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Abstract

Given two graphs G = (V,EG) and H = (V,EH) over the same set of vertices
and given a set of colors C, the impact on H of a coloring c : V → C of G,
denoted I(c), is the number of edges ij ∈ EH such that c(i) = c(j). In this
setting, the maximum-impact coloring problem asks for a proper coloring c of G
maximizing the impact I(c) on H. This problem naturally arises in the context
of classroom allocation to courses, where it is desirable –but not mandatory– to
assign lectures from the same course to the same classroom. In a previous work
we identified several families of facet-inducing inequalities for a natural integer
programming formulation of this problem. Most of these families were based on
similar ideas, leading us to explore whether they can be expressed within a uni-
fied framework. In this work we tackle this issue, by presenting two procedures
that construct valid inequalities from existing inequalities, based on extending
individual colors to sets of colors and on extending edges of G to cliques in G,
respectively. If the original inequality defines a facet and additional technical
hypotheses are satisfied, then the obtained inequality also defines a facet. We
show that these procedures can explain most of the inequalities presented in a
previous work, we present a generic separation algorithm based on these proce-
dures, and we report computational experiments showing that this approach is
effective.

Keywords: coloring, integer programming, facet-generating procedures

1. Introduction

A recurring problem in course scheduling consists in determining which class-
rooms are to be assigned to each lecture of each course, in such a way that over-
lapping lectures receive different classrooms [5], where the starting and ending
times of each lecture are given as part of the input. This situation is usually
modeled by an undirected graph G = (V,EG), whose vertices represent the
lectures and whose edges join pairs of lectures that cannot receive the same
classroom since the corresponding time intervals have nonempty intersection,
and by a set C of classrooms. The graph G is usually referred to as the conflict
graph associated with the lectures. This problem corresponds to the classical
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vertex coloring problem, as any C-coloring c (i.e., an assignment c : V → C
such that c(i) ̸= c(j) whenever ij ∈ EG) corresponds to a feasible assignment
of classrooms to lectures. This problem is feasible if and only if |C| ≥ χ(G),
where the chromatic number χ(G) represents the minimum number of colors in
any feasible coloring of G.

A usual requirement in practical environments asks for all the lectures from
the same course to be assigned to the same classroom. However, this require-
ment is not strict, and it can be violated if not enough classrooms are available.
In order to take this requirement into account, the following combinatorial op-
timization problem was proposed in [1]. In addition to G, we have a second
graph H = (V,EH) defined over the same set of vertices, in such a way that
ij ∈ EH if and only if i and j are lectures from the same course. We assume
EG ∩ EH = ∅. If c is a coloring of G, we define the impact of c on H to be
I(c) = |{ij ∈ EH : c(i) = c(j)}|, i.e., the number of edges from H whose end-
points receive the same color. Given two graphs G = (V,EG) and H = (V,EH)
and a set C of colors, the maximum-impact coloring problem (MICP) consists
in finding a C-coloring of G maximizing the impact on H. MICP is NP-hard
[6], even when restricting G to be an interval graph and H to be the union
of disjoint cliques [1], a situation usually arising in the context of classroom
allocation.

Several formulations and techniques for the classical vertex coloring problem
were applied in a wide range of applications (see, e.g., [3, 4, 7, 10]). Additionally,
some of these applications have given place to scheduling software as in [8, 9].

Since integer programming techniques have been shown to be quite suc-
cessful for the classical vertex coloring problem and for similar scheduling and
timetabling problems, in [1] we proposed to tackle MICP with such techniques.
We presented a natural integer programming formulation for MICP and iden-
tified several families of facet-inducing inequalities that turned out to be suc-
cessful at enhancing the performance of a branch and cut procedure. Many of
these families of valid inequalities are based on similar ideas and, consequently,
the corresponding proofs of facetness contain repeated arguments. Moreover,
similar ideas are present in the separation procedures associated with these fam-
ilies. These observations suggest the existence of general results explaining the
facetness properties of the identified inequalities, and the design of a unified
separation framework for them.

In this work we explore these issues, by presenting two validity- and facetness-
preserving procedures that construct valid inequalities from existing inequali-
ties, enlarging their supports (i.e., the set of indices with nonzero coefficientes
in the inequality) in the process. We also introduce a generic separation algo-
rithm based on these procedures, which starts from a set of inequalities with
small supports and seeks to apply these procedures in order to obtain cuts with
supports as large as possible. We present computational experiments suggest-
ing that this approach may be competitive with respect to the application of
individual separation algorithms for each family of valid inequalities.

This paper is organized as follows. Section 2 presents the integer program-
ming formulation for MICP and states some known results on this formulation.
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Section 3 presents the two procedures for constructing valid inequalities. Fi-
nally, Section 4 reports our computational experiments, and Section 5 includes
concluding remarks and ideas for future work. The theoretical results contained
in this work appeared without proofs in the conference paper [2].

2. Integer programming formulation

The following integer programming formulation for MICP, introduced in
[1], is based on the standard model for vertex coloring. For i ∈ V and c ∈ C,
we define the binary assignment variable xic to be xic = 1 if the vertex i is
assigned the color c, and xic = 0 otherwise. For every ij ∈ EH with i < j we
define the binary impact variable yij to be yij = 0 if the vertices i and j are
assigned different colors. For ij ∈ EH , i < j, we define yji = yij as a notational
convenience. In this setting, MICP can be formulated as follows.

max
∑

ij∈EH ,i<j

yij

s.t.
∑
c∈C

xic = 1 ∀i ∈ V (1)

xic + xjc ≤ 1 ∀ij ∈ EG, ∀c ∈ C (2)

yij ≤ 1 + xic − xjc ∀ij ∈ EH , i < j, ∀c ∈ C (3)

yij ≤ 1 + xjc − xic ∀ij ∈ EH , i < j, ∀c ∈ C (4)

xic ∈ {0, 1} ∀i ∈ V, c ∈ C (5)

yij ∈ {0, 1} ∀ij ∈ EH , i < j (6)

The objective function asks for the total impact to be maximized. Con-
straints (1) and (2) ensure that the x-variables define a proper vertex coloring
of G, whereas constraints (3) and (4) force yij = 0 if i and j receive different
colors (if, e.g., xjc = 1 and xic′ = 1 for c′ ̸= c, then (3) implies yij = 0). We do
not impose constraints forcing yij to take value 1 if i and j get the same color,
since in any optimal solution this situation is guaranteed, and this property
makes the resulting polytope much easier to study. Finally, constraints (5) and
(6) ask the variables to be binary.

Definition 1 (maximum-impact coloring polytope). Given two graphs G
= (V,EG) and H = (V,EH) with EG ∩ EH = ∅ and a finite set C, we de-
fine PMIC(G,H,C) ⊆ R|V ||C|+|EH | to be the convex hull of the points (x, y) ∈
R|V ||C|+|EH | satisfying constraints (1)-(6).

The definition of PMIC(G,H,C) implies Propositions 1 and 2, which will be
used throughout this work. The converse implications do not hold in general,
although they are true for most of the particular inequalities considered in this
section. Similar assertions for facetness are also not true in general. For S ⊆ V ,
we define GS to be the subgraph of G induced by S. If π ∈ R|V ||C| and C ′ ⊆ C,
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we define πC′ to be the projection of π onto the entries associated with colors in
C ′, i.e., πC′ = (πic)i∈V,c∈C′ . For S ⊆ V , we define πS to be the projection of π
onto the entries associated with vertices in S, i.e., πS = (πic)i∈S,c∈C . Similarly,
if µ ∈ R|EH | and S ⊆ V , we define µS = (µij)ij∈EH :i,j∈S .

Proposition 1. If πx+µy ≤ π0 is valid for PMIC(G,H,C∪D) with C∩D = ∅
and πid = 0 for every i ∈ V and d ∈ D, then πCx + µy ≤ π0 is valid for
PMIC(G,H,C).

Proposition 2. If πSx+ µSy ≤ π0 is valid for PMIC(GS , HS , C) with S ⊆ V ,
πic = 0 for every i ∈ V \S and c ∈ C, and µij = 0 for every ij ∈ EH with i ̸∈ S
or j ̸∈ S, then πx+ µy ≤ π0 is valid for PMIC(G,H,C).

Many families of facet-inducing inequalities for this polytope were presented
in [1], some of which turned out to be quite effective within a cutting plane
environment. We now summarize some of them, in order to point out the
similarities that motivated the present work.

