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Abstract

Radiologists routinely analyze hippocampal asymmetries in
magnetic resonance (MR) images as a biomarker for neurode-
generative conditions like epilepsy and Alzheimer’s Disease.
However, current clinical tools rely on either subjective evalu-
ations, basic volume measurements, or disease-specific models
that fail to capture more complex differences in normal shape.
In this paper, we overcome these limitations by introducing NORHA,
a novel NORmal Hippocampal Asymmetry deviation index that uses
machine learning novelty detection to objectively quantify it from MR
scans. NORHA is based on a One-Class Support Vector Machine model
learned from a set of morphological features extracted from automatically
segmented hippocampi of healthy subjects. Hence, in test time, the model
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automatically measures how far a new unseen sample falls with respect
to the feature space of normal individuals. This avoids biases produced
by standard classification models, which require being trained using dis-
eased cases and therefore learning to characterize changes produced only
by the ones. We evaluated our new index in multiple clinical use cases
using public and private MRI datasets comprising control individuals
and subjects with different levels of dementia or epilepsy. The index
reported high values for subjects with unilateral atrophies and remained
low for controls or individuals with mild or severe symmetric bilateral
changes. It also showed high AUC values for discriminating individuals
with hippocampal sclerosis, further emphasizing its ability to charac-
terize unilateral abnormalities. Finally, a positive correlation between
NORHA and the functional cognitive test CDR-SB was observed,
highlighting its promising application as a biomarker for dementia.

Keywords: Hippocampus, Normal asymmetries, Machine learning, Novelty
Detection

1 Introduction

The Hippocampus is a brain structure located in the medial temporal lobe
that plays roles in the process of cognition, navigation and memory consoli-
dation (Marshall and Born, 2007). Changes in its morphology are expected to
occur naturally due to ageing and mostly involve alterations in volume and
bilateral displacements either inwards or outwards, among others (Lucarelli
et al, 2013). Neurodegenerative conditions such as Alzheimer’s Disease (AD),
focal cortical dysplasia (FCD) and epilepsy also tend to perturb the mor-
phology and volume of the entire hippocampus (Moodley and Chan, 2014).
AD, for instance, has been observed to generate progressive hippocampal loss
and shape changes (Shi et al, 2009). On the other hand, epilepsy is known
to produce unilateral or bilateral hippocampal volume loss (Bernasconi et al,
2003).

Hippocampal asymmetries have been reported, and traditionally the right
hippocampus is considered to be larger than the left one (Shi et al, 2009;
Pedraza et al, 2004). Differences in thickness and volume of the layers of the
different subfields were also observed between the right and left hippocampus
in normal subjects (Lister et al, 2006). On the other hand, AD is known to pro-
duce striking changes in the hippocampus, which explains the memory deficits
that are the hallmark of this disease. These alterations are typically in terms
of volume, shape and also symmetry. Some authors report that the hippocam-
pal R>L asymmetry may be increased in AD (Shi et al, 2009), while others
postulate that such asymmetry disappears or may even be reversed in some
patients (Geroldi et al, 2000). In the same way that there is a clinical continuum
between Mild Cognitive Impairment (MCI) and AD, it is postulated that there
are imaging biomarkers, particularly related to hippocampal anatomy, that
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could predict the conversion of the former into the latter. However, visual eval-
uations of hippocampal asymmetries are not exempt from human error, and
it is arduous to define the exact boundaries between normal and pathological
asymmetry. Moreover, current clinical tools for objectively quantifying nor-
mal asymmetry patterns do not go beyond volumetric measurements (Manjón
and Coupé, 2016), or are limited to disease-specific models (Fu et al, 2021).
Using only volumetric features fails to capture morphological asymmetries
beyond mere differences in size (Richards et al, 2020). On the other hand,
disease-specific models cannot be extrapolated to the discrimination of other
conditions (Fu et al, 2021).

To overcome these limitations, in this study, we introduce NORHA, a NOR-
mal Hippocampal Asymmetry deviation index that can characterize healthy
asymmetries in the hippocampus using a novelty detection machine learning
model. Given a set of MR scans from a normal cohort, 3D meshes of both
hippocampi are obtained using a deep learning-based segmentation algorithm.
Features describing their shape are then automatically extracted and used to
characterize the differences in morphology between the hippocampi. These vec-
tors are subsequently used for training a One-class Support Vector Machine
(OC-SVM) model, a novelty detection algorithm that learns a geometrical
boundary that describes the training samples. During test time, the resulting
model is used to quantify how much a new, unknown input sample deviates
from normal patterns of hippocampal asymmetry by quantifying the signed
distance to this boundary. This value then acts as an index that can be used to
measure deviations from normal anatomical differences and applied in clinical
studies to monitor this property in multiple cohorts.

To the best of our knowledge, NORHA is the first learnable index to
objectively quantify normal morphological shape asymmetries between a single
subject’s own hippocampi.

While automatically characterizing hippocampal asymmetries with
machine learning has been explored for automated classification of diseases
such as AD and MCI in the past (Fu et al, 2021), differences were only studied
between a healthy and a diseased population and not among healthy subjects.
This renders models that can automatically identify a disease by analyzing hip-
pocampal asymmetry but cannot be used to quantify asymmetries in healthy
subjects or to determine when the changes are abnormal, e.g. when applied to
a disease unseen during training. On the contrary, our model is, by definition,
tailored to quantify asymmetries in normal individuals, and it is expected to
recognize deviations produced by any disease.

We empirically evaluated this model using multiple publicly available and
in-house databases. We observed that our NORHA deviation index increases
in subjects with temporal lobe epilepsy due to left/right hippocampal sclerosis,
which is characterized by notorious unilateral differences between both hip-
pocampi. Furthermore, we observed a gradual increment of the index with the
MCI-to-AD progression, indicating that the model is sensitive to progressive
unilateral shape variations. Finally, to study potential clinical applications, we
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analyzed the relationship between NORHA and a cognitive score measured on
control subjects, MCI and AD patients, observing a positive correlation.

In summary, our method contributes to state of the art from multiple
perspectives:

• It is the first approach for automatically characterizing deviations in normal
anatomical asymmetries of the hippocampi beyond using only volumetric
comparison;

• Compared to standard classification models, ours requires only healthy sub-
jects for training, making it able to quantify alterations produced by any
condition;

• We provide a comprehensive assessment of potential applications for our
index, using both public and private MRI datasets;

• Finally, we show that NORHA can effectively quantify unilateral asym-
metries in healthy subjects and individuals with dementia or hippocampal
sclerosis.

The remainder of this paper is organized as follows. Section 2 describes
the datasets used in our experiments and the proposed method. Section 3
presents the results of our experiments, while Section 4 discusses potential
clinical implications. Finally, Section 5 presents the summary and conclusions
of this work.

