
The presence of irrelevant alternatives paradoxically increases confidence
in perceptual decisions

Nicolás A. Comaya+., Gabriel Della Bellaa, Pedro Lamberti b, Mariano Sigmanc,d,
Guillermo Soloveye*, Pablo Barttfelda*

a- Cognitive Science Group. Instituto de Investigaciones Psicológicas (IIPsi),
CONICET-UNC, Facultad de Psicología, Universidad Nacional de Córdoba, Boulevard
de la Reforma esquina Enfermera Gordillo, CP 5000. Córdoba, Argentina
nicocomay@gmail.com

b- Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional
de Córdoba, Córdoba, Argentina.

c- Laboratorio de Neurociencia, Universidad Torcuato Di Tella, Buenos Aires, Argentina.

d- Facultad de Lenguas y Educación, Universidad Nebrija, Madrid, Spain.

e- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, UBA-CONICET,
Buenos Aires, Argentina

+ corresponding author
* last authors

mailto:nicocomay@gmail.com


Abstract

Confidence in perceptual decisions is thought to reflect the probability of being correct.
According to this view, confidence should be unaffected or minimally reduced by the
presence of irrelevant alternatives. To test this prediction, we designed five experiments.
In Experiment 1, participants had to identify the largest geometrical shape among two or
three alternatives. In the three-alternative condition, one of the shapes was much
smaller than the other two, being a clearly incorrect option. Counter-intuitively,
confidence was higher when the irrelevant alternative was present, evidencing that
confidence construction is more complex than previously thought. Four computational
models were tested, only one of them accounting for the results. This model predicts
that confidence increases monotonically with the number of irrelevant alternatives, a
prediction we tested in Experiment 2. In Experiment 3, we evaluated whether this effect
replicated in a categorical task, but we did not find supporting evidence. Experiments 4
and 5 allowed us to discard stimuli presentation time as a factor driving the effect. Our
findings suggest that confidence models cannot ignore the effect of multiple, possibly
irrelevant alternatives to build a thorough understanding of confidence.

Keywords: confidence, perceptual decision making, multiple alternatives, bayesian
confidence hypothesis, computational modeling, open data



1. Introduction

We constantly make decisions under uncertainty, accompanied by a feeling of
confidence -a belief or a subjective feeling that our own thoughts, knowledge,
performance, percepts or decisions are correct (Grimaldi et al., 2015; Mamassian, 2016;
Meyniel et al., 2015). To be useful in our everyday activities, confidence has to reflect
the true likelihood of being correct (Ais et al., 2016). However, this correspondence is
not perfect, and several biases have been described in the literature (Rahnev &
Denison, 2018), including overconfidence in difficult tasks and underconfidence in easy
tasks (Baranski & Petrusic, 1994; Gigerenzer et al., 1991), a mismatch between
confidence and accuracy on individual trials (Maniscalco & Lau, 2012), and
overconfidence due to misperception of stimulus variability (Zylberberg et al., 2014).
However, despite these findings, the dominant view of the field is that confidence
reflects the probability that the decision is correct. This definition is known as the
Bayesian confidence hypothesis (BCH) (H.-H. Li & Ma, 2020; Meyniel et al., 2015;
Sanders et al., 2016) and is inline with the classical assumption —known as
independence of irrelevant alternatives (Luce, 1979)— that the subjective value of a
stimulus is only dependent on the stimulus properties.

The Bayesian confidence hypothesis is based mostly on 2-alternative forced choice
tasks (2AFC), because they allow for a relatively easy and straightforward
computational modeling of confidence (Rahnev, 2020) using diverse approaches, such
as signal detection theory (Fleming & Lau, 2014), accumulation of evidence (Pleskac &
Busemeyer, 2010; Ratcliff & Starns, 2013) and Bayesian modeling (Drugowitsch et al.,
2014; Galvin et al., 2003; Kepecs & Mainen, 2012; Mamassian, 2016; Pouget et al.,
2016). However, while methodologically useful, 2AFC tasks are a large
oversimplification of the decision-making process, often implying more than two (or an
undefined number of) options (H.-H. Li & Ma, 2020; Niwa & Ditterich, 2008; Rahnev,
2020). Including a larger number of alternatives may not only reveal that the
methodological tools developed for 2AFC tasks are insufficient, but also that the
proposed mechanisms are wrong (H.-H. Li & Ma, 2020). Specifically, the context in
which we make decisions might alter our subjective interpretation of the facts (Ariely &
Wallsten, 1995; Northoff & Mushiake, 2020). One example is the attraction effect (Huber
et al., 1982): when deciding between two alternatives (the focal options), the addition of
a third one —similar to one of the focal alternatives regarding one attribute but inferior in
another attribute— may increase the probability for choosing that focal option. Critically,
this kind of context phenomena has been shown to play a role both in conceptual and
perceptual processes (Trueblood et al., 2013), so they are thought to be a fundamental
part in our decision processes. Moreover, it has recently been proposed that the
allocation of attention —modulated by the stimuli location (Winter & Peters, 2021)—



might also give rise to context influence on decision-making. Nevertheless, partly due to
the prevalence of 2AFC tasks paradigms, the impact of these effects on confidence
remains unknown.

Building on these ideas we explored whether a phenomenon already described in the
literature for likelihood judgments (Windschitl & Chambers, 2004), line-up identifications
(Charman et al., 2011) and associative memory (Hanczakowski et al., 2014) takes place
in multi-alternative perceptual decision-making. This effect is defined as “the tendency
to become more confident that a chosen response option is correct if it is surrounded by
implausible response options” (Charman et al., 2011, p. 479) and it is called the
“dud-alternative effect”. Bayesian models of confidence predict that confidence should
remain virtually invariant when adding irrelevant alternatives, because these hardly
affect the probability of being correct. Moreover, they practically do not affect the
difference between the posterior probabilities that the two best options are correct, a
recently proposed computation for confidence in multi-alternative tasks (H.-H. Li & Ma,
2020). On the other hand, the dud-alternative effect found in non-perceptual tasks
predicts that confidence should paradoxically increase.

We investigated the influence of irrelevant alternatives on confidence in three
perceptual decision making tasks. In contrast to other decision making processes,
perceptual decision making tasks are mainly based on incoming sensory information. In
Experiment 1 we studied the effect of a third, irrelevant stimulus on confidence and
contrasted our data with predictions from four computational models. In Experiment 2
we replicated the results from Experiment 1 and, based on the models’ simulations,
extended them up to three irrelevant stimuli. In Experiment 3 we explored how
stimuli-dependent our results are, using a task recently introduced to study confidence
in a three alternative decision making context (H.-H. Li & Ma, 2020). In Experiments 4
and 5, we tested whether the differences found in the two previous paradigms are due
to differences in the stimuli exposure duration.

2. Experiment 1

We designed a size discrimination task to evaluate the effect of the presence of a third,
weak alternative (i.e. dud alternative) in confidence (Fig. 1). This task allowed us to
manipulate the subjective value of the alternatives, making them more or less eligible
only by varying their relative size.



Fig. 1. Size discrimination task. Participants had to decide which was the largest shape. The size of the
stimuli varied in every trial, and the relative size of the two largest shapes controlled the difficulty
(established in 5 levels). Half of the trials had 2 alternatives and the other half had 3 alternatives,
making up a total of 120 trials. The third alternative was very small when present, and varied in size
(see Methods). After choosing the largest shape, participants had to report how confident they felt
about their decision on a scale from 0% (not confident at all) to 100% (completely confident).

2.1 Materials & methods

The task was programmed in JavaScript using the library jQuery. It ran on a JATOS
(Lange et al., 2015) server. The experiment could be run on mobile devices or desktop
computers.

2.1.1 Participants

101 participants took part in Experiment 1 (63% females; mean age = 29.46, sd = 8.83).
The study was approved by the ethical committee of the Institute of Psychological
Research (IIPsi - CONICET - Córdoba, Argentina). Participants should read and accept
an informed consent prior to the experiment. All participants reported no psychiatric,
illegal drug consumption or neurological history. Instructions were written on screen
prior to the experiment. Thirty four % of the sample performed the experiment on a
mobile device, whereas the rest performed it on a computer.