� Let ij ∈ EH and D ⊂ C be a nonempty subset of colors. The following is
the partitioned inequality associated with ij and D.

yij ≤ 1 +
∑
d∈D

xjd −
∑
d∈D

xid. (7)

� LetK ⊆ V be a clique in G and let i ∈ V \K be a vertex such that ik ∈ EH

for all k ∈ K. The following is the vertex-clique inequality associated with
K and i. ∑

k∈K

yik ≤ 1. (8)

� Let K ⊆ V be a clique in G and let i ∈ V \ K such that ik ∈ EH for
all k ∈ K. Let D ⊆ C such that |D| ≤ |C| − |K|. The following is the
clique-partitioned inequality associated with the clique K, the vertex i,
and the color set D.∑

k∈K

yik ≤ 1 +
∑
d∈D

∑
k∈K

xkd −
∑
d∈D

xid. (9)

� Let ij ∈ EH and k ∈ V such that ik, jk ∈ EG, and let c ∈ C and
D ⊆ C\{c} with D ̸= ∅. The following is the semi-triangle inequality
associated with the vertex set {i, j, k}, the color c, and the color set D.

yij ≤ 2 + (xjc − xic − xkc) +
∑
d∈D

(xid − xjd + xkd). (10)

� Let {j, k, l} ⊆ V be a triangle in G, and let i ∈ V be a vertex such
that ij, ik ∈ EH and il /∈ EH . Let d1, d2 ∈ C with d1 ̸= d2, and let
D ⊆ C\{d1, d2} with |D| ≤ |C| − 3. The following is the semi-diamond
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inequality associated with the triangle {j, k, l}, the vertex i, the colors d1
and d2, and the color subset D.

yij + 2yik ≤ 3 +
∑
d∈D

(xkd + xjd − xid)

+ (xid1
− xkd1

) + (xkd2
− xid2

)− (xld1
+ xld2

). (11)

� Let K ⊆ V be a clique in G, and let j ∈ K and i ∈ V \K be two vertices
such that ij ∈ EH . Let D ⊆ C be a set of colors. The following is the
bounding inequality associated with the clique K, the vertices i and j, and
the color set D.

yij ≤ min{|D|, |K|}+ 1−
∑
d∈D

∑
k∈K\{j}

xkd −
∑
d∈D

xid. (12)

Within this list, the bounding inequalities are the only ones that do not
define facets in general. However, they turned out to be effective for some
instances in the computational experiments presented in [1].

Similar ideas appear throughout the inequalities in this list. Consider, e.g.,
the partitioned inequality (7), which asserts that yij must take value 0 if i is
not assigned a color from D (hence the first summation in the RHS is null)
and j is assigned a color from D (hence the second summation in the RHS
takes value 1). The partitioned inequalities are facet-defining if |C| ≥ χ(G)+1,
and provide a generalization of the model constraints yij ≤ 1 − xic + xjc, for
ij ∈ EH and c ∈ C, by considering the set D of colors instead of a single color
c (conversely, we can say that the model constraints (3) are a particular case
of the partitioned inequalities, by taking D = {c}). This same construction
appears in the inequalities (9)-(12). A similar situation holds for inequalities
(8), (9), and (12), this time with the appearance of a clique within G in the
inequalities, coupled with the idea that at most one vertex from the clique can
receive a fixed color. Similar ideas appear in further families of valid inequalities
presented in [1].

These repetitions cause the facetness proofs for these inequalities to be quite
similar, and the separation procedures for these inequalities to contain repli-
cated fragments of code. From a mathematical viewpoint, the appearance of
the same idea more than once in several proofs suggests that there could be
a unifying result explaining all these facets (or at least a common lemma that
could be used in all these proofs), besides hindering the elegance of the proofs.
From a computational viewpoint, the existence of similar code in different sepa-
ration routines makes the code more difficult to maintain and more error-prone
to create due to copying-and-pasting, besides the obvious elegance issues. These
observations are the main motivations for the present work, namely we aim to
unify these proofs within a single framework, which ideally could lead us to uni-
fied separation procedures. This can be achieved by so-called facet-preserving
procedures, and it turns out that the two ideas mentioned in the previous para-
graph can be formalized into such procedures. These ideas are explored in the
next section.
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3. Facet-preserving procedures

We introduce in this section the two validity- and facetness-preserving proce-
dures for PMIC(G,H,C). Both procedures take as input a valid inequality and
produce a new inequality that is also valid and has a larger support than the orig-
inal one. If, furthermore, the original inequality is facet-inducing, |C| > χ(G),
and additional technical hypotheses are met, then this new inequality is also
facet-inducing.

3.1. Procedure 1: Replacing a color by a set of colors

The first procedure takes as input a valid inequality for an instance (G,H,C)
of the problem, such that the inequality involves at least one color c ∈ C (i.e.,
there exists i ∈ V such that the variable xic has nonzero coefficient in the
inequality), and replaces all variables associated with this color by the variables
associated with a set D of colors and the involved vertices. This new inequality
is valid for the instance (G,H, (C\{c}) ∪D), namely the instance constructed
by replacing the color c by the set D.

As defined previously for π, if (x, y) ∈ PMIC(G,H,C ∪ D) is a feasible
solution, where C and D are two disjoint sets, we define xC to be the projection
of x onto the variables associated with colors in C, i.e., xC = (xic)i∈V,c∈C .
We say that the colors in C are consecutive if there is a linear ordering among
them. This is satisfied if, e.g., C = {1, . . . , |C|}. Finally, for i ∈ V , we define
NG(i) = {j ∈ V : ij ∈ EG} to be the set of neighbors of i in G. The set NH(i)
is defined similarly for the graph H.

Procedure 1. Let πx+ µy ≤ π0 be a valid inequality for PMIC(G,H,C). Fix
c ∈ C, let D be a nonempty set of consecutive colors such that C ∩D = ∅, and
define C ′ = (C\{c}) ∪D. Define A and B to be the sets A = {i ∈ V : πic ̸= 0}
and B = {i ∈ V : µij ̸= 0 for some j ∈ NH(i)}. Finally, for any feasible
solution (x, y) ∈ PMIC(G,H,C ′), define I(x, y) = {i ∈ B : yij = 1 for some
j ∈ B ∩NH(i)}. Assume that

(i) for every (x, y) ∈ PMIC(G,H,C ′) ∩ Z|V ||C′|+|EH |, I(x, y) induces a stable
set in G,

(ii) for every i ∈ A, if there exist (x, y) ∈ PMIC(G,H,C ′) ∩ Z|V ||C′|+|EH | and
a maximal stable set I ′ in GB such that I(x, y) ⊆ I ′ and i /∈ I ′, then
πic ≤ 0, and

(iii) πxC + µy ≤ π0 is valid for PMIC(G,H,C ∪D).

In this setting, the procedure generates the inequality∑
i∈A

∑
d∈D

πicxid +
∑
i∈V

∑
d∈C\{c}

πidxid +
∑

ij∈EH

µijyij ≤ π0, (13)

for the instance (G,H,C ′).
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The application of Procedure 1 to the model constraint yij ≤ 1+xic−xjc,
for ij ∈ EH and c ∈ C, provides the partitioned inequality (7), namely

yij ≤ 1 +
∑
d∈D

xid −
∑
d∈D

xjd,

when replacing c by the color set D. The variable xic is replaced by
∑

d∈D xid,
and the variable xjc is replaced by

∑
d∈D xjd. In this case we have A = B =

{i, j} with ij ∈ EH (so ij ̸∈ EG), hence the hypotheses (i) and (ii) of the
procedure are trivially satisfied. The inequality (7) is valid for the extended
instance with color set C ′, and the following result shows that this is the case
in general when the hypotheses of Procedure 1 are satisfied.

Theorem 1. If the hypotheses of Procedure 1 hold, then the inequality (13) is
valid for PMIC(G,H,C ′).

Proof. Let (x, y) ∈ PMIC(G,H,C ′) ∩ Z|V ||C′|+|EH | be an arbitrary feasible
solution of PMIC(G,H,C ′). We shall show that (x, y) satisfies the inequality
(13).

Let I ′ ⊆ B be a maximal stable set in GB such that I(x, y) ⊆ I ′ (the
hypothesis (i) ensures the existence of I ′). Define also M ⊆ I ′ to be the set of
vertices in I ′ receiving a color from D in x, i.e., M = {i ∈ I ′ :

∑
d∈D xid = 1}.

Construct a new solution (x′, y′) ∈ PMIC(G,H,C∪D) as follows. Set x′
ic = 1

for all i ∈M , and keep in x′ the color assigned in x to each vertex in V \M , i.e.,

x′
kt =


1 if k ∈M and t = c,
0 if k ∈M and t ̸= c,
xkt if k ̸∈M and t ̸= c,
0 if k ̸∈M and t = c,

for k ∈ V and t ∈ C ∪D. Also set y′ij = 0 for ij ∈ EH with i ∈ M and j ̸∈ M
(or viceversa), and y′ij = yij otherwise.

We first show that this new solution is feasible. In order to verify that x′

induces a proper coloring of (G,C ∪ D), we show that i and j are assigned
different colors if ij ∈ EG. To this end, we only need to consider the vertices
in M (since the colors assigned to the remaining vertices are unchanged in the
construction of x′ from x). As M ⊆ I ′ and I ′ is a stable set in G then there are
no edges in G between pairs of vertices in M , hence no conflict is generated by
assigning in x′ the same color (namely, the color c) to a subset of vertices from
I ′.

It remains to verify that y′ij = 1 implies that i and j are assigned the same
color in x′, for every ij ∈ EH . Suppose, on the contrary, that there exists some
ij ∈ EH such that y′ij = 1 but i and j receive distinct colors in x′. By the
construction of y′, this implies that yij = 1, hence i and j are assigned the same
color in x. Since i and j receive distinct colors in x′ but the same color in x, we
conclude that i ∈M and j ̸∈M (or viceversa), a contradiction since in this case
we set y′ij = 0. We have, therefore, that (x′, y′) ∈ PMIC(G,H,C ∪ D), hence
πx′

C + µy′ ≤ π0 by the hypothesis (iii).
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Call LHS1(x, y) to the LHS of (13) with the point (x, y). The following
calculation shows that (x, y) satisfies (13).