2 Materials and Methods

2.1 Subject data

We conducted our experiments using volumetric T1 structural MRIs of both
healthy and diseased patients from multiple datasets, both public and pri-
vate. Public sets included OASIS 1 (LaMontagne et al, 2019), IXI 2 and
ADNI 3 (Mueller et al, 2005), while two private datasets were used. The first
one was acquired at the Hospital de Alta Complejidad En Red ”El Cruce” Dr.
Néstor Carlos Kirchner (Florencio Varela, Argentina) and the second one at
the Instituto de Oncoloǵıa Ángel H. Roffo (Buenos Aires, Argentina). A sum-
mary of their acquisition parameters and image characteristics is included in
Table 1. The acquired resolution was never modified in this study. None of
these datasets included information about the handedness of the individuals.

2.1.1 OASIS

OASIS is a widely used public set of MR data created by the Alzheimer’s Dis-
ease Research Centre from the Washington University. We made use of the T1w
images from OASIS-3, which is the latest release of the database. It contains
a total number of 2363 T1w scans from 1098 participants with ages ranging

1https://www.oasis-brains.org/
2http://brain-development.org/ixidataset/
3http://adni.loni.usc.edu/

https://www.oasis-brains.org/
http://brain-development.org/ixidataset/
http://adni.loni.usc.edu/
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from 42 to 95 years, all of them with a voxel size of 1 × 1 × 1 mm3, includ-
ing cognitively normal individuals (Normal Controls, NC), and patients with
early-stage AD dementia. The images were obtained using different scanners,
namely Vision 1.5T, TIM Trio 3T and BioGraph mMR PET-MR 3T from
Siemens (Erlangen, Germany). Further technical details about the datasets are
available in (LaMontagne et al, 2019).

2.1.2 IXI

IXI is a publicly accessible dataset of MR scans acquired at three sites, namely
the Hammersmith and the Guy’s Hospitals and the Institute of Psychiatry. We
used images from these three institutions in our experiments. We only used
T1w volumes, all of them with a dimension of 256×256×128 voxels, obtained
from subjects without known pathologies with ages ranging from 20 to 86
years. The Hammersmith Hospital subset contains 171 T1w scans, acquired
using a Philips Intera 3T scanner at a voxel resolution of 0.9375×0.9375×1.2
mm3, with a Field of View (FoV) = 256× 256 mm2, with a TR = 9.6 ms, TE
= 4.6ms., 208 phase encoding steps, echo train length of 208, reconstruction
diameter of 240.0 mm, and a flip angle of 8◦. The Guy’s Hospital set includes
297 T1w images obtained using a Philips Intera 1.5T scanner device at a voxel
resolution of 0.93×0.93×1.2 mm3, FoV = 256×256 mm2, with a TR = 9.8 ms,
TE = 4.6 ms, 192 phase encoding steps, echo train length of 0, reconstruction
diameter of 240.0 mm, and a flip angle of 8◦. Finally, the Institute of Psychiatry
subset includes 71 images retrieved with a GE 1.5T system. Details about
the scan parameters were not publicly available at the time of preparing this
manuscript.

2.1.3 ADNI

We used the public available version 1 of ADNI, namely ADNI1 4, which
was created between years 2004 and 2009. This set includes MR scans from
199 subjects, 53 NC, 71 with mild cognitive impairment (MCI) and 33 with
AD, with their associated age and their Clinical Dementia Rating Scale–Sum
of Boxes (Lynch et al, 2006) (CDR–SB) scores, Mini-mental state exami-
nation (Folstein et al, 1975) (MMSE) and Alzheimer’s Disease Assessment
Scale (Rosen et al, 1984) - Cognitive Subscale 11 (ADAS11). As previously
observed by Nettiksimmons et al (2014) and (Ezzati et al, 2020), ADNI’s
MCI group is highly heterogeneous, with cognitive scores suggesting a com-
mon path to AD but biological biomarkers such as hippocampal changes
contradicting this evidence in certain subgroups (Nettiksimmons et al, 2014).
Further details about this variability can be found in the corresponding
studies (Nettiksimmons et al, 2014; Ezzati et al, 2020).

T1w images covering the entire brain were obtained with scanners from
three different manufacturers (GE, Philips and Siemens), acquired with 1.2
mm slice thickness, 160 sagittal slices, FoV = 192× 192 mm2, and a 192× 192

4www.adni-info.org

www.adni-info.org
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scan matrix, voxel size of 1.2× 0.9375× 0.9375 mm3, TR = 3000 ms, and TE
= 3.55 ms.

2.1.4 Hospital El Cruce dataset (HEC)

This dataset corresponds to 101 T1w MR scans acquired at Hospital de Alta
Complejidad En Red ”El Cruce” Dr. Néstor Carlos Kirchner (Florencio Varela,
Argentina) in the context of two major clinical research projects. Images cor-
respond to 53 acquisitions from control subjects and 48 scans from patients
with temporal lobe epilepsy associated with unilateral right and left hippocam-
pal sclerosis (HSR and HSL, respectively), who were enrolled to be part of a
study about phenotyping brain structures. Patients, on the other hand, were
retrospectively enrolled between 2014 and 2019 based on clinical records from
the Epilepsy Unit at the hospital. All patients gave informed consent prior to
inclusion in the respective clinical trials. All prospective studies were approved
by the Ethics Committee of the Hospital in accordance with the tenets of the
Declaration of Helsinki.

Structural images consist of a 3D T1w fast field echo (FFE) sequence, with
180 slices of 1-mm isotropic resolution, TE = 3.3 ms, TR = 2300 ms, TI = 900
ms, flip angle = 9◦, FoV = 240× 240× 180 mm3, voxel size of 0.75× 0.75× 1
mm3, acquired using a Philips Achieva (Best, The Netherlands) 3T scanners
with 8-channel head coil.

2.1.5 Instituto de Oncoloǵıa Ángel H. Roffo dataset (ROFFO)

This dataset contains scans for 83 subjects without known pathology, all of
them recruited at the Instituto de Oncoloǵıa Ángel H. Roffo. Participants gave
informed consent to take part in a study focused on analyzing the brain in
epilepsy, which was approved by the institutional ethics review board of the
Institute in agreement with the tenets of the Declaration of Helsinki.

The T1w images were acquired with a 3.0T Siemens Trio MRI scanner,
with a TR = 2 ms, TE= 3.7 ms, inverted angle = 80, FoV in plane = 214×214
mm2 and matrix of size 240 × 240, coding phase in antero-posterior direction
and from left to right, block thickness = 128 mm, Nav = 1 (average number
of signals), voxel size = 0.89 × 0.89 × 1.0 mm3, acquisition of bandwidth =
191.5 Hz/pixel, and parallel image (SENSE factor = 8). The images were
reconstructed with an intra-plane interpolation of factor = 2 in each dimension.