2.1.2 Experimental design

The experiment consisted of a decision making task where participants had to decide
which of two or three geometric shapes was the largest. It had 120 trials, 60 with two
alternatives and 60 with three alternatives. The shapes were circles and squares, and
the two largest shapes were always a circle and a square (to make the comparison
harder). On half of the trials a circle was the correct option, and on the other half a
square. The third alternative, when present, was randomly a square or a circle, and it
was much smaller than the other 2 shapes in order to make it easily discarded (in fact, it
was only chosen on 7 out of 11751 trials). The size of the largest shape was sampled



from a normal distribution with a mean value that depended on screen size (7500px2 for
a screen with a width size >= 600px; 6500px2 for a screen with a width size < 600px and
>= 400; 5500px2 for a screen with a width size < 400px) and a standard deviation of one
fourth of the mean value. The second largest shape area was set to the 0.7, 0.8, 0.9,
0.93 or 0.95 of the area of the stimulus 1, and the third alternative’ area (if present), was
set to the 0.1, 0.2, 0.3, 0.4, 0.5 or 0.6 of the area of the stimulus 2. Consequently, there
were 60 trials with 2 alternatives (of which there were 12 trials per each size of the
second largest alternative) and 60 trials with 3 alternatives (of which there were 2 trials
for each combination of size of the third and second largest alternative) (Table 1).
Stimuli were randomly displayed in 3 equispaced positions (120 degrees) located in a
circular array of a radius that varied with the screen size. The stimuli-array was
randomly rotated so the positions changed across trials. Shapes were shown for 1 s,
and the participants could respond by clicking the chosen shape or, once disappeared,
by clicking a small circular dot marking the position. After that, participants had to report
their confidence level on the decision on a scale from 0% (not confident at all) to 100%
(completely confident). Participants had to move a dot that was initially hidden (until
they moved the cursor) and appeared in the cursor’s position. Specifically, in the
confidence instructions we stated (in spanish in the actual experiment): “Once you have
picked the shape that you think is the largest you will have to report your degree of
confidence in that choice, that is, how sure you are that you picked the correct option”
[...] “the scale goes from 0% (COMPLETELY UNSURE, that implies that you don’t have
confidence at all in your decision of which was the largest shape) to 100%
(COMPLETELY SURE, that implies that you are fully confident about your decision of
which was the largest shape). YOU CAN USE INTERMEDIATE VALUES, the idea is
that you report your confidence in your choice in the most precise way possible”. On the
first 3 trials we included, on the top of the screen, the question “How sure are you?”.
Table 1. Task structure.

Third alternative size
(area3/area2)

Second alternative size (area2/area1)

0.7 0.8 0.9 0.93 0.95

Absent 12 trials 12 trials 12 trials 12 trials 12 trials

0.1 2 trials 2 trials 2 trials 2 trials 2 trials

0.2 2 trials 2 trials 2 trials 2 trials 2 trials

0.3 2 trials 2 trials 2 trials 2 trials 2 trials

0.4 2 trials 2 trials 2 trials 2 trials 2 trials

0.5 2 trials 2 trials 2 trials 2 trials 2 trials

0.6 2 trials 2 trials 2 trials 2 trials 2 trials



2.1.3 Data analysis

We excluded 2 participants from subsequent analysis due to low overall performance (8
and 66% overall accuracy; the median performance for the sample was 85% with an
interquartile range (Q3-Q1) of 6.7%). The definitive sample consisted of 99 participants.
Our sample size was based on a pilot study with 20 participants in which we observed
our main findings. We excluded trials with response times (RT) shorter than 200 ms and
larger than 10 s. These exclusion criteria were not pre-registered, but including the
discarded data does not modify the results. We conducted repeated measures ANOVAs
and Tukey HSD post hoc tests (both with the software Statistica). Our predefined
p-value for statistical significance was 0.05. We defined task difficulty as the ratio
between the area of the two largest shapes. The ANOVA for incorrect trials was done
with the highest levels of difficulty (0.9, 0.93, 0.95) because there were not enough
incorrect trials in easier conditions (0.7 and 0.8).

2.2 Results

2.2.1 Response times

Task difficulty had a significant impact on the response times of both the decisions and
the confidence reports. Higher difficulty was associated with larger RT (F4, 392 = 130.95,
p < 0.000001, ηp

2 = 0.57 - decisions - Fig. 2a; F4, 392 = 19.36, p < 0.000001, ηp
2 = 0.16 -

confidence reports - Fig. 2b). The presence of a dud alternative in half of the trials did
not affect RT in none of the tasks (F1, 98 = 0.79, p = 0.37, ηp

2 = 0.008 - decisions - Fig.
2a; F1, 98 = 0.002, p = 0.96, ηp

2 = 0.00002 - confidence reports - Fig. 2b).

2.2.2 Performance

Participants’ performance, as expected, decreased as task difficulty increased
irrespective of the number of alternatives (F4, 392 = 374.31, p < 0.000001, ηp

2 = 0.79)
(Fig. 2c). We found a marginally significant effect of the inclusion of the third alternative
on performance, restricted to the middle difficulty (F1, 98 = 4.04, p = 0.047, ηp

2 = 0.03)
(Fig. 2c). We didn’t find a significant interaction between the number of alternatives and
the task difficulty (F4, 392 = 1.79, p = 0.12, ηp

2 = 0.017) (Fig. 2c).



Fig. 2. The dud alternative did not have an effect on response times neither in (a) the decision task nor in
(b) the confidence report. (c) The dud alternative only decreased task performance in difficulty 0.9. In all
figures vertical bars refer to s.e.m. and “area2” and “area1” refer to the area of the second largest shape
and the largest shape, respectively.

We also analyzed whether the shape of the third alternative had any effect on the
decisions (i.e, a context effect regarding “square” and “circle” choices). In other words,
we tested whether a squared (circled) third alternative made subjects more likely to
choose a square (circle) as the largest figure. For trials where the chosen shape was a
square, we found an interaction between the 2-alternative condition and the presence of
the squared third alternative (F4, 392 = 3.66, p = 0.006, ηp

2 = 0.04). When comparing
between 2 or 3-alternative conditions on the same level of difficulty, a Tukey HSD
post-hoc test showed a significant difference only on the highest level of difficulty (p =
0.02). This means that participants were more likely to choose a square when the
dud-alternative was also a square on that particular difficulty level. With respect to trials
where the chosen shape was a circle, we again found an interaction between the
2-alternative condition and the presence of a circular third alternative (F4, 392 = 2.72, p =
0.03, ηp

2 = 0.03). However, a Tukey HSD post-hoc test showed no significant difference
between the same difficulty conditions (i.e. participants were not more likely to choose a
circle if the third alternative was a circle).

2.2.3 Confidence

Confidence, just like performance and as expected, decreased with increasing levels of
task difficulty (F4, 392 = 233.47, p < 0.000001, ηp

2 = 0.7) (Fig. 3a). Importantly, we found a
significant increment of confidence in the three-alternative condition (F1, 98 = 33.25, p <
0.000001, ηp

2 = 0.25) (Fig. 3a and 3b). Overall, 72 out of the 99 participants had an
increased confidence in the three-alternative condition (Fig. 3c) as compared with the
two-alternative condition. We also found a significant interaction between the difficulty of
the task and the presence of a weak alternative (F4, 392 = 6.85, p = 0.00002, ηp

2 = 0.06)
(Fig. 3a).



Fig. 3. (a) Confidence diminishes as a function of task difficulty but decreases less when a dud
alternative is present (specifically at high levels of difficulty). (b) No effect was found regarding the size
of the irrelevant alternative on confidence (i.e., confidence increased equally irrespectively of the third
stimuli size). (c) Difference in confidence (2 vs 3 alternatives) per participant. Each line in (c) represents
the change in confidence for each participant (considering all difficulty levels for each condition). A
positive value means that confidence was higher when the dud alternative was present, whereas a
negative value means that, conversely, confidence decreased in that condition.