LHS1(x, y) =
∑
i∈V

∑
d∈C\{c}

πidxid +
∑
i∈A

∑
d∈D

πicxid +
∑

ij∈EH

µijyij

=
∑
i∈V

∑
d∈C\{c}

πidx
′
id +

∑
i∈I′

πicx
′
ic +

∑
i∈A\I′

∑
d∈D

πicx
′
id +

∑
ij∈EH

µijy
′
ij

≤
∑
i∈V

∑
d∈C\{c}

πidx
′
id +

∑
i∈I′

πicx
′
ic +

∑
ij∈EH

µijy
′
ij

= πCx
′
C + µy′ ≤ π0.

The second equality stems from the facts that (a) xid = x′
id for all i ∈ V and

d ∈ C \ {c}, (b) all the vertices in I ′ that receive a color in D in x, receive color
c in x′, (c) the x-variables corresponding to vertices in A\I ′ and colors in D
remain unchanged in x′, and (d) if µij ̸= 0 and yij = 1, then i and j are both
in I(x, y) and share the same color in x, thus implying that y′ij = yij . Each
of these claims corresponds to each summation in the second expression. The
first inequality stems from the fact that the hypothesis (ii) implies πic ≤ 0 for
every i ∈ A \ I ′. The last inequality is implied by the hypothesis (iii), since
(x′, y′) ∈ PMIC(G,H,C ∪ D). This shows that (x, y) satisfies (13) which is,
therefore, valid for PMIC(G,H,C ′). □

Although technical, the hypotheses (i)-(iii) are necessary for Theorem 1.
Consider, e.g., the inequality

yik + yjℓ ≤ 3− (xic + xjc), (14)

for ik, jℓ ∈ EH and kℓ ∈ EG. This inequality asserts that if i and j are assigned
the color c, then it cannot be the case that yik = yjℓ = 1, since this would imply
that k and ℓ receive color c, and this is not possible since kℓ ∈ EG. Thus, this
inequality is valid (although not facet-inducing in general). However, for the
color c this inequality does not satisfy the hypothesis (i), as any solution (x, y)
with yik = yjℓ = 1 has I(x, y) = {i, j, k, ℓ}, which is not a stable set in G. If we
applied Procedure 1 to this inequality with color c, we would get

yik + yjℓ ≤ 3−
∑
d∈D

(xid + xjd),

which is not valid for PMIC(G,H,C ′), as any solution with xid = xkd = xjd′ =
xℓd′ = 1 for d, d′ ∈ D, d ̸= d′, and yik = yjℓ = 1 shows.

The hypothesis (ii) is also necessary for ensuring validity in Procedure 1.
Consider, e.g., the simple semi-triangle inequality

yij ≤ 2 + (xjc − xic − xkc) + (xic′ − xjc′ + xkc′) (15)

for ij ∈ EH and k ∈ V such that ik, jk ∈ EG, and for c, c′ ∈ C, c ̸= c′. The
inequality (10) corresponds to applying Procedure 1 for the color c′, replacing
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c′ by the set D ⊆ C. However, we cannot apply Procedure 1 to (15) for the
color c, since it does not satisfy the hypothesis (ii): since I = B = {i, j} but
A = {i, j, k}, then the hypothesis (ii) asks πkc ≤ 0, and this is not the case.
Indeed, if we applied Procedure 1 to (15) for the color c, we would obtain the
inequality

yij ≤ 2 +
∑
d∈D

(xjd − xid − xkd) + (xic′ − xjc′ + xkc′), (16)

which is not valid for PMIC(G,H,C ′), namely its RHS can take a negative value
by assigning xid = xkd′ = 1 for d, d′ ∈ D, d ̸= d′, and xjc′ = 1.

The hypothesis (iii) simply states that the original inequality πx+ πy ≤ π0

remains valid when new colors are added to the instance (but the inequality
remains unchanged). This is not always true, and may depend on the particular
statement of the inequality. For example, let ij ∈ EG and consider the inequality
xic + xjc ≤ 1. This inequality is valid for PMIC(G,H,C) and is also valid for
PMIC(G,H,C∪D). However, if we rewrite this inequality as xic ≤

∑
d∈C\{c} xjd

(by combining it with the model constraint (1)), then this new inequality is no
longer valid for PMIC(G,H,C ∪D). In this sense, the hypothesis (iii) is a way
of ensuring that the initial inequality πx+ πy ≤ π0 is expressed in such a way
that adding colors to the instance does not affect its validity.

Hypotheses (i) and (ii) can be replaced by stronger statements that do not
depend on checking conditions on feasible solutions. For example, if we ask A∪B
to induce a stable set in G, then both hypotheses are satisfied. Alternatively, if
(i’) GA∪B is composed by a clique K and an isolated vertex and (ii’) πic ≤ 0 for
every i ∈ K, then also the hypotheses (i) and (ii) are satisfied. This observation
gives rise to the following corollaries, which are used in Section 4 in order to
identify valid inequalities that can be subjected to Procedure 1.

Corollary 1. Assume the setting of Procedure 1. If (i’) A∪B induces a stable
set in G and (ii’) πxC + µy ≤ π0 is valid for PMIC(G,H,C ∪ D), then the
inequality (13) is valid for PMIC(G,H,C ′).

Corollary 2. Assume the setting of Procedure 1. If (i’) GA∪B is composed
by a clique K and an isolated vertex, (ii’) πic ≤ 0 for every i ∈ K, and (iii)
πxC +µy ≤ π0 is valid for PMIC(G,H,C ∪D), then the inequality (13) is valid
for PMIC(G,H,C ′).

We now show that Procedure 1 also preserves facetness, namely if πx +
πy ≤ π0 induces a facet of PMIC(G,H,C) (and there are enough colors in order
to characterize the dimension of this polytope) then (13) induces a facet of
PMIC(G,H,C ′). This result relies on the following fact.

Lemma 1 ([1]). If |C| > χ(G), then PMIC(G,H,C) has dimension |V |(|C| −
1) + |EH |, and the model constraints (1) define a minimal equation system for
this polytope.
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Define A(d) = {xid}i∈V to be the set of x-variables involving the color
d, for any d ∈ C. Call dim(P ) the dimension of a polytope P . Finally, let
d0 = min(D).

Theorem 2. If the hypotheses of Procedure 1 hold and, furthermore,

(a) µ ̸= 0,

(b) χ(G) < |C|, and

(c) πx+ µy ≤ π0 induces a facet of PMIC(G,H,C),

then (13) induces a facet of PMIC(G,H,C ′).

Proof. Let F = {(x, y) ∈ PMIC(G,H,C) : πx + µy = π0} be the facet of
PMIC(G,H,C) induced by πx + µy ≤ π0. Let k = |V |(|C| − 1) + |EH |. Since
χ(G) < |C|, Lemma 1 implies dim(PMIC(G,H,C)) = k, so dim(F ) = k− 1 and
there exist k affinely independent points (x1, y1), . . . , (xk, yk) ∈ F . Construct
k affinely independent points in the face of PMIC(G,H,C ′) induced by (13) as
follows. For i = 1, . . . , k, the solution (x̄i, ȳi) is defined by x̄i

jd = xi
jd for j ∈ V

and d ∈ C\{c}, x̄i
jd0

= 1 for every j ∈ V such that xi
jc = 1, and the other

variables are set to 0 (i.e., vertices receiving color c in xi are assigned color d0
in x̄i, and the remaining vertices do not change). We also take ȳi = yi. It is not
difficult to verify that (x̄i, ȳi) satisfies (13) with equality. Furthermore, these
k constructed solutions are affinely independent, since (x1, y1), . . . , (xk, yk) also
are.

Consider now the projection of (x1, y1), . . . , (xk, yk) onto the variablesA(c) =
{xic}i∈V . Since πx + µy ≤ π0 induces a facet of PMIC(G,H,C), then the set
of projected points must contain |A(c)| + 1 affinely independent points (since
otherwise there would exist an equation

∑
i∈V γixic = γ0 satisfied by all points

in F , a contradiction since the model constraints (1) define a minimal equa-
tion system and µ ̸= 0), and assume w.l.o.g. that such projected points come
from the solutions (x1, y1), . . . , (xt, yt), with t := |A(c)| + 1. For each color
d ∈ D\{d0}, construct the set of solutions (x̄d1, ȳd1), . . . , (x̄dt, ȳdt) by setting
x̄di
jc′ = xi

jc′ for j ∈ V and c′ ∈ C\{c}, x̄di
jd = 1 for every j ∈ V such that

xi
jc = 1, and the other variables are set to 0 (i.e., vertices receiving color c in xi

are assigned color d in x̄di, and the remaining vertices do not change). We also
take ȳdi = yi. Since the projection of (x1, y1), . . . , (xt, yt) onto the variables
in A(c) is a set of affinely independent points, and the values of the variables
in A(c) for these solutions coincide with the values of the variables in A(d) for
the newly-constructed solutions, then (x̄d1, ȳd1), . . . , (x̄dt, ȳdt) also are affinely
independent.

