranked items (i.e., the presence or

absence of lower-ranked products in the o�er set does not a�ect the demand prediction for higher

ranked products). We con�rm this intuition by estimating the following regression speci�cation:

ScoreImprjc = Instancec +� ·Rankingjc + "jc; (A25)

where j corresponds to item aj ∈ N and c corresponds to a speci�c instance, i.e., to each of

the 1,000 generated instances. ScoreImprjc is the improvement of item aj demand forecasting error

in instance c obtained by the ICS model over MNL, i.e., ScoreImprjc = ScoreICSjc − ScoreMNL
jc ,

where we rely on two ways to measure the item's demand forecasting accuracy: (1) absolute per-

centage error (APEj) =
100·|nj−n̂j|

10+nj
, where nj denotes the observed sales for aj in the test dataset

and n̂j denotes our prediction and (2) demand prediction error (DPEj) =
100·

(
nj−n̂j

)
∑

aj∈N
nj

. Note that the

former and the latter prediction errors are factored into the computations of the MAPE and RMSE

scores, respectively, and that they are expressed in percentage points so that the score improvement

is also expressed in percentage points. Rankingjc is the position of item aj in the ranking inferred
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from the ICS model calibration on instance c. Instancec is a categorical variable to control for the

instance-level �xed e�ects. Table A4 presents the results from the regression speci�cation (A25)

where the improvement by the ICS model over MNL is measured using APE score in columns (1)

and (3), while the improvement by the ICS model over MNL using the DPE score is presented in

columns (2) and (4). In columns (1) and (2) we do not control for the instance-level �xed e�ects,

while in columns (3) and (4) we do. It follows from Table A4 that the coe�cient of the ranking

variable is negative and statistically signi�cant, with a magnitude that implies a relevant decrease

in ScoreImprjc for the low-ranked products, which con�rms the intuition that the ICS model is

especially competitive when predicting the market shares of the top-ranked items because those

items are immune to the presence or absence of lower-ranked products in the o�er sets. Note that

this �nding is consistent across all four columns in Table A4 (with and without instance-level �xed

e�ects, under both prediction scores). Note that the R2 in all the columns in Table A4 is relatively

small which is not unexpected given that we only have a single covariate in the regression models

and there might be other factors (in addition to the Ranking variable) which could explain the

variation in the outcome variable ScoreImpr.

Model (1) Model (2) Model (3) Model (4)
Impr. Impr. Impr. Impr.

ranking -13.385*** -1.428*** -13.385*** -1.428***
(-3.274) (-5.987) (-3.177) (-5.815)

const 331.279*** 27.625***
(12.408) (14.699)

Instance FE: No No Yes Yes
No. Observations: 15,000 15,000 15,000 15,000
R-squared: 0.001 0.003 0.001 0.003

t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A4 Regression models where the dependent variable is the APE (in Models (1) and (3)) or the DPE (in

Models (2) and (4)) score improvement by the ICS model over the MNL model.

A4.3. Robustness to the forecasting error metrics

In this section, we show the robustness of our prediction results in Section 6 to di�erent speci�-

cations of the prediction metrics. To this end, we focus on the variations of RMSE and MAPE

metrics when aggregating predictions either over a one week intervals (i.e., RMSET and MAPET )

Electronic copy available at: https://ssrn.com/abstract=3410019



Jagabathula, Mitrofanov, and Vulcano: Demand estimation under uncertain consideration sets
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) A39

or over every o�er set (i.e., RMSES and MAPES). More formally, RMSE and MAPE metrics when

aggregating predictions over one-week intervals can be computed in the following way

MAPET =
100∑T

t=1 |St|

T∑
t=1

∑
aj∈St

|njt− n̂jt|
10 +njt

; (A26)

RMSET = 100

√√√√√ 1∑T

t=1 |St|

T∑
t=1

∑
aj∈St

(njt− n̂jt)2

(
∑
aj∈St

njt)2
; (A27)

where St is the set of items that were o�ered to customers in week t, T is the total number of weeks

in the test dataset, njt is the observed number of times product aj was purchased in week t, and

n̂jt is the predicted number of times product aj to be purchased in week t. In the same spirit, we

can compute RMSE and MAPE metrics when aggregating predictions over each o�er set as follows

MAPE ~S =
100∑M

m=1

∣∣∣ ~Sm∣∣∣
M∑
m=1

∑
aj∈ ~Sm

|njm− n̂jm|
10 +njm

; (A28)