The effect of increased confidence is present both in correct and incorrect trials (F1, 98 =
26.65, p = 0.000001, ηp

2 = 0.21 - correct trials; F1, 61 = 22.2, p = 0.00001, ηp
2 = 0.27 -

incorrect trials) (Fig. 4). Comparing the confidence increment between correct and
incorrect trials (on the 3 highest levels of difficulty) no differences were found (F1, 61 =
3.82, p < 0.055, ηp

2 = 0.06). Regarding the size of the third alternative, we found a
significant effect (F6, 582 = 4.73, p = 0.0001, ηp

2 = 0.05). A Tukey HSD post hoc test
showed that the significant differences were between the 2 alternative condition and the
conditions where the size of the dud alternative was 0.07 (p = 0.048), 0.21 (p = 0.0007),
0.28 (p = 0.005) and 0.35 (p = 0.001) of the area of the largest stimulus. This means



that no differences were found across the third stimulus sizes (all differences are with
respect to the 2 alternative condition). In other words, confidence increased
irrespectively of the size of the dud-alternative (Fig. 3b).

Fig. 4. Confidence increases when the third alternative is present. All panels depict the confidence
difference between 3-alternative and 2-alternative conditions. The figure shows confidence difference
for (a) all trials, (b) correct trials and (c) incorrect trials. Large s.e.m. in (c) at low difficulties (difficulties
0.7 and 0.8) are due to low numbers of incorrect responses.

We did not find an effect of the shape of the third alternative on confidence. That is,
when considering if the dud alternative was a circle or a square only on the 3-alternative
condition, no difference was found in confidence neither for trials where the chosen
shape was a circle (F1, 63 = 0.16, p = 0.69, ηp

2 = 0.003) nor for trials where the chosen
shape was a square (F1, 83 = 1.69, p = 0.2, ηp

2 = 0.02).

2.3 Discussion

The results of Experiment 1 extend the “dud-alternative” effect to a perceptual decision
making task: confidence level increased with the addition of a small, clearly incorrect
alternative. This effect is remarkably important because it implies that confidence does
not directly reflect the probability of being correct, as stated by classical views (Meyniel
et al., 2015; Sanders et al., 2016), and even deviates from recent models such as the
difference of the probabilities of being correct of the two best options (H.-H. Li & Ma,
2020). According to these models, the addition of irrelevant alternatives should not
affect confidence (because they hardly affect the probabilities of the rest of the
alternatives), and, in any case, it should decrease it. However, the opposite pattern is
observed in Experiment 1.

The dud-alternative had a small effect on performance. The effect is only restricted to a
middle-level difficulty, where participants’ performance only decreased minimally. So it is



likely that the task was not more difficult with the addition of the third alternative. The
lack of effect in response times is consistent with this explanation, as more difficult tasks
are expected to generate larger response times (Ratcliff et al., 2016). In consequence,
the effect of the inclusion of the irrelevant alternative is mainly restricted to confidence.

The design of Experiment 1 allows for the possibility of testing a specific kind of “decoy
effect”: the probability of choosing a geometrical shape as the largest one increases
when the third alternative is of the same shape (Huber et al., 1982; Trueblood et al.,
2013). However, we only found this effect for square choices, restricted to the highest
level of difficulty. Moreover, this effect did not interact with the dud-alternative effect,
suggesting that both are independent contextual effects.

Studies focused on the dud-alternative effect propose two main accounts for this
phenomenon (Charman et al., 2011; Hanczakowski et al., 2014; Windschitl &
Chambers, 2004).The first one is the “Average-residual” account: confidence reflects
the difference between the evidence supporting the chosen option and the average of
the evidence supporting the unchosen options (Eq. 3, see below). According to this
idea, confidence increases with the addition of a dud alternative because its presence
decreases the average of the evidence in favor of the unchosen options. The second
proposed explanation for the dud effect is the “Contrast” account: confidence is
obtained by a series of pairwise comparisons, where observers take the differences
between the evidence supporting the chosen alternative and the evidence supporting
each of the rest of the alternatives and sum them up (Eq. 4, see below). Confidence
therefore increases with the presence of an irrelevant alternative, since there is another
favorable comparison for the chosen option. We decided to formalize and test these
verbal explanations in two computational models: the “Average-residual” model and the
“Contrast” model. We compared these two models with the “Max” model –that states
that confidence reflects the probability of being correct (Eq. 2, see below)– (H.-H. Li &
Ma, 2020; Meyniel et al., 2015; Sanders et al., 2016) and the Difference model –that
states that confidence reflects the difference between the probabilities of being correct
of the two best alternatives (Eq. 1, see below)– (H.-H. Li & Ma, 2020).

3. Computational models

In order to evaluate whether the predictions of different models of confidence could fit
our empirical results of Experiment 1 —and to propose some venues for future
models— we carried out simulations for 4 models: the Difference model (H.-H. Li & Ma,
2020), the Max model (H.-H. Li & Ma, 2020; Meyniel et al., 2015; Sanders et al., 2016),
the Contrast model (Charman et al., 2011; Hanczakowski et al., 2014; Windschitl &



Chambers, 2004) and the Average-residual model (Charman et al., 2011; Hanczakowski
et al., 2014; Windschitl & Chambers, 2004).

3.1 Materials & methods

3.1.1 Computational modeling.
All models were developed under a Bayesian modeling approach (Ma, 2019). To set the
generative model, we defined stimuli sizes as in Exp. 1. We simulated the internal
responses on each trial. We assumed that observers make a noisy measurement of𝑥

𝑖

each stimulus . This measurement was modeled using a Gaussian distribution with𝑆
𝑖

mean on the actual value of the stimuli and standard deviation σ. Ideal observers
compute the posterior probability that each stimuli is the largest, formally:

. As some variability in behavior is due to a𝑝
𝑖
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“late noise” at the level of the decision variable (H.-H. Li & Ma, 2020), we assumed that
observers do not maintain the exact posterior probability but a noisy version of it, ,𝑞

𝑖

modeled as a random sample of a Dirichlet distribution centered on the true posterior
probabilities with a spread controlled by a parameter 𝛼 (H.-H. Li & Ma, 2020). We
assumed participants choose the stimulus with the highest . For𝑞(𝑆

𝑖
 | 𝑥

1
, 𝑥

2
, 𝑥

3
, 𝑠)

readability, from now on we will refer to these noisy posterior probabilities as simply the
posterior probabilities.

We simulated confidence levels according to four different models (Fig. 5a). For the
Difference model (Diff), confidence level is the result of the difference between the two
highest posterior probabilities. In the Max model confidence level is the larger posterior
probability. This model corresponds to the Bayesian Confidence hypothesis, stating that
confidence reflects the probability that the decision is correct. The Contrast model and
the Average-residual model are computational implementations of the two mechanisms
proposed in the dud alternative literature to account for the effect (Charman et al., 2011;
Windschitl & Chambers, 2004). The Contrast model states that confidence is obtained
by a series of pairwise comparisons between the chosen option and the remaining.
Following this, we modeled confidence by the sum of the differences between the
largest posterior probability and all other posterior probabilities. The Average-residual
model proposes that confidence reflects the evidence favoring the chosen option minus
the average evidence of the remaining options. Therefore, we modeled confidence as
the difference between the alternative with the highest posterior probability and the
mean of the remaining posterior probabilities. Formally:

Diff model: (Eq. 1)𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  𝑞
1
 −  𝑞

2



Max model: (Eq. 2)𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  𝑞
1

Average-residual model: (Eq. 3)𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  𝑞
1
 −  

 (𝑞
2
+𝑞

3
) 

2

Contrast Model: (Eq. 4)𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  (𝑞
1

−  𝑞
2
) +  (𝑞

1
 −  𝑞

3
)

3.1.2 Model fitting

We fitted the models’ free parameters separately for each participant’s data (decisions
and confidence) by maximizing the likelihood of the parameters. Formally, we
maximized , where is the log-likelihood of the𝐿(θ|𝑑𝑎𝑡𝑎) =  𝑙𝑜𝑔 𝑝(𝑑𝑎𝑡𝑎 | θ) 𝐿(θ|𝑑𝑎𝑡𝑎)
parameters given the data, is the decisions and the mean confidence level on𝑑𝑎𝑡𝑎
each condition, and the parameters ( and ). The free parameters wereθ σ, α, 𝛽

0
𝛽

1

sensory noise ( ), decision noise ( ) and two parameters controlling the intercept ( )σ α 𝛽
0

and slope ( ) of the linear transformation that maps the confidence output of the model𝛽
1

to the confidence data of the subject (using alternative mappings does not change the
computational modeling results, see Supplementary material). We first fitted andσ α
using the participant’s decisions and then used these two parameters as fixed to fit
confidence levels. For that, we simulated 10000 trials and calculated the proportion of
trials where the model decision is equal to the decision of the participant. These
numbers (one per trial) are an approximation of the data probability given the parameter
values. We summed the log of these numbers, thus computing the log-likelihood of the
parameters given the observed data. To find the best fitting parameter values we used
the R function optim with the simulated annealing method to minimize the negative
log-likelihood of the parameters’ values given the observed data (which is equivalent to
maximizing the likelihood of the parameters’ values given the observed data). We then
used the best and values as fixed values for fitting and . We simulated 100000σ α 𝛽

0
𝛽

1

trials per model taking the mean confidence by 1000 trials. Confidence data was divided
by 100 to transform it to the scale of 0 to 1 and then rounded to 1 decimal. We fitted the
model to the mean confidence level on each condition for each participant (fitting the
whole trial distribution instead of the mean level did not qualitatively change our results,
see Supplementary material). To fit confidence, we ran three optimization realizations
with different starting points of the parameters, and kept the best estimation. Using the
resulting parameters values we simulated 100000 trials according to each model taking
the mean confidence by 1000 trials and calculated their mean performance and
confidence to compare these models’ predictions to the participants’ behavior. As all the
models have the same number of free parameters we directly compared them using the
summed log-likelihood across participants.