In order to complete the proof, we claim that the set S := {(x̄i, ȳi)}ki=1 ∪
{(x̄dr, ȳdr)}d∈D\{d0},r∈{1,...,t} has dimension |V |(|C ′|−1)+|EH |−1. To this end,

take (λ, η, λ0) such that λx̄i+ηȳi = λ0 for i = 1, . . . , k and λx̄dr+ηȳdr = λ0 for
d ∈ D\{d0} and r = 1, . . . , t. Define C̄ := (C\{c}) ∪ {d0}. Since {(x̄i, ȳi)}ki=1

are affinely independent and have null values for the variables in A(d), for all
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d ∈ D\{d0}, then (λC̄ , η) is a multiple of (π, µ) and the coefficient vectors of
the model constraints (1). For each d ∈ D\{d0}, the t equations

λ{d}x
r
{c} = λ{d}x̄

dr
{d} = λ0 − λC̄\{d0}x̄

dr
C̄\{d0} − ηȳdr

= λ0 − λC̄\{d0}x
r
C\{c} − ηyr

for r = 1, . . . , t show that λ{d} is uniquely determined by (λC̄\{d0}, η, λ0) and

{(xr, yr)}tr=1, since {x̄dr
{d}}

t
r=1 = {xr

{c}}
t
r=1 are affinely independent and λ{d} ∈

Rt−1. Equations with the same coefficients hold for λ{d0}, namely

λ{d0}x
r
{c} = λ{d0}x̄

r
{d0} = λ0 − λC̄\{d0}x̄

r
C̄\{d0} − ηȳr

= λ0 − λC̄\{d0}x
r
C\{c} − ηyr

for r = 1, . . . , t, showing that λ{d0} = λ{d} for every d ∈ D\{d0}. This implies
that (λ, η) is a linear combination of the coefficient vectors of (13) and the
model constraints (1), so the set {(x̄i, ȳi)}ki=1 ∪ {(x̄dr, ȳdr)}d∈D\{d0},r∈{1,...,t}
has dimension |V |(|C ′| − 1) + |EH | − 1.

This way, we construct a set of points in F with dimension |V |(|C ′| − 1) +
|EH | − 1, thus showing that (13) induces a facet of PMIC(G,H,C ′). □

3.2. Procedure 2: Replacing a vertex by a clique

The second procedure generates valid inequalities from inequalities with
smaller supports by replacing an edge of G by a clique in G. Specifically, if
ij ∈ EG and c ∈ C, then we replace the variables xic and xjc by the variables
{xkc}k∈K , where K is a clique in G including i and j, and we perform a similar
operation on the y-variables incident to i and j. This allows, e.g., to obtain the
clique-partitioned inequalities (9) from the partitioned inequalities (7) when the
vertices in K are twins.

We first provide some definitions. The vertices i and j are true twins in
G if ij ∈ EG and NG(i) = NG(j), and they are false twins if ij ̸∈ EG and
NG(i) = NG(j). For i ∈ V and p ≥ 1, we define G[i, p] = (V ∪ {i1, . . . , ip}, E′

G)
to be the graph obtained from G by adding p new vertices (i.e., i1, . . . , ip ̸∈ V )
in such a way that the vertices i, i1, . . . ip are true twins. In other words, E′

G

is obtained by adding an edge between it and r, for every r ∈ NG(i) ∪ {i} and
t = 1, . . . , p, and between the new vertices, i.e.,

E′
G = EG ∪ {itr : r ∈ NG(i) ∪ {i} and t = 1, . . . , p}

∪ {itik : t, k ∈ {1, . . . , p}, t ̸= k}.

We also define H(i, p) = (V ∪ {i1, . . . , ip}, E′
H) to be the graph obtained from

H by adding p new vertices (i.e., i1, . . . , ip ̸∈ V ) in such a way that the vertices
i, i1, . . . ip are false twins. In other words, E′

H is obtained by adding an edge
between it and r, for every r ∈ NH(i) and t = 1, . . . , p, i.e.,

E′
H = EH ∪ {itr : r ∈ NH(i) and t = 1, . . . , p}.

11
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Figure 1: (a) Graphs G (solid edges) and H (dotted edges), and (b) graphs G[i, p] (solid edges)
and H(i, p) (dotted edges), for p = 2.

Figure 1 shows an example of these constructions. Figure 1(a) shows the graphs
G and H, by depicting the edges in EG with solid lines and the edges in EH with
dotted lines (recall that EG ∩ EH = ∅). Figure 1(b) shows the graphs G[i, p]
and H(i, p) for p = 2 with the same solid/dotted notation for the edges. The
clique K = {i, j, i1, i2} is thus constructed in G, with the new vertices being
true twins to i in G and false twins to i in H.

If πx + µy ≤ π0 is a valid inequality, define V(π,µ) to be the set of vertices
appearing in variables with nonzero coefficients in the inequality, i.e.,

V(π,µ) := {i ∈ V : πic ̸= 0 for some c ∈ C}
∪ {i ∈ V : µij ̸= 0 for some j ∈ NH(i)}

We denote by G(π,µ) the subgraph of G induced by V(π,µ). Finally, we define
EH(π,µ) := {ij ∈ EH : µij ̸= 0}.

Procedure 2. Consider π ∈ R|V ||C| and µ ∈ R|EH | such that the inequality∑
t∈V(π,µ)

∑
d∈C

πtdxtd +
∑

tr∈EH(π,µ)

µtrytr ≤ π0 (17)

is valid for PMIC(G(π,µ), H(π,µ), C). Fix ij ∈ EG and c ∈ C, and suppose there
exists ℓ ∈ V such that ℓ ∈ NH(i) ∩NH(j). Assume that

(i) πic = πjc and πid = πjd = 0 for every d ∈ C\{c},

(ii) µiℓ = µjℓ, µit = 0 for t ∈ NH(i)\{ℓ}, and µjt = 0 for t ∈ NH(j)\{ℓ}, and

(iii) i and j are true twins in G(π,µ) and false twins in H(π,µ).

Define K = {i, j} ∪ {i1, . . . , ip}. In this setting, the procedure generates the
inequality∑
k∈K

πicxkc+
∑

t∈V \{i,j}

∑
d∈C

πtdxtd+
∑
k∈K

µiℓykℓ+
∑

uv∈EH\{iℓ,jℓ}

µuvyuv ≤ π0, (18)

for the instance (G[i, p], H(i, p), C).
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As an example, consider the inequality yij + yik ≤ 1 for i, j, k ∈ V such that
jk ∈ EG and ij, ik ∈ EH . This inequality asserts that it cannot be the case that
yij = yik = 1, since this would imply that j and k are assigned the same color, a
contradiction since jk ∈ EG. The application of Procedure 2 to this inequality
yields the vertex-clique inequality

∑
i∈K yik ≤ 1, which is valid for the instance

(G[i, p], H(i, p), C), by taking K = {j, k} ∪ {i1, . . . , ip}.
Let Ḡ = (V̄ , ĒG) and H̄ = (V̄ , ĒH) be any two graphs with the same vertex

set, and ĒG ∩ ĒH = ∅. Let u, v ∈ V̄ be true twins in G and false twins in H.
Given an integer solution (x, y) ∈ PMIC(Ḡ, H̄, C), we define excuv(x, y) to be
the solution (x̄, ȳ) for the instance (Ḡ, H̄, C), obtained by exchanging the colors
assigned to u and v and setting the y-variables accordingly, namely

x̄wd =

 xud if w = v,
xvd if w = u,
xwd otherwise,

for w ∈ V̄ and d ∈ C. We also exchange the values of the variables corresponding
to edges of H̄ incident to u and v, i.e., ȳuw = yvw and ȳvw = yuw for every
w ∈ NH̄(u) = NH̄(v), and we keep the remaining y-variables unchanged. Since
u and v are twins in both Ḡ and H̄, then the constructed solution (x̄, ȳ) is also
feasible.

Theorem 3. If the hypotheses of Procedure 2 hold, then the inequality (18) is
valid for the polytope PMIC(G[i, p], H(i, p), C).

Proof. Let (x, y) ∈ PMIC(G[i, p], H(i, p), C) be an arbitrary integer solution.
We shall show that (x, y) satisfies (18). To this end, construct a feasible solution
(x′, y′) ∈ PMIC(G(π,µ)[i, p], H(π,µ)(i, p), C) by the following sequential procedure
(i.e., we apply the following steps in sequence):

1. Let (x′, y′) be the restriction of (x, y) onto G(π,µ)[i, p] and H(π,µ)(i, p),
namely x′

td = xtd for t ∈ V(π,µ) ∪ {i1, . . . , ip} and d ∈ C, and y′e = ye for
every edge e in H(π,µ)(i, p).

2. If xkc = 1 for some k ∈ K\{i, j} (at most one vertex from K can satisfy
this property, since K is a clique in G), then define (x′, y′) := excik(x

′, y′).

3. If y′kℓ = 1 for some k ∈ K\{i, j} (again, at most one vertex from K can
satisfy this property), then define (x′, y′) := excjk(x

′, y′).

Since i and j are twins in G(π,µ) and H(π,µ) by the hypothesis (iii), then the ex-
changes in Steps 2 and 3 do not affect the feasibility of the constructed solution.
Since K is a clique in G, then at most one term in

∑
k∈K πicxkc is not null, and

such a contribution is assigned to the vertex i in (x′, y′). Similarly, at most one
vertex from K can contribute to

∑
k∈K µiℓykℓ, and this contribution is assigned

to either i or j in (x′, y′). This implies that the LHS of (18) coincides for (x, y)
and (x′, y′).

