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Abstract

Given a matrix with real-valued entries, the maximum 2D subarray problem
consists in finding a rectangular submatrix with consecutive rows and columns
maximizing the sum of its entries. In this work we start a polyhedral study
of an integer programming formulation for this problem.We thus define the 2D
subarray polytope, explore conditions ensuring the validity of linear inequalities,
and provide several families of facet-inducing inequalities. We also report com-
putational experiments assessing the reduction of the dual bound for the linear
relaxation achieved by these families of inequalities.
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1. Introduction

In this work we are interested in the maximum 2D subarray problem, which
consists in finding a submatrix (with consecutive rows and columns) of a real-
valued matrix maximizing the sum of its entries. This problem arises in the
column generation phase of an integer-programming-based procedure for solving
the rectilinear picture compression problem. In this section, we present the
latter problem in order to motivate this work.

The rectilinear picture compression problem (RPC) consists in covering all
entries with value 1 of a binary matrix M ∈ {0, 1}m×n with a minimum num-
ber of submatrices having contiguous rows and columns formed of entries with
value 1. We call a rectangle the set of elements of any such submatrix. Fig-
ure 1(i) shows an example instance of this problem, which can be covered with
a minimum number of three rectangles, namely the rectangles depicted in Fig-
ure 1(ii)-(iv). The rectangles in a solution need not be disjoint nor maximal.

Although the initial motivation for exploring RPC comes from the compres-
sion of monochromatic images (in particular, monochromatic images coming
from the union of a few rectangles), this problem also has applications in the
synthesis of DNA arrays [1] and in the processing of access control lists (ACLs)
in network routers [2].

The earliest reference to RPC seems to be due to Masek [3]. In this work,
the author showed that RPC is NP-hard; Berman and DasGupta later proved
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Figure 1: Subfigure (i) shows an example of a 4 × 4 instance, and subfigures (ii) − (iv) show
the rectangles in a three-rectangle solution for this instance.

it to be MaxSNP-hard [4]. The best known polynomial-time approximation
guarantee is O(

√
log k), where k is the number of entries with value 1 in the

input matrix [5]. A slightly more general version of the problem has also been
studied under a polyhedral approach in [6, 7]. In the former, the authors analyze
new lower bounds on the optimal cover size based on the fractional solution of
the linear programming relaxation of the proposed formulation. The latter
discusses two integer programming models for the rectangle cover of a convex
polygon.

Given a binary matrix M ∈ {0, 1}m×n, we define formally a rectangle in M as
the set {(k, `) : i1 ≤ k ≤ i2 and j1 ≤ ` ≤ j2} for some indices i1, i2 ∈ {1, . . . ,m}
and j1, j2 ∈ {1, . . . , n}. We define R(M) to be the set of rectangles in M that
contain only entries with value 1 in M , namely R(M) = {r : r is a rectangle in
M and Mij = 1 for every (i, j) ∈ r}. For each r ∈ R(M), we introduce a binary
variable xr specifying whether the rectangle r is chosen in the cover or not. For
every entry (i, j) with Mij = 1, at least one rectangle containing (i, j) has to be
selected, and we seek to minimize the number of selected rectangles. This leads
to the following integer programming formulation for RPC.

min
∑

r∈R(M)

xr (1)

Mij ≤
∑

r∈R(M):(i,j)∈r

xr i = 1, . . . ,m, j = 1, . . . , n, (2)

xr ∈ {0, 1} r ∈ R(M). (3)

The number of rectangles in R(M) is polynomial in the size of M , namely
|R(M)| ∈ O(n2m2). However, for a medium to large-sized input matrix, this
formulation quickly leads to an impractical large number of variables. In this
setting, a natural solution approach is column generation, i.e., the dynamic
generation of rectangle variables for the linear relaxation of the formulation when
strong duality is violated. Column generation consists in this case in finding a
(weighted) rectangle of negative reduced cost. We seek a 2-dimensional array of
maximum weight within M , where the weights are given by the dual variables
associated with constraints (2). This corresponds to solving the maximum 2D
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subarray problem. The study of the polytope associated to this problem is the
main focus of our work.

We organize the remainder of this paper as follows. Section 2 introduces the
maximum 2D subarray problem, whereas Section 3 presents an integer program-
ming formulation for this problem and defines the associated polytope. Section 4
contains the main results of this work, including facet-inducing families of in-
equalities for this polytope together with technical lemmas. Section 5 reports
computational experiments performed in order to evaluate the reduction of the
dual bound provided by the linear relaxation, when the inequalities presented
in Section 5 are added to the model. Finally, Section 6 closes the paper with
concluding remarks. A preliminary version of the results in Section 4 appeared
without proofs in the conference paper [8].