To evaluate the ability of our method to detect the true parameters for each subject, we
performed parameter recovery by simulating, with the Average-residual model, the
same amount of data that we had by participant (120 trials; 12 per condition) using
values of and sampled from our data and then fitting models to this simulatedσ, α, 𝛽

0
𝛽

1

data with the mentioned procedure. The Pearson correlation between the true
parameters and the estimated parameters was 0.83 for (p < 0.0001), 0.58 for (p <σ α
0.0001), 0.99 for (p < 0.0001) and 0.99 for (p < 0.0001). This suggests that our𝛽

0
𝛽

1

method successfully recovers the true parameters underlying each participant data.

3.2 Results

For both the Max model (summed log-likelihood = -7398.2) and the Diff model (summed
log-likelihood = -7389) the presence of a third irrelevant option does not affect
confidence (Fig. 5b). In contrast, for both the Contrast model (summed log-likelihood =
-7686.03) and the Average-residual model (summed log-likelihood = -7365.97)
confidence increases with the presence of an irrelevant option (Fig. 5b). However, the
Contrast model shows a constant (difficulty-independent) confidence increase, whereas
the Average-residual model accounts for the pattern shown in our data: the difference in
confidence between three and two alternatives increases with the difficulty.
Furthermore, if we extend simulations to a context with more dud alternatives, the
Average-residual model predicts that confidence should increase monotonically with the
number of dud alternatives (Fig. 5d).



Fig. 5. (a) Sketches of confidence computation for each model. In the Average residual Model,
confidence is obtained by the difference between the highest posterior probability and the mean of the
remaining posterior probabilities. Confidence reflects the probability of being correct in the Max Model.
The Difference Model states that confidence reflects the difference between the two best posterior
probabilities. Finally, in the Contrast Model confidence is the result of the sum of the differences
between the highest posterior probability and each of the remaining posterior probabilities. (b) Model



fits for performance (first row) and confidence (second row). Both the max model and the Diff model
show that confidence should remain invariant when a dud-alternative is added to the decision context.
Conversely, the Average-residual model and the Contrast model show that confidence should be
higher. However, only the Average-residual model replicates the pattern found in our experiment.
Shaded regions are the standard error of the mean of model fits. (c) The log-likelihood of each model.
The Average-residual model is the best fitting model regarding our data. (d) The Average-residual
model predicts that confidence should increase with the number of dud alternatives, as these
alternatives reduce even more the average of the remaining options.

3.3 Discussion

Among all tested models, both the Average-residual model and the Contrast model can
recover the increment in confidence in the 3-alternative condition. However, only the
Average-residual predicts a lower effect on easier trials. Contrary, both the Max model
and the Diff model predict the opposite pattern: confidence remains the same when
more alternatives are added into the decision context.

The Average-residual model predicts that confidence should be higher with more
alternatives only when these alternatives are dud-alternatives, i.e. when the probability
of these alternatives of being correct is close to zero (according to the model, if the
extra alternatives are not dud-alternatives they will decrease the probability of being
correct of the chosen option and then confidence will be lower than in 2-alternative
case, see Supplementary Fig. 3a). This is because, with the addition of irrelevant
alternatives, the probabilities of being correct of the competitive options remain the
same while the average of the remaining options is lower. As a consequence, the model
predicts that confidence increases monotonically with the number of dud-alternatives,
since these alternatives progressively lower the average of the probabilities of being
correct of the unchosen options (Supplementary Fig. 3b). We tested for this possibility in
the next experiment.

4. Experiment 2

The Average-residual model predicts that confidence should increase monotonically
with the number of dud-alternatives, because the presence of more irrelevant
alternatives decreases the average of posterior probabilities of non-chosen alternatives
with a minimal effect on the posterior probabilities of the competing alternatives (Fig.
5d). In this second experiment we not only aimed to replicate the results of Experiment
1 but to see whether confidence increases with the number of dud alternatives (Fig. 6).



Fig. 6. Size discrimination task. Participants had to decide which one of the shapes was the largest.
Stimuli size varied in every trial, and the relative sizes of the two largest shapes controlled the difficulty
(established in 5 levels). There were 4 conditions: 2, 3, 4 and 5 alternatives, each one with 120 trials.
After that decision, participants had to report their confidence level on a scale from 0% (not confident at
all) to 100% (completely confident). Only two alternatives competed for the correct answer, the others
(when present) were relatively small and easily discarded.

4.1 Materials & methods

As in Experiment 1, the task was programmed in JavaScript using the library jQuery and
conducted online on a JATOS (Lange et al., 2015) server. Experiment 2 involved more
experimental conditions and, thus, more trials. To guarantee participants’ attention
during the task, the experimenter made a video call and remained available for the
duration of the experiment.

4.1.1 Participants

18 participants took part in this experiment (62% females; mean age = 27.17, sd =
4.77). The study was approved by the ethical committee of the Institute of Psychological
Research (IIPsi - CONICET - Córdoba, Argentina). Participants should read and accept
an informed consent prior to the realization of the experiment. All participants reported
no psychiatric, illegal drug consumption or neurological history. The tasks’ instructions
were written on screen prior to the experiments. All participants performed the task on a
computer. Each participant received a payment of roughly 4 US dollars.

4.1.2 Experimental design

The design of Experiment 2 was similar to that of Experiment 1 but involving a larger
number of conditions: 480 trials including 120 trials of 2, 3, 4 or 5 alternatives. As in
Experiment 1, only two alternatives were large enough to compete for the correct
answer; the others were much smaller in order to make them easily discarded
(irrelevant alternatives). In trials where the irrelevant alternatives were present, they all
had the same size, and each one was randomly a square or a circle. These dud



alternatives also varied in size (as in Experiment 1). Participants had to report their
confidence level in the decision in the same way as in Experiment 1.

4.1.3 Data analysis

No subject was excluded from the analysis. We followed a similar analysis strategy than
in Exp 1 (including the excluded trials does not modify the results). We excluded the
easiest level of the task from the performance analysis because one category (the one
with 5 alternatives) had perfect performance. The dissociation between correct and
incorrect trials carried out in Experiment 1 was not possible because there were not
enough incorrect trials.

4.2 Results

4.2.1 Response times

Decisions RT increased with difficulty (F4, 68 = 23.47, p < 0.000001, ηp
2 = 0.58) (Fig. 7a).

This effect was not found in confidence reports RT (F4, 68 = 1.59, p = 0.18, ηp
2 = 0.08)

(Fig. 7b). The weak alternatives did not impact the RT on either of the tasks (F3, 51= 0.26,
p = 0.84, ηp

2 = 0.01 - decisions - Fig. 7a; F3, 51 = 0.57, p = 0.63, ηp
2 = 0.03 - confidence

report - Fig. 7b).

4.2.2 Performance

Regarding task performance, participants’ accuracy decreased as the difficulty
increased (F3, 51 = 90.45, p < 0.000001, ηp

2 = 0.84) (Fig. 7c). Contrary, the dud
alternatives did not affect participants’ performance (F3, 51 = 2.62, p = 0.06, ηp

2 = 0.13)
(Fig. 7c).