Define now (x′′, y′′) ∈ PMIC(G(π,µ), H(π,µ), C) from (x′, y′) by projecting
out the variables corresponding to the vertices i1, . . . , ip. Then, x′′

vd = x′
vd for

v ∈ V(π,µ) and d ∈ C, and y′′uv = y′uv for every edge uv in H(π,µ). This solution

13



is feasible for the instance (G(π,µ), H(π,µ), C) since it corresponds to removing
the vertices i1, . . . , ip in both graphs and keeping the color assignment in the
remaining vertices. Furthermore, since (x′′, y′′) ∈ PMIC(G(π,µ), H(π,µ), C) then
(x′′, y′′) satisfies (17).

Hypotheses (i) and (ii) imply that the LHS of (18) coincides for (x, y) and
(x′, y′) and, furthermore, also coincides with πx′′

C + µy′′. This implies that the
LHS of (18) for (x, y) is less than or equal to π0, and (18) is satisfied. □

The hypothesis asking (17) to be valid for PMIC(G(π,µ), H(π,µ), C) is stronger
than asking πx+µy ≤ π0 to be valid for PMIC(G,H,C), which is a more natural
hypothesis in this context. However, if we replace the former by the latter, then
we must change hypothesis (iii) to ask i and j to be twins in G and H, a much
stronger condition than being twins in G(π,µ) and H(π,µ), which would make
it impossible to apply this procedure in most instances. It is frequent that
inequalities involving an edge ij in G treat i and j symmetrically, and in this
situation the hypothesis (iii) is usually satisfied.

A variant of Procedure 2 can be applied to inequalities coming from the
classical vertex coloring polytope, i.e., inequalities πx ≤ π0 not involving the
y-variables, as follows.

Corollary 3. Let πx ≤ π0 be a valid inequality for PMIC(G(π,0), H(π,0), C).
Fix ij ∈ EG and c ∈ C such that i and j are true twins in G(π,0), πic = πjc,
and πid = πjd = 0 for every d ∈ C\{c}. Define K = {i, j} ∪ {i1, . . . , ip}. Then,
the inequality ∑

k∈K

πicxkc +
∑

t∈V \{i,j}

∑
d∈C

πtdxtd ≤ π0 (19)

is valid for the instance (G[i, p], H(i, p), C).

Proof. Define V ′ := V ∪ {ℓ}, where ℓ ̸∈ V . Define G′ := (V ′, EG) and
H ′ := (V ′, E′

H), where E′
H := EH ∪{iℓ, jℓ}. The edge ij, the color c, the vertex

ℓ, and the inequality πx ≤ π0 satisfy the conditions of Theorem 3 for (G′, H ′, C)
(with µ = 0), hence (18) is valid for the polytope PMIC(G[i, p], H(i, p), C). Since
µ = 0, the inequalities (18) and (19) coincide, and the result follows. □

Procedure 2 also preserves facetness if extra colors are available and addi-
tional hypotheses are satisfied. To this end, letD := {d0, . . . , dp}, whereD∩C =
∅, and assume that the inequality (18) is valid for PMIC(G[i, p], H(i, p), C ∪D)
(i.e., it is expressed in such a way that it remains valid when new colors are
added to the instance).

If (x, y) ∈ PMIC(G,H,C)∩Z|V ||C|+|EH |, we define the extension of (x, y) to
the polytope PMIC(G[i, p], H(i, p), C ∪D) to be the solution (x̄, ȳ) defined as

x̄vr =

 xvr if v ∈ V and r ∈ C,
1 if there exists t ∈ {1, . . . , p} s.t. v = it and r = dt,
0 otherwise,

for v ∈ V ∪ {i1, . . . , ip} and r ∈ C ∪D, and by setting

ȳuv =

{
yuv if uv ∈ EH ,
0 otherwise,

14



for uv ∈ E′
H , i.e., the solution (x̄, ȳ) corresponds to extending to G[i, p] the

coloring given by x, and by assigning the color dt to the vertex it, for t = 1, . . . , p.
We denote the extension of (x, y) by ext(x, y). If (x, y) safisfies πx + µy = π0,
then ext(x, y) satisfies (18) with equality too, since the vertices in {i1, . . . , ip}
are not assigned color c in ext(x, y) and yitℓ = 0 for t = 1, . . . , p, hence these
vertices do not contribute to the LHS of (18).

Given an integer solution (x, y), a vertex u ∈ V , and a color d ∈ C ∪D, we
define setud(x, y) to be the vector (x̄, ȳ) obtained by setting x̄ud = 1, x̄ud′ = 0
for d′ ∈ (C ∪D)\{d}, and yuv = 0 for v ∈ NH(u) with xvd = 0, and leaving the
remaining variables unchanged. This construction amounts to assigning color d
to u, setting the y-variables associated with u accordingly. The vector (x̄, ȳ) is
not feasible if a neighbor of u in G is assigned color d in x.

Given an integer solution (x, y) and two twin vertices u, v ∈ V , recall that
excuv(x, y) is the solution (x̄, ȳ) obtained by exchanging the colors assigned to
u and v and setting the y-variables accordingly. Again, if (x, y) satisfies (18)
with equality and u, v ∈ K\{j}, then excuv(x, y) also does.

We call an inequality to be a trivial inequality if only one variable has a
nonzero coefficient in the inequality. Otherwise, we say that the inequality is
nontrivial.

Theorem 4. Let D = {d0, . . . , dp}, where D ∩ C = ∅, and assume that the
inequality (18) is valid for PMIC(G[i, p], H(i, p), C ∪ D). If the hypotheses of
Procedure 2 hold and, furthermore,

(a) χ(G) < |C|,

(b) NH(i) = NH(j) = {ℓ},

(c) πx+ µy ≤ π0 is nontrivial and induces a facet F of PMIC(G,H,C),

(d) for every t ∈ V \{i, j, ℓ} there exists a solution (x, y) ∈ F with xtd = 1 for
some d ∈ C\{c} with πtd = 0, and with µtsyts = 0 for every s ∈ NH(t),

(e) there exists a solution (x, y) ∈ F with xid = 1 and yiℓ = 0 (resp. xjd = 1
and yjℓ = 0), for some d ∈ C\{c}, and

(f) there exists a solution (x, y) ∈ F with xid = 1 for some d ∈ C\{c} with
πℓd = 0, yiℓ = 1, and µtℓytℓ = 0 for every t ∈ NH(ℓ)\{i},

then the inequality (18) defines a facet of PMIC(G[i, p], H(i, p), C ∪D).

Proof. To settle this result, we shall construct k′ := (|V | + p)(|C| + |D| −
1) + (|EH |+ p) affinely independent points satisfying (18) with equality. Since
|C| > χ(G), then |C ∪D| > χ(G[i, p]), hence PMIC(G[i, p], H(i, p), C ∪D) has
dimension k′ and the existence of k′ such affinely independent points will show
that (18) induces a facet of this polytope.

Recall that F is the facet of the polytope PMIC(G,H,C) induced by πx +
µy ≤ π0, and let (x1, y1), . . . , (xk, yk) ∈ F be k := |V |(|C| − 1) + |EH | affinely
independent integer points in F . The points in P 1 := {ext(xt, yt)}kt=1 satisfy
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(18) with equality and, furthermore, are affinely independent since their pro-
jections onto the variables in PMIC(G,H,C) coincide with (x1, y1), . . . , (xk, yk).
For t = 1, . . . , k, call (x̄t, ȳt) := ext(xt, yt).

For every r ∈ {1, . . . , p}, construct the solution ωr := setird0
(x̄1, ȳ1), which

assigns color d0 to ir and leaves the other vertices unchanged. Since no vertex
is assigned color d0 in (x̄1, ȳ1), then ωr is feasible. Furthermore, since πirdr =
πird0 = 0 and ȳ1irℓ = 0, then ωr satisfies (18) with equality. Finally, ωr is
affinely independent w.r.t. the points in P 1, since this solution has xird0

= 1
but this variable is set to 0 in the solutions from P 1. This way, we construct a
set P 2 := {ωr}pr=1 composed by p affinely independent solutions.

For every r, s ∈ {1, . . . , p}, r ̸= s, construct the solution ωrs := setisdr
(ωr),

which assigns color d0 to ir, and color dr to is. Again, since ir and is are the only
vertices in their color classes, then ωrs is feasible, and πirdr = πird0 = πisds =
πisdr

= 0 and ȳ1irℓ = ȳ1isℓ = 0 imply that ωrs satisfies (18) with equality. Finally,
ωrs is affinely independent w.r.t. the points in P 1 ∪ P 2, since this solution has
xisdr

= 1 but this variable is set to 0 in the previous solutions. This way, we
construct a set P 3 := {ωrs : r, s = 1, . . . , p, r ̸= s} composed by p(p− 1) affinely
independent solutions.