2.2 Hippocampus segmentation

Left and right hippocampi were automatically segmented on all T1w images
for subsequent analysis. Each scan was manually aligned and normalized
to standard space, using the Montreal Neurological Institute (MNI) stan-
dard T1 template as a reference. This model has a dimension of 181 ×
217 × 181 voxels with a voxel size of 1 × 1 × 1 mm3. Preprocessing was
performed using the Statistical Parametric Mapping tool (SPM12) 5. After

5https://www.fil.ion.ucl.ac.uk/spm/

https://www.fil.ion.ucl.ac.uk/spm/
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Table 1 Acquisition parameters and image characteristics on each dataset.

Dataset
spaResolution
(voxel size, mm)

FoV (mm) TR (ms) TE (ms)
Image dimension
spa(voxels)

OASIS 1 × 1 × 1 256 × 256 9.7 4.0 256 × 256 × 176

ADNI 0.9375 × 0.9375 × 1.2 192 × 192 3000 3.55 256 × 256 × 166

IOT 0.9375 × 0.9375 × 1.2 - - - 256 × 256 × 128

spaceIXI GUY 0.93 × 0.93 × 1.2 256 × 256 9.8 4.6 256 × 256 × 128

HH 0.9375 × 0.9375 × 1.2 256 × 256 9.6 4.6 256 × 256 × 128

ROFFO 0.89 × 0.89 × 1 214 × 214 2 3.7 256 × 256 × 192

HEC 0.75 × 0.75 × 1 240 × 240 2500 3.3 320 × 320 × 180

alignment, voxelwise segmentation masks of the hippocampi were obtained
using hippmapp3r 6 (Goubran et al, 2020), a method that uses a 3D con-
volutional neural network with a U-shaped architecture for segmenting these
structures in the patients’ images from all datasets.

Triangular meshes were automatically retrieved from each hippocampus
using the marching cubes algorithm implemented in the Isosurface function
of AFNI/SUMA (Saad et al, 2004). As the overall shape and topology of the
structures can be degraded due to spatial interpolation and voxelization arti-
facts, meshes were smoothed using Laplacian smoothing from the Trimesh
library 7 (Dawson-Haggerty et al, 2019). A smoothing factor of 0.2 was empir-
ically chosen after observing that the resulting meshes did not show artifacts
and were faithful representations of the hippocampus’ anatomy.

2.3 Dataset integration

Images from all the datasets described in Section 2.1 were combined into a
single initial set of 3619 potentially eligible scans. All scans were automati-
cally segmented and analyzed. Hippocampus meshes with a volume smaller
than 1500 mm3 (which is anatomically highly unlikely) were assumed as failed
segmentations and, therefore, not included in the final dataset (376 in total,
approximately 11% of the original set). Figure 1 depicts flow diagrams illus-
trating the data preparation process. Our final dataset included 3619 scans,
whose demographic characteristics are summarized in Table 2.

In this study, we aimed to address the potentially confounding variables of
sex and age by creating a training dataset that covers a wide range of ages.
The distribution of gender was randomized and analyzed separately.

The final dataset was separated into a training set and a series of test sets,
as indicated in Table 3. The training set was used for learning our deviation
from the normal hippocampal asymmetry index from a healthy population.
Hence, it included all the healthy subjects from ROFFO (83) and IXI (539)

6https://hippmapp3r.readthedocs.io
7https://trimsh.org/

https://hippmapp3r.readthedocs.io
https://trimsh.org/
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Fig. 1 Flow diagrams illustrating our data preparation protocol. Side arrows indicate exclu-
sion of images due to selection criterion failure.

Table 2 Summary of demographic characteristics of the final set used in our experiments.
AD: Alzheimer’s Disease, MCI: Mild Cognitive Impairment, HSR: Right-sided Hippocampal
Sclerosis, HSL: Left-sided Hippocampal Sclerosis, NC: Normal Controls. M: male. F: female.

spaParameter
spaAD
(N = 179)

spMCI
(N = 71)

spHSR
(N = 16)

spHSL
(N = 32)

spaNC
(N = 2945)

spaAge [years] 74 ± 9 75 ± 8 35 ± 9 34 ± 10 60 ± 15
spaGender [M/F] 86/93 42/29 10/6 15/17 1684/1261

and 70% of the subjects from the healthy subset of OASIS. The test sets were
designed to be used in the evaluation of the proposed index under different
settings. TEST-OASIS comprises all subjects with AD and the remaining 30%
of control individuals from OASIS. TEST-ADNI and TEST-HEC, on the other
hand, include all subjects from ADNI and HEC, respectively. Notice that the
training set includes ages spanning a wider range than the individual test sets.
This was done on purpose to ensure that our normal asymmetry index captures
the anatomical variations of healthy individuals of multiple ages.

Table 3 Training and test sets characteristics. AD: Alzheimer’s Disease, MCI: Mild
Cognitive Impairment, HSR: Right-sided Hippocampal Sclerosis, HSL: Left-sided
Hippocampal Sclerosis, NC: Normal Controls.

Partitions
Gender
(M/F)

Mean age
[min-max]

NC AD MCI HSL HSR Total

1500 (OASIS)
Train 1284/838 60 [19-95] + 539 (IXI) - - - - 2122

+ 83 (ROFFO)

OASIS 434/429 65 [45-88] 717 146 - - - 863
spaceTest ADNI 74/83 75 [56-89] 53 33 71 - - 157

HEC 43/58 32 [18-63] 53 - - 32 16 101
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2.4 Characterization of hippocampal asymmetries using
shape features

Figure 2 shows the feature extraction process applied to characterize asym-
metries between hippocampi. After image segmentation (Section 2.2), we
automatically calculate the shape and morphological features of both hip-

pocampi from their corresponding meshes, being v
(i)
R and v

(i)
L the i-th feature

from the right and left hippocampus feature vector, respectively. Differences in
features between both structures are computed using distance metrics d such
as the Euclidean and the Mahalonobis ones. An asymmetry vector with 14 ele-
ments is constructed by concatenating the resulting distances altogether. These
arrays are then used in training time to learn our model and subsequently
applied in test time to predict the distance with respect to the normal cohort.
Features rationale and interpretation are explained in the following section.

Fig. 2 Representation of feature extraction process. For the i-th hippocampi, morphological
features are calculated for the right and left hippocampus (vR and vL). Differences between
them are accounted using distance metrics d, i.e. Mahalanobis and Euclidean distances.
Finally, a vector of 14 features fasymm, contains the values, which describe the asymmetry
in this subject.