RMSE ~S = 100

√√√√√ 1∑M

m=1

∣∣∣ ~Sm∣∣∣
M∑
m=1

∑
aj∈ ~Sm

(njm− n̂jm)
2

(
∑

aj∈ ~Sm

njm)2
; (A29)

where ~Sm is the m'th o�er set, M is the total number of di�erent o�er sets in the test dataset,

njm is the observed number of times product aj was purchased under the o�er set m, and n̂jm is

the predicted number of times product aj to be purchased under the o�er set m. Alternatively, we

could aggregate predictions based on the `true' o�er sets in the following way

MAPES =
100∑M ′

m=1 |Sm|

M ′∑
m=1

∑
aj∈N

|njm− n̂jm|
10 +njm

; (A30)

RMSES = 100

√√√√√ 1∑M ′

m=1 |Sm|

M ′∑
m=1

∑
aj∈N

(njm− n̂jm)
2

(
∑
aj∈N

njm)2
; (A31)

where Sm is the m'th `true' o�er set, M ′ is the total number of di�erent `true' o�er sets in the test

dataset.

In Figure A12, we exhibit improvements of the GCS over the LC-MNL under MAPET (left

panel) and RMSET (right panel), averaging across 20 product categories, for the three di�erent

scenarios. From these panels, we observe that the GCS signi�cantly improves over the LC-MNL

once we shift from short to long-term and from long-term to warehouse forecasts based on the

MAPET and RMSET scores. Figure A13 (resp. Figure A14) presents qualitatively the same results

when we compute prediction metrics based on the MAPE ~S (resp. MAPES) and RMSE ~S (resp.

RMSES) scores. As a result, we conclude that the direction of our results in Section 6 is robust to

the de�nition of the prediction metrics.
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Figure A12 The relative improvement of GCS model over LC-MNL model in prediction performance based on

the IRI dataset. RMSE and MAPE metrics are aggregated over a one week intervals and computed

using equations (A26) and (A27).
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Figure A13 Relative improvement of the GCS model over the LC-MNL model in prediction performance based

on the IRI dataset. RMSE and MAPE metrics are aggregated over noisy o�er sets and computed

using equations (A28) and (A29).
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Figure A14 Relative improvement of the GCS model over the LC-MNL model in prediction performance based

on the IRI dataset. RMSE and MAPE metrics are aggregated over `true' o�er sets and computed

using equations (A30) and (A31).
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Figure A15 Average prediction scores over 20 product categories under the GCS and LC-MNL choice models

represented by dashed bars and solid bars respectively. The o�er set noise is present only in the test

dataset where we set η to be 0.5 and γ take three di�erent values.

A4.4. Case study on retailing: Di�erent noise generation process

In this section, we show the robustness of our prediction results in Section 6 to an alternative

noise generation process. To this end, we add the noise only to the test dataset and we do it in a

similar way to the simulation study presented in Section 5. Figure A15 illustrates the predictive

performance of the GCS and the LC-MNL models when � is equal to 0.5 and  takes three di�erent

values (0.1, 0.3, and 0.5). It follows from Figure A15 that our results are qualitatively the same

under this alternative noise regime { the relative predictive performance of the GCS over the

LC-MNL improves with the level of noise (measured by ) in the o�er sets.

A4.5. Case study on retailing: Both training and test datasets are exposed to the same o�er

set noise generation process

In this section, we show the robustness of our prediction results in Section 6 to the scenario when

we use the same noise generation process to alter both the training and test datasets. Otherwise,

the setup of the experiments is the same as in Section 6. Figure A16 illustrates that the �ndings

are qualitatively the same under the updated setup { the relative predictive performance of the

GCS over the LC-MNL improves with the level of noise in the o�er sets.

A5. Case Study on the Car Sharing Dataset

In this section, we calibrate the Logistic-based ICS (L-ICS) and MNL models accounting for car

features and discuss the modeling assumptions based on the car sharing dataset (see data descrip-

tive statistics in Table A5). We also provide explanatory analysis of choice models in order to

gain insights about the consideration set formation of renters using the car feature information.

In addition, we address the problem of a potential price endogeneity in our empirical explanatory
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Figure A16 Average prediction scores over 20 product categories under the GCS and LC-MNL choice models

represented by dashed bars and solid bars respectively. The o�er set noise is present both in the

training and test datasets.

analysis. We argue that in our setting we are unlikely to have any price endogeneity problems

while calibrating the models. We conclude this section by presenting Figure A17 which illustrates

an instance of the decision tree obtained after �tting the DT-ICS model.