Fix a vertex t ∈ V \{i, j, ℓ} and a color index r ∈ {1, . . . , p}. Let (x̂, ŷ) be
the solution specified by the hypothesis (d), i.e., a solution with x̂td = 1 for
some d ∈ C\{c} with πtd = 0, and such that µtsŷts = 0 for every s ∈ NH(t).
Consider the solution ωtr := settdr

(setird0
(ext(x̂, ŷ))), i.e., a solution assigning

color dr to the vertex t, which in this solution is the only vertex with this color.
Since πtd = πtdr = 0 and µtsŷts = 0 for every s ∈ NH(t), then t does not
contribute to the LHS of (18), hence ωtr satisfies (18) with equality. Finally,
ωtr is affinely independent with the previously-constructed solutions, since ωtr

has xtdr
= 1 but this variable takes null values in the previous solutions. With

a similar construction we can get a solution with xtd0
= 1, thus getting a set

P 4 with (p+ 1)(|V | − 3) affinely independent points.
Let (x̂, ŷ) be the solution specified by the hypothesis (e), i.e., a solution in

F with x̂id = 1 for some d ∈ C\{c} and ŷiℓ = 0. For r = 1, . . . , p, construct the
solution ωir := setidr

(setird0
(ext(x̂, ŷ))), which is feasible since no other vertex

is assigned color ir. Furthermore, since πid = 0 by hypothesis (i) of Procedure 2,
then this new solution also satisfies (18) with equality. Similarly to the previous
constructions, ωir is affinely independent w.r.t. the points in P 1 ∪ · · · ∪P 4 since
ωir has xidr

= 1 but the previous constructions have xidr
= 0. A similar

construction allows us to construct a solution with xid0
= 1. By repeating

the argument with the vertex j, we construct a set P 5 with 2(p + 1) affinely
independent points.

Consider the solution (x̂, ŷ) specified by the hypothesis (f), i.e., a solution
in F with x̂id = x̂ℓd = 1 for some d ∈ C\{c} with πℓd = 0, and ŷiℓ = 1. Let r ∈
{1, . . . , p}. Construct a feasible solution ωℓr from (x̂, ŷ) by setting xℓdr

= xidr
=

xird0
= 1, keeping yiℓ = 1, and leaving the remaining vertices and y-variables

unchanged. We have πℓd = 0 and µtℓytℓ = 0 for every t ∈ NH(ℓ)\{i}, hence
ωℓr satisfies (18) with equality. Finally, ωℓr is affinely independent with the
previously-constructed points, since xℓdr = 1 in this solution but this variable
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takes value 0 in the previous constructions. A similar argument allows us to
construct a point with xℓd0 = 1, so this construction provides a set P 6 with
p+ 1 affinely independent points.

Consider again the solution (x̂, ŷ) specified by the hypothesis (f). For r =
1, . . . , p, construct the solution ω̄ir from ext(x̂, ŷ) by setting xℓdr

= yirℓ = 1,
yiℓ = 0, and leaving the remaining vertices and y-variables unchanged. This
amounts to assigning color dr to ℓ and setting the y-variables accordingly. Since
(x̂, ŷ) ∈ F , πℓd = 0, and µtℓytℓ = 0 for every t ∈ NH(ℓ)\{i}, then the solution
ω̄ir satisfies (18) with equality. Finally, ω̄ir is affinely independent w.r.t. the
previously-constructed points, which have yirℓ = 0. This way, we construct a
set P 7 with p affinely independent points.

Let r ∈ {1, . . . , p} and d ∈ C, and consider a solution (x, y) ∈ F with xid = 1
(such a solution exists since πx + µy ≤ π0 defines a facet of PMIC(G,H,C)).
Construct the solution (x̄, ȳ) := exci,ir (ext(x, y))), namely a solution with
x̄idr

= x̄ird = 1. Since the previously-constructed points have xird = 0 and
this new solution has xird = 1, then this new solution is affinely independent
w.r.t. the previous points. This way, we construct a set P 8 composed by p|C|
new affinely independent points.

The set P 1 ∪ · · · ∪ P 8 thus contains (|V | + p)(|C| + |D| − 1) + (|EH | + p)
affinely independent solutions satisfying (18) with equality, hence this inequality
induces a facet of PMIC(G[i, p], H(i, p), C ∪D). □

Some comments on the hypotheses in Theorem 4 are in order. The assump-
tion asking (18) to be valid for PMIC(G[i, p], H(i, p), C ∪D) plays a similar role
to the hypothesis (iii) in Procedure 1, by supposing that the inequality remains
valid when new colors are added. Since PMIC(G,H,C) admits a nonempty
equation system, then the inequalities can in principle be rewritten in such a
way that the same expression is no longer a valid inequality if additional colors
are added to the instance. This condition is satisfied for all the inequalities
considered in this work.

The hypotheses (d) and (f) in Theorem 4 ask for the existence of particular
solutions in F and may be difficult to check in general. However, they can be
replaced by stronger conditions that may be easier to check in practice. If the
hypothesis (c) holds, then the hypothesis (d) is trivially satisfied if πtd = 0 for
every d ∈ C\{c} and µts = 0 for every s ∈ NH(t). Similarly (although more
weakly), the hypothesis (f) is satisfied if πℓd = 0 for every d ∈ C\{c}, µtℓ = 0
for every t ∈ NH(ℓ)\{i}, and there exists a solution (x, y) ∈ F with yil = 1 and
xic = 0, namely a solution in which i and ℓ are assigned the same color and this
color differs from c.

A slightly weaker statement than the hypothesis (e) is implied by the fact
that πx+µy ≤ π0 induces a nontrivial facet F of PMIC(G,H,C). Indeed, there
must exist a solution (x1, y1) ∈ F with y1iℓ = 0 (otherwise every point in F
satisfies the equality yiℓ = 1). Since ij ∈ EG, such a solution has x1

ic + x1
jc ≤ 1,

and a similar argument shows that there exists a solution (x2, y2) ∈ F with
y2jℓ = 0 and x2

ic+x2
jc ≤ 1. However, it may be the case that both x1

jc = x2
jc = 1,

and this would hinder the construction of P 5 in the proof of Theorem 4. Due to
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this fact, we are forced to add the hypothesis (e) explicitly asking the existence
of two such solutions with x1

ic = 0 and x2
jc = 0, respectively.

Although Procedure 2 asks πx+µy ≤ π0 to be valid for PMIC(G(π,µ), H(π,µ),
C) (hence valid for PMIC(G,H,C)), in Theorem 4 we need to ask this inequal-
ity to be facet-inducing for PMIC(G,H,C). Unfortunately, this asymmetrical
situation seems to be unavoidable, as it is not clear how to extend the facetness
property from PMIC(G(π,µ), H(π,µ), C) to PMIC(G,H,C) in general. Finally,
note that Theorem 4 does not hold for trivial inequalities as, e.g., xic ≥ 0
is facet-inducing for PMIC(G,H,C) but

∑
k∈K xic ≥ 0 is not, for any clique

K ⊆ V in G with |K| ≥ 2.
The two procedures can be applied iteratively. For example, the clique-

partitioned inequality (9) is obtained by applying Procedure 1 and Procedure 2
to the inequality xic + yij + yik ≤ 1 + xjc + xkc, for ij, ik ∈ EH and jk ∈ EG,
which is valid and facet-inducing if |C| > χ(G) + 1. To this end, we first apply
Procedure 2 in order to replace the edge jk by a clique K in G, thus obtaining

xic +
∑
t∈K

yit ≤ 1 +
∑
t∈K

xtc. (20)

We next apply Procedure 1 to (20) in order to replace the color c by the set D of
colors. By combining the obtained inequality with the model constraint (1), we
get the clique-partitioned inequality (9), which is thus valid and facet-inducing
for P (G[i, p], H(i, p), C ∪D) if |C|+ |D| > χ(G) + p+ 1.

4. Computational experiments

Procedure 1 and Procedure 2 provide tools for constructing valid inequalities
with potentially large supports starting from inequalities with small supports,
and also preserve facetness when the right hypotheses are satisfied. This sug-
gests a simple heuristic for trying to find violated valid inequalities within a
cutting plane environment: start from a violated or “almost violated” small in-
equality, and then greedily try to enlarge the support of the inequality by using
these procedures. If the resulting inequality is violated, then it can be added as
a cut. In this section, we explore the design of a cut-generating computational
procedure based on these ideas.

The separation procedure has a pool of generic valid inequalities for the
polytope PMIC(G,H,C), which we propose to call templates. In this setting,
templates are very simple inequalities with small supports, that are used as
starting points of the search for cuts. In our implementation, we resort to the
following pool of templates:

T1: the model constraint yij ≤ 1 + xic − xjc, for ij ∈ EH and c ∈ C,

T2: the partitioned inequality yij ≤ 1 + xic − xjc + xid − xjd, for ij ∈ EH and
c, d ∈ C, c ̸= d,

T3: the edge inequality xic + xjc ≤ 1, for ij ∈ EG and c ∈ C,

T4: the vertex-clique inequality yij + yik ≤ 1 for i, j, k ∈ V such that jk ∈ EG

and ij, ik ∈ EH ,
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T5: the semi-triangle inequality yij ≤ 2+(xjc−xic)+(xid−xjd)− (xkc−xkd)
for i, j, k ∈ V such that ik, jk ∈ EG and ij ∈ EH , and for c, d ∈ C, c ̸= d,

T6: the semi-diamond inequality yij + 2yik ≤ 3 + (xkc + xjc − xic) + (xid −
xkd) + (xke − xie)− (xℓd + xℓe) for i, j, k, ℓ ∈ V such that jk, jℓ, kℓ ∈ EG

and ij, ik ∈ EH , and for c, d, e ∈ D, c ̸= d, c ̸= e, d ̸= e,

T7: the bounding inequality yij ≤ 2 − (xic + xkc + xℓc) for i, j, k, ℓ ∈ V such
that jk, jℓ, kℓ ∈ EG and ij ∈ EH , and for c ∈ C.