2.4.1 Morphological features

Morphological features represent the overall 3D shape of the hippocampus
based on its triangulated surface mesh representation, are then used to describe
it, and are used to quantify similarities and differences between neighbors.

The following 10 morphological features were collected from each hip-
pocampus:

• Sphericity: is a measure of how closely the shape of the hippocampus resem-
bles that of a perfect sphere. The value ranges from 0 to 1, with 1 indicating
a perfect sphere. Hence, less elongated and more round hippocampi will
result in high sphericities, while the elongated ones will be characterized by
a lower value.
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• Compactness: represent how compact the shape of the hippocampus is rela-
tive to a sphere. The value ranges from 0 to 16

π , where 16
π indicates a perfect

sphere.
• Quadratic Compactness: represents how compact the shape of the hip-
pocampus is relative to a sphere, but this time computed using the quadratic
volume. The value ranges from 0 to 1, where a value of 1 indicates a perfect
sphere.

• Elongation: characterizes the degree of lengthening of the hippocampus. It
is computed as the square root of the ratio between the minor and major
principal components of the segmented structure in the voxel space. The
feature ranges from 0 (maximal elongation, e.g. a 1D line) to 1 (circular,
non-elongated structure).

• Flatness: ratio between the largest and smallest principal components of
the rectangle enclosing the hippocampus. Thus, it indicates how much the
hippocampus matches a perfectly plane surface. The values range between
1 (spherical object) and 0 (a flat object).

• Spherical Disproportion: measures how much the hippocampus differs from
a sphere with its same volume. It is obtained by taking the quotient of the
surface area of the hippocampus and the surface area of this sphere. Thus,
the value is ≥ 1, with 1 being a perfect sphere.

• Surface Volume Ratio: area of the hippocampus divided by the hippocampal
volume. A smaller value indicates a more compact (sphere-like) shape.

• Maximum 2D Diameter: the distance between the first and the last axial
slices of the segmented volume. The bigger the value is, the larger the
hippocampus is in the axial plane.

• Maximum 3D Diameter: the largest pairwise Euclidean distance between
mesh vertices. It can be used as a proxy for the overall size of the hippocam-
pus, as large values of this feature correspond to structures in which the
vertices are distant from one another.

• Major Axis: corresponds to the largest axis length of the boundaries
of the hippocampus, as obtained from an enclosing ellipsoid. Elongated
hippocampi will have larger major axes than non-elongated ones.

We used Pyradiomics 8 to automatically compute these values for each
hippocampus. Features representing the asymmetry between the left and right
counterparts were obtained by computing the Euclidean distance between each
other’s vectors.

2.4.2 Volumetric features

The volume of each hippocampus was extracted directly from the 3D segmen-
tation obtained from the MRI scans. We estimated two volumetric asymmetry
measurements, namely raw volume differences (obtained as the volume of the
left hippocampus minus the right one) and normalized volume differences (raw
value difference divided by the maximum volume).

8http:/PyRadiomics.readthedocs.io/en/latest/

http:/PyRadiomics.readthedocs.io/en/latest/
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Fig. 3 Qualitative examples of different hippocampi and their corresponding morphological
features. For each characteristic, we include a triplet of hippocampi with the minimum,
median and maximum values.

2.4.3 ShapeDNA (Reuter et al, 2006)

ShapeDNA is a technique widely applied for characterizing non-rigid 3D
meshes (Lian et al, 2013). It is obtained by computing the normalized eigen-
values of the Laplace-Beltrami operator (Reuter et al, 2006), and results in
a vector of ∼ 50 eigenvalues for each analyzed structure. We followed the
same approach as in (Wachinger et al, 2016), consisting in first extracting a
ShapeDNA vector with 50 features from each hippocampus and then taking
the Euclidean and Mahalanobis distances between them, which is a way of
quantifying their differences. The covariance matrix for the Mahalanobis dis-
tance was obtained from the training set of healthy subjects and reused in
test time for extracting the features. This process results in a length 2 vec-
tor. These 2 values were placed in the 13th and 14th positions of the final
asymmetry vector.

2.5 Learning a normal hippocampal asymmetry deviation
index with one-class support vector machines

Novelty detection algorithms aim at learning the common properties of a set of
training samples to discriminate if any new given input belongs or not to the
previously observed population. These models are usually applied for anomaly
detection in medical imaging by training them using normal subjects. These
models are then applied to samples with unknown diagnostic, for instance, to
determine if they fall within or close to the healthy population or not. The
key advantage of this family of methods over traditional supervised learning
models is that they do not require diseased samples for training but only
control individuals.

The One-Class Support Vector Machine (OC-SVM) is a novelty detection
model (Schölkopf et al, 1999) that is widely applied for this purpose. This algo-
rithm learns a hyperdimensional compact boundary that encloses the set of
normal training samples and automatically determines if a new unseen sample
is normal or not, depending on its location with respect to this boundary. Each
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training sample corresponds, in our case, to a feature vector representing the
asymmetry between the hippocampi of a normal subject. These observations
are then mapped into a higher dimensional feature space by projecting them
using a γ parametrized Radial Basis Function (RBF), a translation-invariant
kernel that makes features grouped within a circular area. This ensures the
parameters of the learned boundary match those from a hypersphere enclosing
the majority of the training samples. The number of observations kept out-
side this boundary is controlled by the hyperparameter ν, which determines
the fraction of the normal data that will be classified as outliers. After train-
ing, new observations can be classified either as typical (inliers) or atypical
(outliers) by measuring their signed distance with respect to the boundary.
In this study, we propose to use this distance as a deviation from the normal
hippocampal asymmetry index. In this setting, small or negative values of the
index correspond to more typical anatomical differences, while large positive
values indicate that the hippocampal asymmetries are likely abnormal.

Data standardization was applied before training the model to avoid fea-
tures with large ranges to absorb the contributions of the ones with smaller
ranges. We applied a robust scaler alternative, consisting of subtracting the
median of the feature instead of the mean, thus reducing the effect of outliers.
Then, the resulting value was divided by the range between the third (75th)
and first (25th) quartiles.

We used OC-SVM classifier with an RBF kernel. Hyperparameters γ and ν
were experimentally calibrated using 5-fold cross-validation on the training set.
Since our training data only contains healthy samples, hyperparameters were
adjusted by optimizing the F1-score for detecting pseudo anomalies artificially
generated by manipulating the normal data on each of the validation folds.
Assuming that each i-th feature has a normal distribution with mean µi and
standard deviation σi, we created fake anomalous samples by replacing each i-
th feature with a random value in the range [2σi, 3σi]. This allows us to create
degenerated samples that differ from the original data and, therefore, should
lie outside the limits of our model. We used this approach to augment our
validation folds with 50 new artificial samples, resulting in a total number of
475 samples per fold. As these points have a different distribution with respect
to the majority of the training data, we expect our algorithm to classify them
as outliers. The OC-SVM model that performed the best during this stage
(ν = 0.2 and γ = 0.001) was considered optimal and used for evaluation on
new unseen subjects in the test phase.