Fig. 7. As in Experiment 1, dud alternatives did not have an effect in RT, neither in (a) decisions or in
(b) confidence reports. (c) Performance did not vary with the addition of dud alternatives.



4.2.3 Confidence

Confidence level decreased with task difficulty (F4, 68 = 54.63, p < 0.000001, ηp
2 = 0.76)

(Fig. 8a). Replicating the main finding in Experiment 1 confidence increased with the
presence of irrelevant alternatives (F3, 51 = 3.81, p = 0.01, ηp

2 = 0.18) (Fig. 8a). We
conducted a Tukey HSD post hoc analysis, showing that there was a significant
difference between confidence with 2 and 5 alternatives (p = 0.008). To further explore
this result, we conducted ANOVAs separately for each remaining conditions (3 and 4
alternatives vs 2 alternatives). We found a significant effect on confidence for the
3-alternative condition (F1, 17 = 9.06, p = 0.007, ηp

2 = 0.34) not detected by the post hoc
test. No interaction was found on this condition (F4, 68 = 0.5, p = 0.72, ηp

2 = 0.03). For the
condition with 4 alternatives we found a marginally significant effect (F1, 17 = 3.58, p =
0.075, ηp

2 = 0.17) and a significant interaction between the amount of alternatives and
the task difficulty (F4, 68 = 2.61, p = 0.04, ηp

2 = 0.13). We did not replicate the interaction
between difficulty and the irrelevant alternatives found in Experiment 1 (F12, 204 = 1.13, p
= 0.33, ηp

2 = 0.06) (Fig. 8a). Confidence was not affected by the number of
dud-alternatives (F2, 34 = 0.95, p = 0.39, ηp

2 = 0.05) (Fig. 8a and Fig. 8b). Thirteen out of
eighteen participants showed the effect of increased confidence in the dud alternative
conditions (Fig. 8c). There was a significant effect of the dud alternative size on
confidence (F6, 102 = 2.49, p = 0.03, ηp

2 = 0.13).



Fig. 8. (a) As in Experiment 1, confidence decreased with task difficulty but increased when weak
alternatives were present. (b) Confidence difference between the 3, 4 and 5 alternative conditions and
2-alternative condition considering the highest levels of difficulty (0.9, 0.93 and 0.95). (c) Average
difference in confidence by condition and participant.

4.3 Discussion

In Experiment 2 we replicated the dud-alternative effect found in Experiment 1.
However, we did not find evidence that adding more dud-alternatives influences
confidence. Although this constitutes a challenge for the Average-residual model, one
should keep in mind that the prediction of the model is that the increase in confidence
becomes smaller with the addition of each dud alternative (because the average of the



probabilities of the non-chosen options start to decrease less with each added
alternative), making this effect, if it exists, much difficult to detect. Moreover, with higher
levels of sensory or decision noise the model predicts no difference between conditions.
Further research is needed to evaluate if the monotonic increase in confidence actually
exists and if the Average-residual model can account for its presence or absence by
fitting it to participants’ behavior.

Interestingly, performance was not affected by the inclusion of the dud-alternatives. This
confirms the notion that these alternatives are not making the task harder (despite the
small but significant effect on performance found in Experiment 1).

We extended the dud-alternative effect to a perceptual decision making task in
Experiments 1 and 2. However, we wanted to test if this effect was present in a different
task, the one where the Diff model was developed (H.-H. Li & Ma, 2020), to evaluate
whether the predictions of the Average-residual model hold even in the context where
the Diff model was the best model. Therefore, we run Experiment 3.

5. Experiment 3

To evaluate whether the dud-alternative effect replicates in a different multi-alternative
task, we adapted the target categorization task from Li & Ma (2020) (Fig. 9).



Fig. 9. Target categorization task. (a) Participants decided which cloud of dots the yellow target dot
belonged to. Half of the trials had three alternatives and half two. When present, the third cloud was far
from the target in order to make it ineligible, following the logic of the previous two studies (red cloud in
the figure). After the decision, participants reported their confidence level on a continuous bar. (b) The
underlying structure of the task (see Materials & methods).

5.1 Materials & methods

As the two previous experiments, the third experiment was conducted online on JATOS
(Lange et al., 2015) and programmed in JavaScript using the library jQuery.

5.1.1 Participants

63 participants took part in this experiment (62.5% females; mean age = 30.16, sd =
12.32). The study was approved by the ethical committee of the Institute of
Psychological Research (IIPsi - CONICET - Córdoba, Argentina). Participants should
read and accept an informed consent prior to the realization of the experiment. All
participants reported no psychiatric, illegal drug consumption or neurological history.
The tasks’ instructions were written on screen prior to the experiment. All participants
completed the experiment on a computer.



5.1.2 Experimental design

The experiment consisted of a decision making task where participants had to decide
which cloud of dots a target dot belonged to. It had 120 trials, 60 with two alternatives
and 60 with three alternatives (i.e., two or three clouds). Dots were normally distributed
in space. The mean of the distributions were set in space such that the two main clouds
were closer together. More specifically, the mean of these distributions were located in a
circle of radius R centered at a fixation point and separated by an angle of 120 degrees.
In trials where the third cloud was present, its mean was located at a distance 2.5xR
from the fixation point and at an angle of 120 degrees from each of the mean locations
of the other two clouds. Each dot cloud had 375 dots. Dot size and standard deviation of
the distribution was responsively set, according to the presentation screen. The target
dot was yellow with a black border. The target was located in a segment that begins and
ends at the mean values of the 2 competing clouds distributions. The position of the
target was parameterized by a “task difficulty” variable d that takes values from 0 to 0.5,
where 0 represents one of the extremes and 0.5 represents the middle, equidistant from
the mean values of the distributions. We used d={0.33, 0.4, 0.47} where 0.33 is the
easiest and 0.47 the most difficult condition. See Fig. 9b for a graphical reference of the
task. Stimuli remained on the screen until the participant made a decision, clicking on
color coded screen buttons. Participants reported their confidence level on the decision
on a continuous scale, as in Experiments 1 and 2. Similar to Experiments 1 and 2, the
confidence instructions stated (spanish in the actual experiment): “your second task
consists in reporting your degree of confidence in your choice, that is, how sure you are
to have picked the correct option” [...] “the scale ranges from 0% (COMPLETELY
UNSURE, that implies that you don’t have confidence at all in your decision to which
cloud of dots did the yellow dot belonged to) to 100% (COMPLETELY SURE, that
implies that you are fully confident about your decision to which cloud of dots did the
yellow dot belonged to). YOU CAN USE INTERMEDIATE VALUES, the idea is that you
report your confidence in your choice in the most precise way possible”. On the first 3
trials we included, on the top of the screen, the question “How sure are you?”.

5.1.3 Data analysis

We excluded 7 participants from the analysis (3 due to low performance -our accuracy
cutoff point was an accuracy of 0.6-, and 4 due to lack of variability in the confidence
report (confidence level at 100% in > 90% of the trials). The final sample consisted of 52
participants (including all participants does not modify the results). We excluded trials
with RT lower than 200ms both for decisions and confidence reports. We excluded trials
with a response time greater than 20 s instead of 10 s as in our previous tasks since
RTs are larger in this task. These exclusion criteria were not pre-registered, but
including the discarded data does not modify the results. We conducted repeated
measures ANOVAs and Tukey HSD post hoc tests (both with the Statistica software) to



estimate the impact of the difficulty of the task and the dud alternatives in RT,
performance and confidence. Our predefined p-value for statistical significance was
0.05.

5.2 Results

5.2.1 Response times

Task difficulty had a significant effect on decisions RT (F2, 102 = 34.40, p < 0.000001, ηp
2

= 0.40) (Fig. 11a). RT were also larger for the 3-alternative condition (F1, 51 = 14.38, p =
0.0004, ηp

2 = 0.22) (Fig. 10a). No interaction was found between the number of
alternatives and task difficulty (F2, 102 = 0.26, p = 0.77, ηp

2 = 0.005) (Fig. 10a). Task
difficulty affected confidence reports RT (F2, 102 = 3.63, p = 0.03, ηp

2 = 0.07). The number
of alternatives did not impact confidence reports RT (F1, 51 = 3.20, p = 0.08, ηp

2 = 0.059).
No interaction was found between task difficulty and the number of alternatives (F2, 102 =
1.01, p = 0.37, ηp

2 = 0.02).