Each template T specifies a set of vertices V T and a set of colors CT , as well
as includes some constraints on the vertices given by pairs of vertices ET

G that
must be adjacent in G and pairs of vertices ET

H that must be adjacent in H.
For example, the template T5 corresponding to the semi-triangle inequality has
V T5 = {i, j, k} and CT5 = {c, d}, with the additional constraints that ik, jk ∈
EG and ij ∈ EH , i.e., ET5

G = {(i, k), (j, k)} and ET5

H = {(i, j)}. In this context,
i, j, and k are not pre-specified vertices of G, but are just symbolic identifiers
instead, that will be associated with concrete vertices during the separation
procedure.

For each template T , a subset XCT ⊆ CT of the colors is defined to be the
set of expandable colors (and these colors will be subjected to Procedure 1), and
a subset XET ⊂ ET

G of the edges from G is defined to be the set of expandable
edges (which will be subjected to Procedure 2). For each template T , we define
the tuple

CT := < V T , CT , ET
G, E

T
H , XCT , XET >

to be the configuration associated with the template T . We say that a set of
vertices A ⊆ V and a set of colors B ⊆ C is compatible with CT if there exist
bijections v : V T → A and w : CT → B such that v(i)v(j) ∈ EG for each
ij ∈ ET

G and v(i)v(j) ∈ EH for each ij ∈ ET
H .

In our implementation, we take XET = ET
G for T ∈ {T3, T4}, XET7 =

{kℓ}, and XET = ∅ otherwise. We also take XCT = {c} for T ∈ {T1, T2},
XCT5 = {d}, XCT6 = {e}, and XCT = ∅ otherwise. These definitions ensure
that the procedures can be properly applied. Indeed, expandable colors and
edges for each template are chosen in such a way that the hypotheses of each
procedure are satisfied, and this is simple to check for each of them. In par-
ticular, these inequalities are not only valid for PMIC(G,H,C), but they are
also valid for PMIC(G(π,µ), H(π,µ), C) (as required by Procedure 2), since the
validity theorems for them do not ask for any conditions for the vertices with
null coefficients.

Given a fractional solution (x∗, y∗) ∈ PMIC(G,H,C), the separation proce-
dure first detects all violated and “almost violated” instances of these templates.
We take into account the inequality πx + µy ≤ π0 if πx∗ + µy∗ ≥ π0 + ε, for
some small (usually negative) ε, and we have used ε = −0.25 in our experi-
ments. To this end, for each template T , all sets A ⊆ V and B ⊆ C that are
compatible with CT are identified, and all detected inequalities thus generated
are stored. The search for all subsets of vertices and colors compatible with
each template configuration is performed by a backtracking procedure, in order
not to continue the search when the current assignment cannot be extended to
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a compatible assignment. Since the templates involve small supports, such a
bracktracking procedure is not computationally expensive.

Each valid inequality thus found is then subjected to Procedures 1 and 2.
We greedily apply these procedures in order to enlarge the support of the ob-
tained inequalities. We first try to apply Procedure 1 for each expandable color
in XCT , by defining D to be the largest set of colors increasing the LHS of
the inequality. The contribution of each color to the LHS of the constructed
inequality is independent of the other colors in D, so a set D with maximum
cardinality can be obtained by including in D the colors with a positive con-
tribution to the LHS. We then apply Procedure 2 for each expandable edge
e ∈ XET , by greedily identifying a clique in G including e that enlarges the
LHS of the inequality.

The theoretical formulation of both procedures generates a valid inequal-
ity for a modified instance of the problem, namely the instance with color set
(C\{c}) ∪D in Procedure 1 and the instance (G[i, p], H(i, p), C ∪D) in Proce-
dure 2. However, in our implementation we keep the instance fixed and execute
the procedures with properly-constructed sub-instances of the original instance,
as follows. Recall that V(π,µ) is the set of vertices appearing as indices of the
variables with nonzero coefficients in πx+ µy ≤ π0, and also define Cπ ⊆ C to
be the set of colors appearing in x-variables with nonzero coefficients in π. We
apply Procedure 1 to the inequality πx+ µy ≤ π0 and a color c ∈ Cπ, which is
possible since validity for PMIC(G,H,C) implies validity for PMIC(G,C,Cπ). In
this setting, we select some color c′ ̸∈ Cπ and replicate the x-variables involving
c, namely we replace the original inequality∑

d∈Cπ

∑
i∈V

πidxid +
∑

e∈EH

µeye ≤ π0 (21)

by the extended inequality∑
d∈Cπ

∑
i∈V

πidxid +
∑
i∈V

πicxic′ +
∑

e∈EH

µeye ≤ π0. (22)

In the theoretical formulation of Procedure 1, this corresponds to taking C =
Cπ, i.e., the set of colors present in the support of the inequality, and taking
D = {c′, c′′}, where c′, c′′ ̸∈ Cπ and replacing color c′′ by c in the resulting
inequality. Since the colors are indistinguishable, such a replacement does not
impact the validity of the inequality. We iteratively perform this step for every
color c′ ̸∈ Cπ such that the LHS of (22) evaluated at (x∗, y∗) is larger than
the LHS of (21) evaluated at (x∗, y∗). Note that the iterative application of
Procedure 1 with colors d1, . . . , dt amounts to applying Procedure 1 once for
the set D = {d1, . . . , dt}, so the final result amounts to applying this procedure
with a potentially large set of colors.

Similarly, when applying Procedure 2, we take an edge ij ∈ EG with i, j ∈
V(π,µ) and select a vertex k ̸∈ V(π,µ) such that ik, jk ∈ EG, and replicate the
variables involving i or j by k, namely by replacing the original inequality
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πx+ µy ≤ π0 by

πx+ µy +
∑
c∈C

πicxkc +
∑

t∈NH(i)

µitykt ≤ π0.

In this inequality, the variables associated with the vertex k take the same
coefficient as the variables associated with the vertex i, namely xkc is multiplied
by πic for c ∈ C, and ykt is multiplied by µit. This amounts to considering
p = 1 in Procedure 2, where k = i1 is the vertex from G[i, p] not belonging to
G. However, in our implementation, instead of modifying the graph by adding a
new vertex, we take k to be a suitable vertex outside G(π,µ) and so this amounts
to applying Procedure 2 to the instance (G\{k}, H\{k}, C). The final result is
an inequality involving the triangle {i, j, k} instead of the edge ij, within the
same instance. This allows for a fast implementation with no need of modifying
the graph and the variable set.

In this step, ij is chosen to be an edge associated to an expandable edge
in the template (i.e., ij = v(u)v(w) for some uw ∈ XET in the configuration
associated with the template), hence the vertex ℓ is fixed in this construction by
the bijection v. Since the configuration satisfies the hypotheses for Procedure 2,
i and j are true twins in G(π,µ) and false twins in H(π,µ), implying that these
hypotheses remain valid in the iterative application of this procedure.

The resulting procedure is summarized in the pseudocode in Algorithm 1.
When applying Procedure 2, if there is more than one vertex k providing the
largest increase to the LHS, we take the first such vertex in order.

Algorithm 1 Expand the valid inequality πx+ µy ≤ π0

for all color c ∈ XCT do
for all color c′ ∈ C not used in π do
if πx+ µy increases when applying Procedure 1 to (π, µ) then

Apply Procedure 1 to (π, µ) for color c with D = {c′, c′′}
Replace color c′′ by c in the obtained inequality

end if
end for

end for
for all edge ij ∈ XET do
K ← {i, j}
while there exists k ∈ V \V(π,µ) s.t. K ∪ {k} is a clique in G and the LHS
of πx+ µy increases when applying Procedure 2 to (π, µ) do
Take k to be the vertex providing the largest increase to the LHS, break-
ing ties arbitrarily
Apply Procedure 2 to (π, µ) for ij and the clique {i, j, k}

end while
end for

This procedure can potentially generate cuts coming from most of the fam-
ilies of valid inequalities listed in Section 2 (although it is not guaranteed that
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cuts coming from every such families will eventually be generated). In Table 1
we summarize how these inequalities can be obtained from the templates via the
application of the facet-preserving procedures. In contrast, the branch and cut
procedure presented in [1] resorts to a tailored separation procedure for each
family of valid inequalities. We compared both approaches within the same
implementation, in order to assess the computational effectiveness of the single
procedure proposed in this section.

Table 2 shows running times for a set of instances coming from a real setting
and for the randomly-generated instances considered in [1]. The implementation
was performed within the Cplex 12.5 environment, and the experiments were
carried out on a computer with an Intel Core 2 Duo CPU, with two T8100
cores running at 2 GHz, and 2 GB of RAM memory. We have kept all Cplex
parameters at their default values. This table shows the improvement achieved
when the separation procedures considered in [1] are employed, and also shows
that the performance of the single procedure presented in this work is quite
competitive with respect to these results. The columns labeled “All templates”
correspond to employing all templates mentioned before, whereas the columns
labeled “T2+T4” correspond to considering the templates T2 and T4 only, which
achieved the best performance. We have set a time limit of 10 minutes for these
experiments.

As Table 2 shows, the families of valid inequalities (7)-(12) help reduce the
running times of a branch-and-bound procedure, mainly due to the fact that
their application greatly enhances the dual bound provided by the linear relax-
ation of the model (1)-(6). The template-based separation procedure presented
in this section achieves a similar performance, both in terms of the total running
time and the nodes in the enumeration tree. This suggests that the separation
approach proposed in this section is effective, at least when compared with stan-
dard separation procedures. It is interesting to note that the instances coming
from real scenarios are easier to solve than randomly-generated instances of
smaller sizes. This is probably due to the structure that real instances usually
have (e.g., the graph G is usually an interval graph), and that is not present in
randomly-generated graphs.