2.6 Statistical analysis and evaluation metrics

Differences in the predicted asymmetry indices of diseased and healthy subjects
were statistically assessed using Wilcoxon signed-rank tests, with α = 0.05 (R
statistical software package (Team et al, 2013)). Correlation analysis between
the index and the CDR-SB values was performed using the Pearson correlation
coefficient (R). As one of the representative scores used to assess recognition
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and social function (O’Bryant et al, 2008), CDR-SB rates the degree of deteri-
oration in the subject’s cognitive status in 6 different domains of functioning,
including memory, orientation, judgment and problem-solving, community
affairs, home and hobbies, and personal care, using five values per domain
(0: None, 0.5: Questionable, 1: Mild, 2: Moderate, 3: Severe). The CDR-SB
score values used in this study were obtained by summing each of the domain
box scores, therefore ranging from 0 to 18. Receiver Operating Characteris-
tic (ROC) curves and their areas under the curve (AUC), as implemented in
Scikit-Learn, were applied to study the classification performance of the pre-
dicted NORHA index when trained using different sets of features and applied
to differentiate between healthy and diseased subjects. The 95% Confidence
interval (95%CI) was calculated using bootstrapping with N = 1000 random
samples. The Star tool (Vergara et al, 2008) was used to assess the statistical
significance of the differences between curves. Finally, t-distributed stochastic
neighbor embeddings (t-SNE) (Van der Maaten and Hinton, 2008) were used
to visually assess the distribution of samples in the feature space, using the
Scikit-Learn implementation (Pedregosa et al, 2011). This representation pre-
serves distances between pairs of samples and reveals proximity relationships
and feature clusters, providing an intuition on how these are arranged in a
higher dimensional space.

3 Results

We evaluate the proposed NORHA deviation index in multiple scenarios based
on different alternative tests.

First, we analyze the statistical variations in the distribution of NORHA
values when computed from healthy subjects and individuals suffering from
different neurodegenerative conditions, discriminating by their corresponding
source dataset too. The obtained results are depicted in Figure 4. Patients
with HSL and HSR report significantly higher NORHA indices compared to
NC, MCI and AD individuals (p ≈ 0.0). No statistically significant differences
are observed between the sets of control subjects from OASIS, ADNI and
HEC (p > 0.360) and between patients with MCI and healthy individuals
(p > 0.766). AD subjects from OASIS show significant differences with respect
to controls from the same original database (p = 0.035). However, they do not
show significant differences with respect to controls from ADNI and HEC or
to MCI individuals (p > 0.768). AD patients from ADNI, on the other hand,
exhibit statistically significant deviations from NC (p > 0.003) and MCI ones
(p = 0.035). Finally, the differences in NORHA were not significant between
AD individuals from ADNI and OASIS (p = 0.1984).

To discard any potential age and/or sex bias in the index, we analyzed
the distribution of NORHA indices within each disease group, separated by
each potential confounding factor (Figure 6). Age intervals were determined
using the same approach applied by Andrade de Oliveira et al (2015). Empty
boxes correspond to intervals with no samples for that specific group (N = 0).
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Fig. 4 Box plot depicting the distribution of our normal hippocampi asymmetry index
for normal control (NC) subjects (green) and diseased individuals with mild cognitive
impairment (MCI, yellow), Alzheimer’s disease (AD, orange) and left (HSL) or right (HSR)
hippocampal sclerosis (red), as taken from the HEC, OASIS and ADNI test sets.

Boxplots show that the index distributes approximately similar within each
individual disease group, regardless of age and sex. Non-parametric hypothesis
testing was only possible in sets with N ≥ 16 (Dwivedi et al, 2017). No sta-
tistically significant differences were observed between age and sex subgroups
in the NC group (p > 0.132). In the AD group, the sample size only allowed
for a comparison between the 60-69 and >70 subgroups. Significant differences
were only observed between the female subgroups (p = 0.046) and not in the
male cohort (p > 0.221). When comparing males and females within each dis-
ease and age subgroup, no statistical differences were observed in most of the
compared cases (p > 0.055). The only significant differences were seen between
males and females with ages ranging 50-59 years, in NC (p = 0.011).

Figure 5 presents a qualitative analysis based on four exemplary cases. The
first example corresponds to a healthy individual extracted from the HEC test
set, to which the model assigned a low NORHA index. Right-side lateraliza-
tion is observed, which is consistent with previous studies that reported bigger
hippocampus volumes on the right hemisphere (Shi et al, 2009). The second
example is a subject with HSL taken from the HEC set with a high associated
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Fig. 5 Qualitative analysis. From left to right: two sagittal slices showing the left and
right hippocampi, respectively, and their corresponding segmentation and NORHA indices.
From top to bottom: (a) normal case with a low NORHA index showing fairly symmetric
hippocampus with slightly higher volume on the right side. (b) HSL case with a high NORHA
index and a notorious atrophic left hippocampus. (c) MCI case with a low NORHA index
with a normal asymmetry pattern. (d) MCI case with a high NORHA index and an inverted
asymmetry pattern, with bigger left-side hippocampus.

NORHA index. The case corresponds to a typical unilateral atrophic appear-
ance of the left hippocampus, considered highly suggestive of hippocampal
sclerosis in mesial temporal epilepsy. The third case is a subject suffering from
MCI extracted from the ADNI test set. Its associated NORHA index is low,
meaning that the model predicts that the morphological differences between
the two hippocampi are compatible with a normal scenario. Finally, the last
example corresponds also to an MCI case from the ADNI test set, to which
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Fig. 6 Analysis of potential age and sex biases in the NORHA index. Boxplots represent
index distribution per disease, separating each by age and sex subgroups. N = number of
samples within each subgroup. Notice that the HSL/HSR subgroups do not use the same
scale for the NORHA index due to high differences in their range with respect to the other
subgroups.
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Fig. 7 Top Left: Box plot depicting the distribution of our NORHA index for normal con-
trol (NC) subjects (green) and diseased individuals with mild cognitive impairment (MCI,
yellow) and Alzheimer’s disease (AD, orange) in ADNI test set. Top right: Box plot depicting
the distribution of the CDR-SB score, ADAS11 score and MMSE score for the same groups.
Bottom: Scatter plots depicting the correlation between our NORHA index and CDR-SB,
ADAS11 and MMSE scores. Each sample is color coded according to its ground truth diag-
nosis (green = NC, yellow = MCI, orange = AD). MCI outliers with potential segmentation
mistakes are highlighted with boxes and depicted as 3D meshes.

the model assigned a larger NORHA index with a visually distinctive normal
pattern of asymmetry accounting for a slightly bigger left hippocampus.