A5.1. Estimation: L-ICS and MNL models

We start this section by calibrating the single-class L-ICS model with features to examine the extent

to which various variables impact the consideration set structure. Assuming that the cars are ranked

according to their popularity among renters (see Section 7.2), the problem of �tting the L-ICS model

is the one of estimating the coe�cients �. The car features available to the renters through the

online platform are divided into three groups: (1) car brand; (2) car location type and accessibility,

including car access (i.e., open or closed), car location hours (i.e., 24 hours or restricted), car

location type (i.e., garage, street, surface lot, or valet); and the third group including (3a) car

type (i.e., economy, standard, fullsize, SUV, trucks, luxury), and (3b) car features: hourly price,

car age, and some other various binary car features such as transmission, premium wheels, power

seats, bluetooth/wireless, leather interior, sunroof/moonroof, premium sound, power windows, GPS

navigation system, roof rack, tinted windows. Assuming that the error terms "j are logistically

distributed, we estimate the � vector using logistic regression analysis.

The results for the L-ICS model appear in the �rst column of Table A6. In the middle column,

the table lists the average marginal e�ects (AME) of the L-ICS model when all the covariates are

at their mean. Then we also calibrate the usual linear-in-parameters MNL model where the utility

from reserving the car alternative j is represented with linear in parameters function Uj, i.e., Uj =

�Txj + "j. On the right, Table A6 presents the estimates of the MNL model parameters. However,

the interpretation of the � vector for the L-ICS and MNL models is di�erent. The parameters of
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Mean Std. Min Max
Brands

Acura 2.52% 15.68% 0% 100%
Audi 4.54% 20.82% 0% 100%
BMW 11.73% 32.18% 0% 100%
Buick 0.21% 4.61% 0% 100%
Chevrolet 0.79% 8.84% 0% 100%
Chrysler 0.41% 6.37% 0% 100%
Dodge 0.82% 9% 0% 100%
Fiat 0.9% 9.42% 0% 100%
Ford 2.63% 16.01% 0% 100%
Honda 16.77% 37.36% 0% 100%
Hyundai 3.42% 18.16% 0% 100%
Infiniti 0.21% 4.61% 0% 100%
Jeep 0.41% 6.39% 0% 100%
Kia 0.49% 6.95% 0% 100%
Land Rover 0.17% 4.14% 0% 100%
Lexus 1.24% 11.06% 0% 100%
Mazda 3.44% 18.22% 0% 100%
Mercedes Benz 3.73% 18.95% 0% 100%
Mercury 0.07% 2.59% 0% 100%
Mini 7.66% 26.59% 0% 100%
Mitsubishi 0.68% 8.21% 0% 100%
Nissan 4.05% 19.71% 0% 100%
Pontiac 0.21% 4.57% 0% 100%
Porsche 1.5% 12.14% 0% 100%
Saab 0.03% 1.73% 0% 100%
Saturn 0.28% 5.25% 0% 100%
Scion 0.62% 7.85% 0% 100%
Subaru 3.71% 18.89% 0% 100%
Suzuki 0.53% 7.29% 0% 100%
Smart 5.44% 22.69% 0% 100%
Tesla 1.42% 11.83% 0% 100%
Toyota 10.33% 30.43% 0% 100%
Volkswagen 7.54% 26.41% 0% 100%
Volvo 1.53% 12.28% 0% 100%

Car types
Economy 14.83% 35.54% 0% 100%
Standard 48.83% 49.99% 0% 100%
Fullsize 19.56% 39.67% 0% 100%
SUV 9.41% 29.2% 0% 100%
Trucks 3.31% 17.88% 0% 100%
Luxury 4.06% 19.74% 0% 100%

Car location type and accessibility
Car access [open] 81.89% 38.51% 0% 100%
Car access hours [all hours] 93.52% 24.61% 0% 100%
Car location type [garage] 28.50% 45.14% 0% 100%
Car location type [street] 23.86% 42.62% 0% 100%
Car location type [surface lot] 43.85% 49.62% 0% 100%
Car location type [valet] 0.24% 4.84% 0% 100%