Table 3 compares the number of cuts generated in each case. It is interesting
to note that the procedure presented in this work finds a much smaller number

Base Resulting
template Applied procedures inequality

T1 Proc. 1 on c (7)
T4 Proc. 2 on jk (8)
T5 Proc. 1 on d (10)
T6 Proc. 1 on c (11)
T7 Proc. 1 on c and Proc. 2 on jk (12)
T3 Proc. 2 on ij

∑
k∈K xkc ≤ 1

Table 1: Construction of the inequalities presented in Section 2 from the templates considered
in Section 4 by the application of the facet-preserving procedures.
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of cuts, while obtaining a similar performance. This is due to the fact that
the separation procedure for the semi-diamond inequalities used in [1] generates
many inequalities. A better tuning of this procedure may generate a smaller
number of cuts coming from this family, thus making the difference in the num-
ber of cuts less important. Nevertheless, it is not clear whether such a better
tuning may be attained without resorting to the techniques presented in this
work. The iterative application of both procedures within Algorithm 1 allows
to find inequalities with a potentially large set of colors D in Procedure 1 and
a potentially large clique K in G in Procedure 2. In our experiments, the aver-
age cardinality of D was 1.25 (with a maximum value of |D| = 7) for the first
group of instances, and the average cardinality of D was 2.16 (with a maximum
value of |D| = 3) for the randomly-generated instances. Similary, the average
achieved clique size in Procedure 2 was 2.22 (with a maximum value of |K| = 6)
for the first group of instances, and this average was 3.07 (with a maximum
value of |K| = 4) for the randomly-generated instances.

The number of matches and the number of generated cuts depend on the
value of ε (recall that an inequality coming from a template is considered if
it is violated by at least ε, and if ε ≤ 0 then non-violated inequalities can be
accepted). If ε takes a large negative value, then many inequalities are selected
but not all of them may finally generate cuts (i.e., violated inequalities) after
applying Procedures 1 and 2. On the other hand, if ε takes a large positive value
then the template matching procedure identifies fewer inequalities, although in
this case the running time may be smaller. In order to evaluate these observa-
tions in practice, Figure 2 shows the behavior of the template-based separation
procedure for the instance 2014.02.I as a function of ε. As expected, some of the
non-violated inequalities do not generate cuts when ε ≤ 0, whereas all matched
templates identified for ε > 0 generate cuts. Running times of the separation
procedure go from 17.29 seconds (for ε = −0.5) to 4.61 seconds (for ε = 0) and,
with the exception of some spikes, remains around this value for ε > 0.

The number of available colors for the instances in Table 2 are quite close to
χ(G), and this may distort the measurements. In order to evaluate the behavior
of the overall procedure when more colors are available, we report in Table 4 the
running time needed to solve to optimality the real-world instances considered
in this work when up to five additional colors can be used. These measurements
show a slight trend towards shorter running times when additional colors are
available, with the exception of the instance 2014.02.II, for which this decrease
in the running times is more marked.

It is also interesting to explore the impact of the graph H on the behavior
of the overall procedure. To this end, Figure 3 reports the time to optimality
in seconds and the number of nodes in the enumeration tree for randomly-
generated instances between 20 and 30 vertices. For each instance, the graph
G is kept fixed and the graph H is randomly generated having between 0 and
95 edges. This allows to measure the impact of a growing graph H on the
performance. Since instances require different running times (resp. numbers
of nodes), we have normalized the measurements of each instance by dividing
the total time (resp. nodes) by the measurement achieved by the instance with
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Figure 2: (a) Matched templates and generated cuts and (b) running time of the separation
procedure for the instance 2014.02.I as a function of ε.
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logarithmic scale) for randomly-generated instances with H randomly generated from 0 to
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|EH | = 0.

|EH | = 0. This allows us to capture the overall trend by comparing relative
values. The instances that could not be solved to optimality within 10 minutes
are not shown in these figures. These experiments show that the larger the
graph H, the larger the running time and number of nodes in the enumeration
tree needed to achieve optimality.

5. Conclusions

From a theoretical point of view, it is interesting to provide a unified frame-
work explaining many families of facet-inducing inequalities. The facetness
proofs provided in [1] contain similar ideas that are repeated many times and
that are applied with almost no variations in different proofs, so the facet-
preserving procedures presented in this work allow for more elegant proofs of
these results. From a practical point of view, our computational experiments
show that –at least for the instances considered in this work– it is not necessary
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Traditional All templates T2 + T4

Instance Cuts Attempts Cuts Attempts Cuts
2010.01.I 0 0 0 0 0
2010.01.II 6020 77 7 63 7
2010.02.I 4200 61 9 47 9
2010.02.II 3652 53 5 41 5
2011.01.I 5590 95 17 65 17
2011.01.II 2440 16 4 12 4
2012.01.I 5472 76 16 68 16
2012.01.II 4531 93 43 33 7
2012.02.I 4736 42 12 36 12
2012.02.II 0 0 0 0 0
2014.02.I 22538 341 42 309 42
2014.02.II 278312 12087 4429 3968 330
rand.01 2125 599 359 287 47
rand.02 8023 4201 3565 697 61
rand.03 14247 12467 11347 1187 67
rand.04 17613 7238 6422 902 86
rand.05 48733 33949 32409 1669 129
rand.06 27244 9572 8420 1268 116
rand.07 34685 10973 9737 1373 137
rand.08 76319 21919 20431 1711 223
rand.09 124559 32317 30625 1981 289
rand.10 103798 26299 24535 2011 247

Table 3: Number of cuts found by the individual separation procedures for each family of
valid inequalities (column labeled “Traditional cuts [1]”), and by the procedure presented
in this section (remaining columns), respectively. For the template-based cuts, the number
of matched templates is reported in the column “Attempts”, and the number of violated
inequalities is reported in the column “Cuts”.

Time (sec.)
Instance c |C| = c |C| = c+ 1 |C| = c+ 2 |C| = c+ 3 |C| = c+ 4 |C| = c+ 5
2010.01.I 21 2.78 2.80 2.82 3.57 2.20 3.17
2010.01.II 22 13.28 6.79 8.17 9.39 6.94 8.21
2010.02.I 18 2.79 3.12 2.79 2.35 2.03 2.25
2010.02.II 26 5.47 5.07 4.49 5.49 4.90 5.04
2011.01.I 15 6.46 5.66 4.11 3.85 3.26 2.78
2011.01.II 20 4.11 4.13 3.38 3.57 3.22 2.82
2012.01.I 18 2.64 3.33 1.98 2.50 2.04 1.86
2012.01.II 23 4.04 2.96 3.01 3.64 3.22 3.13
2012.02.I 19 2.93 2.34 2.87 4.13 3.89 2.34
2012.02.II 22 2.87 2.54 2.62 2.63 3.56 3.02
2014.02.I 15 5.61 3.51 4.01 3.11 5.00 4.54
2014.02.II 20 401.71 193.56 239.91 93.46 59.63 110.16

Table 4: Time to optimality for a cut-and-branch using the cut-generating procedure presented
in this section with all templates, for increasing numbers of colors. The column “c” contains
the number of colors used in Table 2, and the subsequent columns report the time to optimality
when considering c, . . . , c+ 5 colors, respectively.
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to resort to a particular separation procedure for each family of valid inequal-
ities, and that a single cut-generating procedure based on the ideas presented
in this work allows to obtain similar computational results instead. This is
interesting when implementing a branch and cut procedure, since only one sep-
aration procedure must be implemented, and the templates considered in such
a procedure can be easily configured.

Not all the inequalities presented in [1] can be explained in terms of simple
templates and the procedures presented in Section 3. For example, we cannot
apply Procedure 1 to the template T7, namely

yij ≤ 2− (xic + xkc + xℓc) (23)

for i, j, k, ℓ ∈ V such that jk, jℓ, kℓ ∈ EG and ij ∈ EH , and for c ∈ C, in order
to obtain the (indeed valid) bounding inequality

yij ≤ 2−
∑
d∈D

(xid + xkd + xℓd) (24)

for D ⊆ C, since (23) does not satisfy the hypothesis (ii) in Procedure 1 (indeed,
πkc > 0). Due to this fact, we takeXCT7 = ∅, in order to prevent the application
of Procedure 1 to this template. Nevertheless, (24) involves the ideas present in
the families (7)-(11) by considering a subset D of colors instead of a single color
c, hinting that it might be possible to state a generalized version of Procedure 1
not having the hypothesis (ii).

The ideas presented in Procedure 2 can be applied to the standard formu-
lation of the classical vertex coloring formulation by ignoring the y-variables,
as Corollary 3 illustrates. For example, the application of Corollary 3 to the
constraint xic + xjc ≤ 1, for ij ∈ EG and c ∈ C, yields the clique inequality∑

k∈K xkc ≤ 1, which is facet-inducing if |C| > χ(G) and K is a maximal clique
in G. However, the hypothesis (b) of Theorem 4 asks for edges in H, which
exceeds the setting of the classical vertex coloring polytope, so this theorem
cannot be directly applied in order to show that the clique inequalities define
facets when K is a maximal clique in G. It would be interesting to explore
whether Theorem 4 can be generalized in order to cover this case as well.
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