To understand the relationship between the hippocampal asymmetries
measured with our index and the degree of cognitive degradation exhibited
by the individuals, we investigated the correlation between our index and dif-
ferent levels of CDR-SB, MMSE and ADAS11 in the ADNI dataset. Figure 7
presents the distribution of the NORHA and cognitive scores for NC, MCI and
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AD cases in the test set. Control subjects had CDR-SB values of 0, while those
with MCI had values ranging from 0.5 to 4, and subjects with AD had val-
ues ranging from 2.5 to 6. A weak positive correlation was found between the
cognitive scores and NORHA index, with a correlation coefficient (R) of 0.223
(p < 0.001) for CDR-SB, 0.14 (p < 0.001) for ADAS11, and -0.07 (p < 0.001)
for MMSE. Three outliers are observed within the MCI set, which are indi-
cated with boxes in the scatter plots in Figure 7. Their associated meshes are
depicted on the left side of the figure. Notice that the three of them show pat-
terns that are inconsistent with the actual shape of a hippocampus, probably
due to errors in segmentation. When correlation is analyzed without including
these samples, the resulting values are improved in all cases, being R = 0.27
(p < 0.001) for CDR-SB, R = 0.30 (p < 0.001) for ADAS11, and R = −0.32
(p < 0.001) for MMSE.

We quantitatively analyze the effect of the selected descriptive features for
characterizing the hippocampal asymmetries by comparing our model with two
other alternative OC-SVMs trained using only the 10 morphological features
described in Section 2.4.1 and incorporating to these the volume and normalize
volume differences described in Section 2.4.2. In particular, we evaluated the
three alternatives for discriminating NC individuals from subjects with HSR,
HSL, MCI and AD, respectively. Figure 8 depicts their corresponding ROC
curves and their associated AUC values.

High AUC values are obtained when discriminating HSL and HSR from NC,
regardless of the features used for training. Nevertheless, the model applying
the entire set of features achieved statistically better AUC values (p < 0.031).
When discriminating MCI or AD from NC subjects, much lower AUC val-
ues are obtained. In particular, the three alternative NORHA indexes derived
from the different sets of features reported similar AUC values for detecting
AD both in ADNI and OASIS. Their differences are not statistically significant
in ADNI. In OASIS, the model trained using all the features obtained statis-
tically better results than the one trained only with the morphological ones
(p < 0.001). Finally, notice that the AUC values for detecting MCI almost
correspond to a random guess (AUC ≈ 0.5). To understand the discrimination
power of NORHA in the context of other alternative features, we performed
an experiment comparing NORHA’s AUC with those obtained using each of
the characteristics described in Section 2.4 as individual abnormality scores.
Results are summarized in Table 4. Some features showed better results for
specific diseases (e.g. ShapeDNA for MCI, Spherical Disproportion for AD
samples in OASIS, and normalized volumetric differences in HSL and HSR).
Still, none of them retained this performance over the whole disease spec-
trum. NORHA, on the other hand, consistently ranks within the best three
alternatives among all diseases subgroups.

Finally, we qualitatively study the capabilities of our 14-dimensional fea-
ture vectors to distinguish between different diseases and normal subjects by
projecting them in a 2D space using t-SNE. Figure 9 depicts with scatter plots
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Fig. 8 ROC curves for distinguishing right-sided Hippocampal Sclerosis and Control sub-
jects and left-sided Hippocampal Sclerosis and Control subjects (top). ROC curves for
differentiating Alzheimer’s Disease and Control subjects (middle). ROC curve for distin-
guishing Mild Cognitive Impairment and Control subjects (bottom). Each one of the cases
was calculated using morphological features (blue line), morphological + volumetric features
(green line) and morphological + volumetric + ShapeDNA features (red line).

the resulting projections. Each sample in Figure 9 (a) is color-coded accord-
ing to its ground truth labeling, using red for diseased cases and green for
the healthy ones. In this plot, normal subjects are not grouped within a sin-
gle cluster but scattered throughout the plot in a non-uniform structure. The
majority of the samples corresponding to individuals with MCI and AD are
located at the boundaries of the healthy areas, while others are still located
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Table 4 Comparison of AUC (95% CI) values obtained by different morphological
features as disease scores vs. the NORHA index for discriminating NC from diseased
individuals in each test set.

Method MCI AD (ADNI) AD (OASIS) HSL HSR
Vol. Diff. 0.54 (0.44-0.64) 0.63 (0.49-0.75) 0.61 (0.46-0.74) 0.97 (0.89-1.00) 0.97 (0.93-1.0)

Normalize Vol. Diff. 0.53 (0.44-0.63) 0.64 (0.50-0.77) 0.32 (0.26-0.40) 0.97 (0.90-1.00) 0.98 (0.95-1.0)
ShapeDNA 0.60 (0.50-0.70) 0.53 (0.40-0.66) 0.53 (0.40-0.67) 0.72 (0.61-0.83) 0.27 (0.14-0.41)
Sphericity 0.50 (0.40-0.60) 0.52 (0.38-0.65) 0.36 (0.22-0.51) 0.83 (0.73-0.91) 0.85 (0.71-0.97)

Compactness 0.50 (0.40-0.61) 0.51 (0.37-0.65) 0.36 (0.22-0.50) 0.82 (0.73-0.91) 0.85 (0.71-0.97)
Quadratic Compactness 0.50 (0.40-0.60) 0.51 (0.38-0.65) 0.36 (0.24-0.50) 0.82 (0.72-0.91) 0.85 (0.69-0.97)

Elongation 0.55 (0.45-0.65) 0.61 (0.47-0.73) 0.56 (0.44-0.66) 0.82 (0.72-0.91) 0.80 (0.68-0.92)
Flatness 0.53 (0.42-0.63) 0.46 (0.33-0.58) 0.49 (0.33-0.65) 0.83 (0.72-0.92) 0.82 (0.64-0.95)

Spherical Disproportion 0.50 (0.39-0.60) 0.48 (0.33-0.62) 0.65 (0.49-0.79) 0.17 (0.08-0.27) 0.14 (0.02-0.29)
Surface Volume Ratio 0.47 (0.36-0.57) 0.43 (0.29-0.57) 0.57 (0.40-0.73) 0.01 (0.00-0.02) 0.01 (0.00-0.02)
Maximum 2D Diameter 0.47 (0.36-0.57) 0.59 (0.47-0.71) 0.47 (0.36-0.60) 0.72 (0.59-0.84) 0.85 (0.72-0.95)
Maximum 3D Diameter 0.48 (0.38-0.58) 0.53 (0.41-0.66) 0.60 (0.47-0.72) 0.66 (0.54-0.78) 0.76 (0.63-0.87)