5.2.2 Performance

Performance, as expected, decreased as the task became more difficult (F2, 102 =
418.85, p < 0.000001, ηp

2 = 0.89) (Fig. 10c). The presence of a third alternative did not
have an effect on performance (F1, 51 = 0.78, p = 0.38, ηp

2 = 0.015) (Fig. 10c).

Fig. 10. (a) Both task difficulty and the presence of the dud alternative increased response times in the
decisions. (b) Contrary to decisions, response times for the confidence report were not affected neither
by task difficulty nor the amount of alternatives. (c) Performance decreased as the task difficulty
increased, whereas the dud alternative did not affect it.

5.2.3 Confidence

Confidence, as expected and in line with performance, decreased when the task got
more difficult (F2, 102 = 97.59, p < 0.000001, ηp

2 = 0.66) (Fig. 11a). In contrast with the



results from Experiments 1 and 2, we did not find evidence for higher confidence in the
3-alternative condition (F1, 51 = 0.485, p = 0.49, ηp

2 = 0.009) (Fig. 11b) and there was not
an interaction between the number of alternatives and task difficulty (F2, 102 = 1.84, p <
0.16, ηp

2 = 0.035).

Fig. 11. Effect of number of alternatives on confidence. (a) Confidence diminished with task difficulty
and is not affected by the presence of an irrelevant alternative. (b) Confidence difference between 3
and 2 alternative conditions, per participant.

We explored the impact of the presence of the third alternative on confidence level
separately for correct and incorrect responses, as in Experiment 1 (Fig. 12). For correct
trials only, confidence was not affected by the number of alternatives (F1, 51 = 0.03, p =
0.86, ηp

2 = 0.0006) and we did not find an interaction between task difficulty and the
number of alternatives (F2, 102 = 2.61, p = 0.078, ηp

2 = 0.05). For incorrect trials, we did
not find an effect of the amount of alternatives (F1, 25 = 0.045, p = 0.83, ηp

2 = 0.002) or an
interaction between task difficulty and the number of alternatives (F2, 50 = 1.40, p = 0.26,
ηp

2 = 0.05) (Fig. 12c).



Fig. 12. The impact of the third alternative on confidence dissociated by correct and incorrect
responses. (a) Considering all trials, the third alternative did not increase confidence at any level of
difficulty. Moreover, the third alternative did not have an effect on confidence neither when considering
(b) correct trials nor (c) incorrect trials.

5.3 Discussion

The target categorization task of Experiment 3 does not show a dud-alternative effect:
confidence remained the same despite the addition of a third, clearly incorrect
alternative. The inclusion of the dud-alternative did not affect performance or
confidence, but made response times longer. This could be one of the reasons that this
experiment bears no dud-alternative effect, since longer response times are usually
associated with more difficult tasks and with lower confidence levels (Kiani et al., 2014).
Another possible reason underlying the lack of the dud-alternative effect is the different
presentation times of the stimuli: up to 1 second in experiments 1 and 2, and untimed in
Experiment 3. In fact, the computations underlying confidence in purely perceptual tasks
with brief stimuli presentations could be different because confidence has to rely more
on the internal representation of the stimuli (Rahnev, 2020; Yeon & Rahnev, 2020).
Consequently, we decided to test in Experiment 4 and 5 whether the dud-alternative
effect is present both in the size discrimination task with unlimited presentation time of
the stimuli (as in Experiment 3) and in the target categorization task with the stimuli
presentation time restricted to one second (as in Experiments 1 and 2).

6. Experiment 4

To investigate whether stimuli presentation time is driving the dud alternative effect, we
conducted two more experiments: Experiment 4 consisted of the same size



discrimination task as in Experiment 1 but stimuli were present up to the time of the
decision as in Experiment 3; Experiment 5 consisted of the same target categorization
task as in Experiment 3 with stimuli being on screen for 1 second as in Experiments 1
and 2.

6.1 Materials & methods

As in the previous experiments, Experiment 4 was conducted online on JATOS (Lange
et al., 2015) and programmed in JavaScript using the library jQuery.

6.1.1 Participants & experimental design

34 participants took part in this experiment (73.5% females; mean age = 25.5, sd =
6.38). One subject was excluded due to slow response times (see 6.1.2 Data analysis),
so the final sample consisted of 33 participants.
The design was similar to the design of Experiment 1, with the difference that the stimuli
remained on screen up to the time that the participant made the decision. To inform their
choice, participants clicked directly on the geometrical figures.

6.1.2 Data analysis

We excluded trials with RT lower than 200 ms for both decisions and confidence
reports. We also excluded trials with RT greater than 20 s (both in decisions 1 and
confidence reports) as in Experiment 3. With this filter one subject was completely
excluded because of larger response times. The reported results do not change if we
include this data. We conducted repeated measures ANOVAs and Tukey HSD post hoc
tests (both with the Statistica software) to estimate the impact of the difficulty of the task
and the dud alternatives in RT, performance and confidence. Our predefined p-value for
statistical significance was 0.05. The ANOVA for incorrect trials was done with the
highest levels of difficulty (0.9, 0.93, 0.95) because there were not enough incorrect
trials in easier conditions (0.7 and 0.8).

6.2 Results

6.2.1 Response times

Task difficulty had a significant effect on decisions RT (F4, 128 = 27.49, p < 0.000001, ηp
2 =

0.46) (Fig. 13a). The inclusion of a third alternative did not affect decisions RT (F1, 32 =
0.39, p = 0.54, ηp

2 = 0.02). No interaction was found between the number of alternatives
and task difficulty (F4, 128 = 1.12, p = 0.35, ηp

2 = 0.03). Task difficulty affected confidence
reports RT (F4, 128 = 5.79, p = 0.0003, ηp

2 = 0.15). The number of alternatives did not
impact confidence reports RT (F1, 32 = 0.49, p = 0.49, ηp

2 = 0.015). An interaction was



found between task difficulty and the number of alternatives regarding confidence
reports RT (F4, 128 = 2.84, p = 0.03, ηp

2 = 0.08).

6.2.2 Performance

Performance, as expected, decreased as the task became more difficult (F4, 128 = 92.64,
p < 0.000001, ηp

2 = 0.74). The presence of a third alternative did not have an effect on
performance (F1, 32 = 2.80, p = 0.10, ηp

2 = 0.08). We did not find an interaction between
task difficulty and the number of alternatives (F4, 128 = 1.45, p = 0.22, ηp

2 = 0.04).
We again analyzed whether the shape of the third alternative had an effect on the shape
that the participant picked (“square” vs “circle” choices). Comparing the 2-alternative
condition and the 3-alternative condition when the dud-alternative was a square shows
no effect regarding “square” choices (F1, 32 = 0.05, p = 0.82, ηp

2 = 0.002). The presence
of a third alternative that was a circle did not affect the proportion of “circle” choices
either (F1, 32 = 1.11, p = 0.3, ηp

2 = 0.025).

6.2.3 Confidence

Confidence, as expected and in line with performance, decreased with task difficulty (F4,

128 = 49.02, p < 0.000001, ηp
2 = 0.61) (Fig. 13a). We replicated the dud-alternative effect

found in Experiments 1 and 2 since confidence increased in the 3-alternative condition
(F1, 32 = 20.28, p = 0.00008, ηp

2 = 0.39) (Fig. 13a). Also, there was an interaction
between the number of alternatives and task difficulty (F4, 128 = 3.03, p = 0.02, ηp

2 = 0.09)
(Fig. 13a). The effect was found for both correct (F1, 32 = 16.79, p = 0.0003, ηp

2 = 0.34)
and incorrect (F1, 22 = 7.87, p = 0.01, ηp

2 = 0.26) trials. Comparing the confidence
increment between correct and incorrect trials (on the 3 highest levels of difficulty) no
differences were found (F1, 22 = 0.88, p = 0.36, ηp

2 = 0.04).
Regarding the size of the third alternative, we found a significant effect (F6, 186 = 2.67, p
= 0.02, ηp

2 = 0.08). A Tukey HSD post-hoc test shows that the differences are between
the 2-alternative condition and the conditions where the third alternative adopted the
0.07 (p = 0.04) and the 0.28 (p = 0.008) of the area of the stimulus 1.
As in Experiment 1, we did not find an effect of the shape of the third alternative on
confidence: when considering if the dud alternative was a circle or a square only on the
3-alternative condition, no difference was found in confidence neither for “circle” choices
(F1, 21 = 0.73, p = 0.4, ηp

2 = 0.03) nor for “square” choices (F1, 27 = 0.43, p = 0.52, ηp
2 =

0.016).