Car features
Price (per hour) 8.63 4.61 2.0 300.0
Car age 5.32 3.18 -0.3 18.3
Transmission [automatic] 95.21% 21.35% 0% 100%
Premium wheels 29.38% 45.55% 0% 100%
Power seats 46.88% 49.90% 0% 100%
Bluetooth/wireless 33.74% 47.28% 0% 100%
Leather interior 53.56% 49.87% 0% 100%
Sunroof/moonroof 53.48% 49.88% 0% 100%
Premium sound 46.25% 49.86% 0% 100%
Power windows 92.90% 25.68% 0% 100%
GPS navigation system 23.05% 42.11% 0% 100%
Roof rack 6.98% 25.48% 0% 100%
Tinted windows 13.24% 33.89% 0% 100%

Table A5 Descriptive statistics, the car sharing dataset.
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the L-ICS model listed in the left column of Table A6 show the estimated impact of exogenously

imposed changes in car features on consideration set formation. Rather, the parameters of the MNL

model in the right column of Table A6 show the inuence of car features on the customer's choices,

i.e., revealed preferences. Notably, quite a few coe�cients (17 out of 53) estimated based on L-ICS

and MNL models are not aligned, i.e., the covariates that increase (or decrease) the likelihood

of considering the car under the L-ICS model might not necessarily increase (or decrease) the

likelihood of booking the car under the MNL model, e.g., the utility of the renter from considering

the car brand Jeep is higher by 0.98 (t = 4.9, p < 0.01) than the utility from considering the

baseline brands while the utility of the renter from reserving the same brand under the MNL model

is lower by 0.93 (t = -6.2, p < 0.01) than the utility from reserving baseline brands. Also, some

of the covariates (7 out of 53) that are statistically signi�cant in explaining the choice of renters

under the MNL model might be statistically insigni�cant under the L-ICS model, e.g., the utility

from choosing a car parked in the street is lower (t = -8.33, p < 0.01) than the utility from choosing

the car located in the valet parking area while the discrepancy between these two parking location

types is insigni�cant (t = 1.36, p > 0.10) under the L-ICS model. The price and car age coe�cients

are statistically signi�cant and negative for both the L-ICS and MNL models. However, the impact

of an additional $1 increase in the car hourly rental price on the utility from considering the vehicle

is equivalent to the car being 0.52 years older, while the impact of an additional $1 increase in the

car hourly rental price on the utility from booking the vehicle under the MNL model is equivalent

to the car being 3.75 years older. According to these �ndings, car age plays a relatively more

important role during the formation of the consideration set in the L-ICS model compared to its

role in the choice process under the MNL model.

Next, we consider three types of car attributes (i.e., car brand, car location type and accessibility,

and car type and features), with the objective of empirically verifying their impact on consideration

set formation under the L-ICS model and on the choice probabilities under the MNL model. Models

1,2, and 3 (both under the L-ICS and MNL) incorporate all the covariates except car types and

features, car location type and accessibility, and brands, respectively, e.g., Model 1 excludes car

types and features while including all the other covariates. According to Table A7, the car type

and features attributes are less statistically signi�cant than car brand attributes under the L-ICS

model, whereas the opposite e�ect takes place under the MNL model. These �ndings are robust to

the various measures of statistical signi�cance and goodness-of-�t presented in Table A7 such as

LL, AIC, BIC, Likelihood Ratio (LR) statistics, and Wald statistics. Overall, it is implied that car

location type and accessibility play the least important role both for consideration set formation

and for the �nal choice decision. The renters are likely to build their consideration sets based on

car brands rather than on car properties, even though while evaluating alternatives towards choice

customers are likely to pay more attention to car properties rather than to car brands.
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L-ICS AME (L-ICS) MNL
Coeff. Std.err. Coeff. Std. err. Coeff. Std. err.