Major Axis 0.51 (0.40-0.61) 0.53 (0.40-0.65) 0.56 (0.42-0.70) 0.55 (0.42-0.68) 0.51 (0.33-0.57)
NORHA 0.57 (0.49-0.66) 0.67 (0.57-0.76) 0.65 (0.53-0.77) 0.92 (0.88-0.96) 0.98 (0.95-1.00)

within this region. On the other hand, individuals suffering from HSR and
HSL showing severe deterioration are much better isolated from the healthy
point cloud, clustered together at the boundaries of this area. Figure 9 (b)
depicts the same t-SNE representation but with samples colored according to
its associated NORHA index, as predicted by the proposed method. An alter-
native representation with their corresponding meshes is shown in Figure 9
(c), including three exemplary cases corresponding to a normal subject, an
individual with MCI and one with HSL.

4 Discussion

4.1 Hippocampal asymmetry characterization

The hippocampus is involved in learning, memory function and naviga-
tion (Marshall and Born, 2007). Structurally, hippocampi are usually slightly
asymmetric, even for healthy individuals. Rightward asymmetry is consistently
described in mammals based on ex-vivo examinations and MR images (Pedraza
et al, 2004). The anterior part of the right hippocampus is usually larger
than the left one in healthy individuals, and this asymmetry increases with
age (Lucarelli et al, 2013). On the other hand, some neurodegenerative con-
ditions are known to manifest through changes in the normal asymmetry
patterns of the hippocampus. Hence, unilateral hippocampal sclerosis (HS,
also called mesial temporal sclerosis) is the most common pathological fea-
ture of temporal lobe epilepsy (Thom, 2014). These findings, alongside clinical
and neurophysiological data, are of great prognostic value in identifying good
candidates for epilepsy surgery. Hippocampal asymmetry has also been associ-
ated with mild cognitive impairment and Alzheimer’s disease (Shi et al, 2009).
Some chronic neurodegenerative diseases also show temporal and hippocam-
pal volume loss, usually associated with variable cognitive decline in cases of
MCI or AD (Williams et al, 2013). However, hippocampal atrophy is described
bilaterally in both conditions, more prominently in AD and preferentially on
the left side of MCI patients, suggesting an inverted pattern compared with
the hippocampus of normal subjects (Geroldi et al, 2000). Determining when
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Fig. 9 Distribution of samples in a 2D t-distributed stochastic neighbor embedding (t-SNE)
representation of their associated 14-dimensional feature vectors: (a) color-coded by their
associated ground truth diagnostic, (b) color-coded by their NORHA index, (c) including
the hippocampal meshes color-coded by their NORHA index and three exemplary cases.

differences in asymmetry start to be pathological is challenging by simply visu-
ally assessing them in brain MRI. While this may account for high diagnostic
accuracy in temporal lobe epilepsy, atypical cases of this disease or other con-
ditions in which the morphometric alterations are too subtle are more difficult
to spot (Sun et al, 2017). Moreover, normal anatomical variants in the hip-
pocampal formations, such as incomplete rotation, hippocampal fissure and
arachnoid cysts, are usually described and may account for additional diagnos-
tic difficulties (Connor et al, 2004). Furthermore, bilateral conditions affecting
both hippocampi may be detected by quantitative analyses when compared
with a normal database, although subtle and unilateral modifications are less
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identifiable and rarely investigated. It should be noted that in those diseases
that manifest with generalized atrophy, although both hippocampi decrease in
size, the R>L asymmetry can still remain. (Shi et al, 2009) performed a meta-
analysis on hippocampal asymmetry in healthy older adults, people with mild
cognitive impairment, and people with Alzheimer’s disease and found right >
left asymmetry in all groups. However, adults with MCI had more pronounced
asymmetry compared to healthy adults and those with AD (Shi et al, 2009).
Classic quantitative MRI analysis approaches are focused on assessing the vol-
ume of specific structures or subregions, but asymmetry comparisons between
hemispheres remain scarce and may be better suited to define some clinical
conditions with atypical patterns of hippocampal involvement.

In this paper, we propose an alternative approach based on an automated
index that captures the morphological differences between a subject’s hip-
pocampi using multiple shape descriptors and then indicates how much the
input sample deviates from a normal population. By definition, our NORHA
index is able to capture not only pathological asymmetries but also symmetries
that are abnormal or that differ from those observed in the training set. This
is achieved by means of the OC-SVM model (Schölkopf et al, 1999), a novelty
detection algorithm that only requires normal samples to learn the space of
common differences between left and right hippocampi during training. This
setting distinguishes our method from other alternative proposals such as (Fu
et al, 2021), as it does not explicitly model the differences in asymmetry pro-
duced by a given condition but the ones that are anatomically expected in a
normal scenario. Hence, any sample data can be presented to the model to
automatically assess how much this sample differs or not from the healthy
cohort, avoiding any biases due to training with a specific disease.

To reduce the burden of manually annotating the hippocampal regions,
which is prone to inter-observer variability plus is extremely time-consuming
to be done in practice, we applied an automated process based on first pre-
processing the input MR scans and then segmenting both hippocampi using a
convolutional neural network (Goubran et al, 2020). Therefore, our approach
can be used to objectively quantify hippocampal asymmetries without requir-
ing a laborious effort from the operator. Notice, however, that segmentation
errors could significantly affect the algorithm, as shown in the outliers depicted
in Figure 7, which are captured by NORHA as highly abnormal cases.

The empirical evaluation of our NORHA index indicates that it can effec-
tively characterize normal differences, mapping control subjects to indices that
are tightly distributed in low values, even for different datasets (Figure 4). This
behavior was expected, as any given healthy sample should be recognized as
such by the model. Taking individual differences between morphological fea-
tures such as volume or more complex characteristics empirically showed to be
inadequate to capture the space of normal asymmetries compared to our index
(Table 4). Instead, NORHA combines all these features into a common rep-
resentation space that harnesses all their individual potential to characterize
normality into a single, more discriminative value.
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When analyzing the index, we observed that it positively correlates with the
degree of unilateral deterioration of a hippocampal structure. In particular, the
predicted values are significantly increased with respect to the normal cohort
in cases with either right or left-sided hippocampal sclerosis. This behavior is
also aligned with what is expected for this condition, which is known to be
manifested through a high degree of asymmetry between contralateral anatom-
ical structures (Cook et al, 1992). This effectiveness is also reflected in the
ROC analysis from Figure 8, where the index reported high AUC values when
applied to detect this condition.