7. Experiment 5

As mentioned previously, to evaluate if presentation time of the stimuli is the main factor
driving the dud-alternative effect we also conducted the target categorization task of



Experiment 3 but with restricted presentation time: stimuli were present on screen up to
1 second as in Experiments 1 and 2.

7.1 Materials & methods

7.1.1 Participants & experimental design

31 participants took part in this experiment (83.9% females; mean age = 27.42, sd =
7.64). Participants should read and accept an informed consent prior to the realization
of the experiment. All participants reported no psychiatric, illegal drug consumption or
neurological history. The tasks’ instructions were written on screen prior to the
experiment. All participants completed the experiment on a computer.
The design was the same as Experiment 3, with the difference that the stimuli remained
on screen up to 1 second.

7.1.2 Data analysis

We excluded trials with RT lower than 200 ms for both decisions and confidence
reports. We also excluded trials with RT greater than 10 s (both in decisions and
confidence reports) as in Experiments 1 and 2. Including the discarded data does not
modify the results. We conducted repeated measures ANOVAs and Tukey HSD post
hoc tests (both with the Statistica software) to estimate the impact of the difficulty of the
task and the dud alternatives in RT, performance and confidence. Our predefined
p-value for statistical significance was 0.05.

7.2 Results

7.2.1 Response times

Task difficulty had a significant effect on decisions RT (F2, 60 = 13.73, p = 0.00001, ηp
2 =

0.31). The inclusion of a third alternative made decisions RT larger (F1, 30 = 4.84, p =
0.04, ηp

2 = 0.14). No interaction was found between the number of alternatives and task
difficulty for decisions RT (F2, 60 = 1.52, p = 0.23, ηp

2 = 0.05). Task difficulty did not affect
confidence reports RT (F2, 60 = 1.66, p = 0.20, ηp

2 = 0.05). The number of alternatives did
not impact confidence reports RT (F1, 30 = 0.67, p = 0.42, ηp

2 = 0.02). No interaction was
found between task difficulty and the number of alternatives regarding confidence
reports RT (F2, 60 = 0.44, p = 0.65, ηp

2 = 0.01).

7.2.2 Performance

Performance decreased with task difficulty (F2, 60 = 155.77, p < 0.000001, ηp
2 = 0.84).

The presence of a third alternative did not have an effect on performance (F1, 30 = 0.035,



p = 0.85, ηp
2 = 0.001). We did not find an interaction between task difficulty and the

number of alternatives (F2, 60 = 0.52, p = 0.6 , ηp
2 = 0.02).

7.2.3 Confidence

Confidence decreased with increasing levels of task difficulty (F2, 60 = 31.47, p <
0.000001, ηp

2 = 0.51) (Fig. 13b). As in Experiment 3, confidence was not affected by the
presence of a dud-alternative (F1, 30 = 1.15, p = 0.29, ηp

2 = 0.04) (Fig. 13b). There was
not an interaction between the number of alternatives and task difficulty (F2, 60 = 1.69, p
= 0.19, ηp

2 = 0.05) (Fig. 13b).

Fig. 13. Both experiments show converging evidence that the dud-alternative effect is independent of
the presentation time of the stimuli. a) The dud-alternative effect was found for the size discrimination
task even if stimuli remained on screen up to the participants’ response. b) Despite restricting stimuli
presentation time up to 1s in the target categorization task, no dud-alternative effect was found.

7.3 Discussion

Both Experiments 4 and 5 show converging evidence that the dud-alternative effect is
not dependent on the presentation time of the stimuli, as the effect was replicated in
Experiment 4 and, again, not found in the target categorization task of Experiment 5.

The dud alternatives did not affect performance nor RT in the size discrimination task,
adding more evidence to the previous claims of Experiment 1 and 2 that the
dud-alternatives did not make the task harder. Regarding RTs for the target
categorization task, we found again that they were longer in the 3-alternative condition
(as in Experiment 3). This could reflect that people were in fact more uncertain when the



third alternative was present, thus canceling out a possible dud-alternative effect
because of a decision process inherently more difficult.

Experiment 4 shows no “attraction effect”: people were equally likely to choose a square
when the third alternative was a square when compared to the 2-alternative condition,
and the same holds for “circle” choices. Moreover, this experiment replicates the
findings of Experiment 1 in the sense that the shape of the dud-alternative did not affect
confidence reports. In consequence, both experiments suggest that the dud-alternative
effect is independent of the attraction effect.

8. General discussion

In the present study, we investigated whether irrelevant alternatives increase confidence
in a perceptual decision. The underlying motivation was that this kind of effect was
reported in likelihood judgements (Windschitl & Chambers, 2004), line-up identifications
(Charman et al., 2011) and associative memory (Hanczakowski et al., 2014) but never
tested in perceptual confidence contexts. Furthermore, most accepted computational
models of confidence in perceptual decisions (H.-H. Li & Ma, 2020; Meyniel et al., 2015;
Sanders et al., 2016) state that the presence of irrelevant alternatives should not modify
it or, in any case, should decrease it. Contrary, our main finding is that these alternatives
can increase confidence in perceptual decisions, a result that seems at odds with
normative models of confidence.

These weak alternatives, however, do not impact RTs (Experiments 1 and 2) or
performance. These null effects are important because they discard that changes in
performance or overconfidence usually present in difficult tasks (Baranski & Petrusic,
1994; Gigerenzer et al., 1991) are raising confidence.

Our results from Experiment 1 and 2 cannot be explained by current views of the field
proposing that confidence arises directly from the probability of being correct (Meyniel
et al., 2015; Sanders et al., 2016) or direct comparisons between the more probable
stimulus and the second one (H.-H. Li & Ma, 2020). This depicts why considering the
effect of irrelevant alternatives (Charman et al., 2011; Hanczakowski et al., 2014;
Windschitl & Chambers, 2004) in models of confidence is needed. To account for the
effect in non-perceptual tasks, Charman et al. (2011), Windschitl & Chambers (2004)
and Hanczakowski et al. (2014) proposed various theoretical explanations. Interestingly,
the preferred one was the Contrast model, that we computationally implemented:
confidence level is obtained by a series of pairwise comparisons between the chosen
option and the rest. Nevertheless, our computational modeling results suggest that,
although the Contrast model captures the effect of increased confidence levels when a



dud-alternative is present, only the Average-residual model replicates the pattern of our
data. Specifically, the Average-residual model states that people construct their
confidence by first judging the support offered by the evidence for chosen option and
the support offered by the average of the rest of the alternatives and then taking the
difference between them. In this model having dud alternatives decreases the value of
the competing options, inflating confidence.

The Contrast model faces many issues when extending its predictions to other decision
contexts. First, the model predicts a constant increment in confidence when adding
more than one dud-alternative (for example, a decision context with 2, 3 or more
dud-alternatives), as illustrated in Supplementary Fig. 3b. This is not reasonable in
extreme cases such as when an observer has to decide between a lot of alternatives
(for example, adding a dud-alternative when there are already 15 dud-alternatives is not
expected to raise confidence by the same amount as when there are not any
dud-alternatives). The Average-residual model, conversely, predicts that increment in
confidence should progressively decrease with the number of dud-alternatives, since
the average of the residual alternatives will progressively change less with more
dud-alternatives. Therefore, the Average-residual model is in a better position to
account for the results reported in Experiment 2.

Second, when varying the size of a third alternative –ranging from a dud-alternative to a
truly competitive alternative– the Contrast model still predicts that confidence should be
higher in the 3-alternative condition. This is a counterintuitive prediction since it is
expected that confidence will be lower in the case where 3 alternatives are equally likely
to be the right decision when compared to only 2 equally likely alternatives. On the other
hand, the Average-residual model predicts that confidence should be lower in that case,
as expected (Supplementary Fig. 3a). This is because these models imply
normalization, so a high value of a third alternative implies that the posterior probability
for the chosen option also decreases, leading to a decrease in confidence. However,
this decrease is not large enough to compensate for the increase in confidence by the
presence of a dud-alternative in the Contrast model.