Brands
Acura 0.29** 0.10 0.067** 0.024 -0.33*** 0.094
Audi -0.11 0.097 -0.025 0.023 0.22* 0.088
BMW 0.0061 0.089 0.0014 0.021 0.14 0.083
Chrysler -0.19 0.15 -0.044 0.035 -1.24*** 0.13
Dodge 0.21 0.12 0.048 0.029 -0.0095 0.11
Fiat 1.01*** 0.15 0.24*** 0.035 -0.030 0.11
Ford -0.50*** 0.095 -0.12*** 0.022 0.055 0.087
Honda 0.13 0.086 0.029 0.020 0.0011 0.079
Hyundai 0.010 0.094 0.0024 0.022 -0.064 0.085
Infiniti 0.21 0.25 0.049 0.059 0.30 0.24
Jeep 0.98*** 0.20 0.23*** 0.047 -0.93*** 0.15
Kia 0.36* 0.15 0.085* 0.035 -0.47*** 0.13
Land Rover 1.01*** 0.25 0.24*** 0.058 0.74*** 0.20
Lexus 0.043 0.11 0.0100 0.027 0.20 0.11
Mazda 0.27** 0.098 0.063** 0.023 0.070 0.089
Mercedes Benz -0.32** 0.100 -0.074** 0.023 0.20* 0.090
Mercury 2.53*** 0.75 0.59*** 0.18 -0.064 0.29
Mini 0.37*** 0.094 0.086*** 0.022 0.23** 0.086
Mitsubishi -0.37** 0.13 -0.087** 0.030 -0.51*** 0.12
Nissan 0.39*** 0.094 0.090*** 0.022 0.11 0.085
Pontiac 0.87*** 0.23 0.20*** 0.054 0.54** 0.18
Porsche -0.24* 0.11 -0.057* 0.027 0.45*** 0.11
Scion 0.74*** 0.17 0.17*** 0.039 -0.67*** 0.14
Subaru 0.32*** 0.096 0.075*** 0.023 0.43*** 0.084
Suzuki -0.071 0.15 -0.017 0.036 0.47** 0.16
Smart -0.15 0.096 -0.036 0.022 0.090 0.084
Tesla 1.29*** 0.16 0.30*** 0.038 3.24*** 0.15
Toyota 0.27** 0.089 0.063** 0.021 0.13 0.080
Volkswagen 0.26** 0.091 0.061** 0.021 0.46*** 0.084
Volvo 1.26*** 0.13 0.29*** 0.029 0.26* 0.11
Baseline brands Baseline Baseline Baseline

Car types
Economy 0.36*** 0.068 0.084*** 0.016 -0.28*** 0.055
Standard 0.29*** 0.060 0.068*** 0.014 -0.13** 0.050
Fullsize 0.34*** 0.066 0.079*** 0.015 -0.36*** 0.054
SUV 0.055 0.070 0.013 0.016 -0.43*** 0.057
Luxury 0.37*** 0.083 0.087*** 0.019 -0.19** 0.070
Trucks Baseline Baseline Baseline

Car location type and accessibility
Car access [open] -0.36*** 0.029 -0.084*** 0.0067 0.029 0.026
Car access hours [all hours] -0.089* 0.045 -0.021* 0.010 -0.097* 0.038
Car location type [garage] -0.24*** 0.061 -0.057*** 0.014 0.13* 0.052
Car location type [street] 0.080 0.059 0.019 0.014 -0.40*** 0.048
Car location type [surface lot] -0.19*** 0.057 -0.044*** 0.013 0.27*** 0.048
Car location type [valet] Baseline Baseline Baseline

Car features
Price (per hour) -0.022*** 0.0033 -0.0051*** 0.00077 -0.12*** 0.0042
Car age -0.042*** 0.0039 -0.0099*** 0.00091 -0.032*** 0.0033
Transmission [automatic] 0.34*** 0.046 0.080*** 0.011 0.45*** 0.037
Premium wheels -0.0025 0.025 -0.00059 0.0058 -0.18*** 0.021
Power seats -0.21*** 0.024 -0.048*** 0.0055 0.043* 0.021
Bluetooth/wireless -0.13*** 0.025 -0.031*** 0.0059 -0.29*** 0.021
Leather interior 0.087** 0.030 0.020** 0.0070 0.12*** 0.025
Sunroof/moonroof 0.0011 0.027 0.00026 0.0064 0.14*** 0.024
Premium sound 0.25*** 0.027 0.059*** 0.0063 -0.14*** 0.022
Power windows -0.0058 0.042 -0.0013 0.0099 0.40*** 0.036
GPS navigation system -0.085** 0.029 -0.020** 0.0067 0.18*** 0.023
Roof rack 0.16*** 0.046 0.036*** 0.011 -0.26*** 0.037
Tinted windows -0.087** 0.030 -0.020** 0.0070 -0.30*** 0.026

Constant -0.13 0.15
No. of obs. 26791 26791 26791
AIC 76980.3 69788.7
BIC 77464.8 70309.2
Log likelihood -38436.1 -34841.4
Pseudo R2 square 0.024

* p < 0.05, **p < 0.01, ***p < 0.001.