Asymmetry estimates obtained from patients with MCI or AD also showed
to be higher than normal, although the differences were not statistically sig-
nificant and resulted in less accurate discrimination (Figures 4 and 8). This
could be a consequence of our model not being able to capture bilateral dete-
riorations, as it is explicitly tailored to quantify unilateral asymmetries. The
heterogeneity of the MCI group may result in other possible explanations as
well, as some cases may mimic normal samples by showing no changes in
asymmetry, while others do present asymmetry changes, as observed in Figure
9. This aligns with previous observations in this particular dataset Nettik-
simmons et al (2014), where it was shown that certain subgroups exhibit
hippocampal characteristics that contradict the disease trajectory explained by
other biomarkers. In Figures 4 and 8 it can also be seen that AD patients from
the ADNI and OASIS test sets showed slight deviations in their index distribu-
tion. This could be explained either by the differences between datasets or by
the fact that ADNI can contain more AD cases with unilateral hippocampal
atrophies.

To discard any potential age and sex-related biases in the index, we per-
formed a controlled experiment comparing its distribution between subgroups
of different confounding factors. Unfortunately, the low number of samples
available for certain groups does not allow us to draw statistical conclusions
from all of them. Nevertheless, as shown in Figure 6, our index distributes
approximately similarity between age and sex subgroups. This could be thanks
to our training set covering a wide range of ages and an approximately simi-
lar proportion of males/females. Future work could focus on specializing the
index to individual subgroups, e.g. by including these potential confounding
factors as input features to the model.

4.2 Potential clinical applications

Our method provides an objective, less observer-dependent way to quantify
hippocampal asymmetries that can be used not only to understand differ-
ences in normal subjects but to measure anatomical deviations that can be
eventually considered abnormal. In this paper, we analyzed common scenarios
that are characterized by changes in the hippocampal shape. As an exem-
plary use case, we analyzed the correlation between our predictions and the
CDR-SB, ADAS11 and MMSE cognitive assessments (Figure 7). Interestingly,
a weak correlation was found between the measured asymmetries using our
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index and the decline in cognitive abilities of the analyzed subjects. This
suggests that our index can partially account for the cognitive deterioration
observed in the analyzed population. There is a general idea about a bor-
der zone of impairment between age-related cognitive decline, mild cognitive
impairment and clinically diagnosed dementia (Shi et al, 2009). The search for
an imaging biomarker that sheds light on this gray area has been the goal of
numerous investigations (McDonald et al, 2000; Sun et al, 2017). The results
obtained using NORHA could pave the way towards future large-scale clini-
cal studies applying it to comprehensively analyze its behavior in borderline
cases. Nevertheless, this analysis should be carefully considered, taking into
account that the cognitive assessments are known to suffer from inter-observer
variability (Tractenberg et al, 2001).

We envision that our NORHA index, combined with other noninvasive
techniques, may help to diagnose patients with epilepsy and chronic depres-
sion (Bernasconi et al, 2003; Mervaala et al, 2000). Furthermore, the design
of our NORHA index is sufficiently general to be applied for characterizing
deviations in normal asymmetries of other brain regions, which can be help-
ful, e.g. to detect malformations in brain development due to other epilepsies
or to study changes in temporal structures such as the amygdala for autism
spectrum disorder (Richards et al, 2020).

4.3 Limitations

Our study should still be read in the context of its own limitations. In this first
proof-of-concept analysis, each hippocampus was characterized using a large
set of morphological features, including volumetric measurements, ShapeDNA
descriptors and other shape properties. Empirical observations demonstrate
that utilizing the complete set of characteristics provides better results com-
pared to using individual subsets (as illustrated in Figure 8). However, the
method lacks enough sensitivity to be used as an independent tool for diag-
nosing MCI and AD. This cannot be attributed to the OC-SVM itself, as in
Figure 9 we can observe that the selected features are not enough to differen-
tiate these cases from control subjects as notoriously as for HSL/HSR. From
a characterization perspective, this could be either a consequence of having
some cases in our dataset with bilateral atrophies or our set of features being
suboptimal to capture other asymmetry patterns, as previously mentioned in
Section 4.1. Automatically learning the shape asymmetries using deep learn-
ing methods could potentially alleviate this limitation (LeCun et al, 2015).
On the other hand, it should be noted that our approach is focused specifi-
cally on differences in asymmetry and not on other structural characteristics
of the hippocampus that can be changed by neurodegenerative conditions. For
crafting an effective AD diagnostic tool, it would be necessary to integrate
complementary shape information beyond left and right differences and also
characteristics from other structures also influenced by AD. NORHA could
be used and integrated as one of the features in such a system. Nevertheless,
notice that this is out of the scope of this paper. Our evaluation of diseased
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cases is intended to empirically understand the ability of our index to identify
disease-related deviations from normality.

Another influential factor is the quality of the segmentation results. To
filter out these cases, we applied a heuristic process that is able to discard
clearly wrong meshes. However, we still observed three outliers in the MCI
group that were captured by NORHA as potentially abnormal individuals.
This further emphasizes the necessity of having accurate brain parcellation
models to effectively capture the actual shape of this particular structure.

Another limitation is related to the degree of explainability of our model.
In its current form, our method can only provide a value indicating how much
the sample deviates from the normal hippocampal asymmetry without indi-
cating which features were the ones that mostly deviated from normality.
This is a consequence of choosing an OC-SVM with an RBF kernel, which
renders a model in which the coefficients are applied on a transformed, non-
invertible feature space. We experimentally studied an OC-SVM with a linear
kernel to solve this issue, yet results were significantly less accurate than those
obtained when using the RBF. This could also be solved by replacing the hand-
crafted features with a deep neural network and then integrating explainability
techniques such as GradCAM (Selvaraju et al, 2017).

5 Conclusions

In this study, we present a first proof-of-concept approach for automatically
predicting a hippocampal normal asymmetry index from structural brain MRI.
Our model can automatically characterize the asymmetries in the hippocampi
without requiring manual segmentation. Furthermore, as it is trained using
only healthy subjects, it can effectively quantify the normal anatomical differ-
ences without being biased towards a specific disease. On the other hand, this
approach is general enough to be used with other symmetrical cortical struc-
tures. We believe this model can be used in multiple applications, including
anatomical studies analyzing normal cohorts–e.g. to understand structural dif-
ferences in left and right-handed individuals–, or even for discovering potential
associations in unilateral anatomical shape deviations and neurodegenerative
conditions. Future work will focus on automatically learning the morpholog-
ical features using convolutional neural networks and introducing qualitative
feedback regarding which hippocampus areas are more deviated.
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