Finally, the Contrast model predicts that confidence should always increase with the
presence of a dud-alternative, even if the task at hand is very easy. This is, again, a
counterintuitive prediction since if a task is really easy one should reach a maximum
confidence level. Therefore, the addition of a dud-alternative is not expected to have a
large effect. The Average-residual model, on the other hand, predicts that the increase
in confidence should be lower on easy tasks (and no increment is predicted if the two
non-chosen options are equal, i.e. the both options are dud-alternatives). Indeed,
according to the Average-residual mechanism, we found a null or reduced increase in



confidence on easy trials on Experiment 1, 2 and 4. Taking into account all of these
predictions, the Average-residual model not only is the best explanation for the
dud-alternative effect, but also seems a plausible blueprint for a general mechanism for
computing confidence in multi-alternative tasks in general.

Windschitl & Chambers (2004) discuss a version of the Contrast model that includes a
weight in the comparison between the chosen option and the dud-alternative, thus
making the increment in confidence due to this contrast flexible. With this modification,
the model could improve its performance regarding the fit to our data. However, this
modified Contrast model will still predict a constant, difficulty independent increment in
confidence, so it is likely that the model will not be better than the Average-residual
model as it is (and, consequently, will definitely not be better than an Average-residual
model including a weight, to match the number of free parameters). Moreover, the
modification implies that the model should have an extra free parameter for controlling
the weight of the contrast, making the model more complex unnecessarily since there is
already a model that provides a better fit without the need of an extra free parameter.

Prior research suggests that maintaining mental representations for all alternatives is
costly (Maniscalco et al., 2016). In that scenario, confidence only relies on the evidence
in favor of the chosen option, also known as “positive evidence bias” (Koizumi et al.,
2015; Maniscalco et al., 2016; Peters et al., 2017; Zylberberg et al., 2012). However,
unchosen options can affect confidence (H.-H. Li & Ma, 2020). Our results and model
are in line with this posture, since even very weak alternatives are taken into account to
make confidence judgments. Moreover, our findings also deviate from the notion that, in
multi-alternative perceptual decisions, individuals making decisions only have access to
the level of activity of the alternative with highest internal activity (Yeon & Rahnev,
2020). Indeed, the Average-residual model necessarily implies that the level of activity
of all alternatives is accessible for the observer in order to compute confidence.

The picture, however, seems more complicated. Our results from Experiments 3 and 5
show that, in that particular task, the dud-alternative barely affects confidence. This
constitutes a main challenge for the Average-residual model. Why does this
experimental paradigm show no dud-alternative effect? First of all, the slower reaction
times found in these experiments in the 3-alternative condition may indicate that
observers were more uncertain and needed more time to make their decision; this could
counteract the dud-alternative effect. Second, we tested if stimuli presentation time
plays a role in the dud-alternative effect. The reason was that in perceptual tasks with
brief stimuli presentations, confidence computations rely more on an internal
representation (Rahnev, 2020). Thus, mechanisms acting in Experiments 1 and 2 may
differ from the ones acting in Experiment 3. In fact, the dud alternative effect is more



prominent in timed tasks (Windschitl & Chambers, 2004). In this line, an alternative
explanation for our results might be that the dud alternative effect depends on a form of
variance misperception (Zylberberg et al., 2014), an overconfidence bias found in
perceptual tasks when signal is low and perceptual noise is added (M. K. Li et al., 2018;
Rahnev et al., 2011; Solovey et al., 2015). The presence of dud alternatives might add
perceptual noise, causing the participants to have higher levels of confidence if they do
not adjust their confidence criteria accordingly. That is, if participants fixate on the third
alternative, the rest of the alternatives remain at an attentional periphery, where there
are effects of variance misperception and overconfidence (Winter & Peters, 2021) due
to noisier percepts caused by the poorer resolution of the peripheral visual field. Larger
stimuli presentations would rule out possible variance misperception effects, due to a
higher signal to noise ratio. However, decreasing the stimuli duration used in
Experiment 3 (Experiment 5) does not induce a raise in confidence levels in
3-alternative trials; also, the effect does not disappear with unlimited presentation time
in the size discrimination task (Experiment 4). Consequently, stimuli presentation time
seems not to be a factor driving the dud-alternative effect. In third place, another
possible explanation might be that the dud-alternative effect in the size discrimination
task is driven by the “Ebbinghaus illusion” (Roberts et al., 2005): shapes are perceived
larger when surrounded by small shapes. The irrelevant alternative(s) may induce such
an illusion by making the chosen option appear larger to the observer as compared to
when the dud-alternative is not present. Confidence therefore will be higher due to the
“positive evidence bias” mentioned above: the observer has now more evidence for her
choice, because her chosen option now seems larger than in the 2-alternative condition.
Importantly, if this is the case, it may explain why there is not a dud-alternative effect in
Experiment 3 and 5, as this illusion is not present with that stimuli. Despite appealing,
the Ebbinghaus illusion explanation predicts that the increment in confidence should be
more pronounced on easy trials because all of the incorrect options are small. However,
we see the opposite pattern in our data: confidence level rises due to the
dud-alternative presence specifically on difficult trials, consistent with the explanation
proposed by the Average-residual model. Moreover, according to the Ebbinghaus
illusion account, the increment in confidence should be higher with lower size values of
the third alternative. However, no effect was found regarding the size of irrelevant
alternatives within the 3-alternative condition: confidence increased equally irrespective
of the third alternative size. This is again consistent with the Average-residual account
as the model predicts a relatively constant increase in confidence as long as the
alternatives are irrelevant, as in our case (Supplementary Fig. 3).

Having ruled out those possible explanations, we must note that the dud-alternative
effect is already reported in a range of different tasks (Charman et al., 2011;
Hanczakowski et al., 2014; Windschitl & Chambers, 2004). This implies that different



mechanisms take place on the target categorization task of Experiments 3 and 5. We
identify three major characteristics of this experimental paradigm that are likely causing
the lack of effect. First, this task requires a probabilistic response, i.e. the target could
belong to either cloud with a certain probability. This kind of probabilistic alternatives is
different from the size discrimination task and also from the previous dud-alternative
effect literature, where there were definite correct alternatives. This may induce a more
probabilistic –and therefore, normative– use of the confidence scale, that could explain
the absence of the rise in confidence levels in presence of the third cloud. Indeed, the
dud-alternative effect is not present in tasks that induce concerns regarding the
complementary rule (Windschitl & Chambers, 2004). Second, this task implies a direct
distance judgment (between the target and the clouds) between two probable
alternatives, thus making it reasonable that confidence reflects the difference between
the probabilities of the best-two competing alternatives, as stated by the Diff model.
Finally, there is the possibility that the third alternative was not even taken into account
by the subjects for being highly irrelevant. Under this possibility, the increased response
times on both target categorization experiments in the 3-alternative condition may
reflect extra-time for searching for the target instead of increased uncertainty. As the
distance between the third alternative and the target was not manipulated, we cannot
rule out this possibility. Further research could vary this distance to evaluate whether
this is a plausible explanation.

Previous research including irrelevant alternatives has shown a wide range of context
effects in our decision making. The size discrimination task used here allow for the
possibility of testing one particular context effect: the attraction effect (Huber et al.,
1982), already reported in perceptual decision making (Trueblood et al., 2013). This
effect implies that decision makers will more likely choose a specific alternative A when
comparing to another alternative B when a third option simultaneously similar but
inferior to A is added in the decision context. In Experiment 1, we found an attraction
effect for “square” choices restricted to the highest level of difficulty (that is, participants
were more likely to choose a square if the third alternative was also a square), but no
clear pattern was found regarding the “circle” choices. Importantly, this effect does not
interact with the increase in confidence. In Experiment 4 we did not find any attraction
effect, neither in choices nor in confidence. These results suggest that the
dud-alternative effect is independent of the attraction effect.

In conclusion, our results imply that —at least in some contexts— confidence in
multi-alternative decisions deviates from the traditional Bayesian confidence hypothesis
and from the Difference model, recently developed for decisions with multiple
alternatives. Moreover, our findings suggest that unchosen options affect confidence in
a way that is explained by the Average-residual model. This particular model not only



gives the best explanation for the dud-alternative effect but also points out a possible
mechanism for computing confidence in general multi-alternative contexts. Future
computational models should consider this effect and the predictions of the
Average-residual model to more accurately explain human confidence levels in
perceptual decision-making.
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