Table A6 Logistics-based ICS (L-ICS) and MNL model estimation results, the car-sharing dataset. The

baseline brands group consists of Buick, Chevrolet, Saab, and Saturn car brands. We aggregated these four car

brands together because of the data sparsity.
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Excluded groups Log-like AIC BIC LR Wald

L-ICS
Model 1 Car types and features -38664.7 77403.3 77735.3 457.04 449.39
Model 2 Car location type and accessibility -38552.1 77202.2 77641.9 231.94 231.67
Model 3 Brands -38840.7 77729.4 77944.7 809.07 764.90

MNL
Model 1 Car types and features -35587.4 71246.8 71600.3 1492.05 1385.99
Model 2 Car location type and accessibility -35205.7 70507.5 70978.8 728.75 705.53
Model 3 Brands -35534.9 71115.8 71341.6 1387.03 1259.70

Table A7 Statistical signi�cance of three groups of car attributes: (1) car type and features, (2) car location

type and accessibility, and (3) car brand.

A5.2. Discussion of model assumptions and impact on estimation

In this section, we further discuss the assumptions imposed by the CTC models with features that

we take into account when calibrating the models. And then we also address the problem of a

potential price endogeneity in our empirical explanatory analysis. We argue that in our setting we

are unlikely to have any price endogeneity problems estimating the models.

A5.2.1. Semiparametric approach. Using the semiparametric approach in order to cali-

brate the two-stage CTC model, we assume that renters form their consideration set taking into

account car features. Then we assume that during the second stage renters choose the most pre-

ferred car among the considered ones according to the preference order � over the universe of car

alternatives, which remains the same over time, i.e., the ranking is �xed over time. Modeling the

second stage choice process this way, we do not parameterize the ranking � which implies that

the cars are assumed to have the same attributes over time. In this subsection we justify this

assumption according to our dataset.

We start by analyzing the variation of the hourly price parameter over car alternatives. In

Table A8, we report that the average coe�cient of variation (CV) of the hourly price across all the

car alternatives is around 5% while owners of cars listed on average around two di�erent values of

the price. Moreover, the most frequently used value of the hourly price corresponds to 78% of the

car rentals and the second most frequently used value of the hourly price corresponds to 16% of the

car rentals. The low variation of the rental price is explained by the policies of the online platform,

for the time span of the dataset, which allows the owners to choose the price by themselves, i.e., the

platform as a central agent did not dynamically adjust the listed rental price to e�ciently match

demand and supply as opposed to many ride-sharing platforms (e.g., Uber, Lyft) which optimize

the price of the ride to match riders with drivers on-demand. Then in the same Table A8 we can

also observe that more than 98% of car owners did not alter their car access (i.e., open or closed),

access hours (i.e., 24 hours or restricted), and location type (i.e., garage, street, surface lot, or

valet).
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Additional descriptive statistics:
Number of rentals 26791
Number of car owners 514
Number of available alternatives (within 0.3 mile) 5.7
Rental duration (days) 0.62
Rental request in advance (days) 1.24
Price CV (averaging over car owners) 0.053
Average number of price modes 2.33
The most frequent price (percentage) 0.78
The second most frequent price (percentage) 0.16
Average number of car access modes 1.07
The most frequent car access (percentage) 0.99
Average number of car access hours modes 1.03
The most frequent car access hours (percentage) 0.99
Average number of car location type modes 1.10
The most frequent car location type (percentage) 0.98

Table A8 Additional descriptive statistics, the car sharing dataset.

A5.2.2. Price endogeneity problem. Next, we want to address the concerns of potential

price endogeneity in our empirical analysis. First of all, estimating the demand with personalized

data signi�cantly alleviates the price endogeneity problem since each renter has only a trivial

inuence on the number of cars supplied and the market rental price, while the empirical work with

aggregate-level transaction data is more likely to face very severe endogeneity issues. Nevertheless,

having access to individual consumer data is not always a big advantage because individuals'

demand could be correlated. For example, we might have unobservable demand or supply shocks

if a local convention was organized on a particular day that might shift the demand curve. In

this case, we need to use instrumental variables to address the endogeneity problem. The natural

approach, in this case, would be to use the typical Hausman-style instrument (Hausman, 1996),

i.e., the average rental price of similar cars in other geographical locations. However, in our dataset

we are highly unlikely to have any price endogeneity issues because the rental price variation of

the listed cars is very insigni�cant as it was discussed above, i.e., the price does not react to any

unobservable shocks (see Table A8).
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Figure A17 Decision tree for consideration set formation of the renters based on the car sharing datasets.
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