2. The maximum 2D subarray problem

This section introduces formally the maximum 2D subarray problem. Given
a d-dimensional real-valued array A ∈ Rn1×···×nd , d ≥ 1, the maximum subarray
problem consists in finding a contiguous and axis-parallel section of A with
maximum sum. We are interested in the case d = 2, which corresponds to a 2-
dimensional array A ∈ Rm×n, and asks for row indices i1, i2 ∈ {1, . . . ,m}, i1 ≤
i2, and column indices j1, j2 ∈ {1, . . . , n}, j1 ≤ j2, such that

∑i2
i=i1

∑j2
j=j1

Aij
is maximum. This problem is called the maximum 2D subarray problem. In our
setting A contains real-valued entries, coming from the dual variables associated
with constraints (2) in the model for RPC.

In this work we start such an issue, by exploring the polytope associated with
a natural integer programming formulation of this problem. The final objective
of such an undertaking is to identify strong families of valid inequalities for the
polytope. The results presented in the following sections do not depend on the
entries of A since the polytope definition does not involve the objective function
being optimized. Nevertheless, we need to take the entries of A into account
when designing separation procedures for families of valid inequalities for this
polytope.

The associated polytope is a two-dimensional version of the full interval
vectors polytope, i.e., the convex hull of vectors in {0, 1}n having consecutive
ones. This polytope has been studied in [9] and the results therein have inspired
some of the results in the current work.

3. The 2D subarray polytope

Consider a real-valued matrix A ∈ Rm×n with m rows and n columns.
Denote by R = {1, . . . ,m} the set of row indexes, and by C = {1, . . . , n}
the set of column indexes. We also define P = R × C to be the set of entries
of A (also called pixels in this context). For (i, j) ∈ P , we introduce the binary
variable xij , which takes value 1 if and only if the pixel (i, j) belongs to the
solution rectangle.
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The rectangular hull of a nonempty set S ⊆ P of pixels, denoted by �(S),
is the smallest rectangle including all the pixels in S, i.e., �(S) = {(k, `) :
min(i,j)∈S i ≤ k ≤ max(i,j)∈S i and min(i,j)∈S j ≤ ` ≤ max(i,j)∈S j}. If S =
{p, p′} with p = (i, j) and p′ = (i′, j′), then we denote �(S) by �(p, p′) and by
�(i, j, i′, j′). If S = {p}, then we denote �(S) by �(p). We also define �(∅) = ∅.

For S ⊆ P , we define �(S) to be the feasible solution x ∈ {0, 1}mn having
xij = 1 if and only if (i, j) ∈ �(S). The solutions �(i, j, i′, j′), �(p, p′), and
�(p) for p = (i, j) and p′ = (i′, j′) are defined similarly.

Definition 1. For m ∈ Z+ and n ∈ Z+, we define P�
m,n = conv

(
{0}∪{�(i, j, i′, j′) :

1 ≤ i ≤ i′ ≤ m and 1 ≤ j ≤ j′ ≤ n}
)
.

We now give a formulation for the 2D maximum subarray problem as an
optimization problem over P�

m,n. For (i, j) ∈ P , the value Aij ∈ R is the
benefit associated with picking the pixel (i, j). In this setting, the 2D maximum
subarray problem can be formulated as follows.

max
∑

(i,j)∈P

Aijxij (4)

xij + xij′ ≤ xi(j−1) + 1 (i, j) ∈ P, j > 2, j′ ≤ j − 2, (5)

xij + xi′j ≤ x(i−1)j + 1 (i, j) ∈ P, i > 2, i′ ≤ i− 2, (6)

xij + xi′j′ ≤ xij′ + 1 (i, j), (i′j′) ∈ P, i < i′, j 6= j′, (7)

xij + xi′j′ ≤ xi′j + 1 (i, j), (i′j′) ∈ P, i < i′, j 6= j′, (8)

xij ∈ {0, 1} (i, j) ∈ P. (9)

Constraints (5) (resp. (6)) force that an element of a row (resp. a column)
between two columns (resp. two rows) in the solution must belong to it. Con-
straints (7) and (8) ensure that if pixels (i, j) and (i′, j′), with i < i′, are part of
the solution rectangle, then pixels (i, j′) and (i′, j) are contained in the rectangle
as well. These two families of constraints are illustrated in Fig. 2. Constraints

(7) and (8) can be replaced by the weaker constraint xij + xi′j′ ≤ xij′+xi′j
2 + 1,

which directly follows from them. The results in Section 4 imply that constraints
(5)-(8) induce facets of P�

m,n.

The convex hull of feasible solutions to (5)-(9) coincides with P�
m,n. Note

that we allow the null solution to be feasible, namely 0 ∈ P�
m,n. This implies

the following result.

Proposition 1. P�
m,n is full-dimensional.

Proof. For each pixel (i, j) ∈ P , the solution �(i, j) belongs to P�
m,n. This

fact, together with 0 ∈ P�
m,n, implies the result. �
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Figure 2: Constraints (7) and (8) of the formulation for the maximum 2D subarray problem.
The rectangles represent �(i, j, i′, j′). All the x-variables related to the rectangles in cases (a)
and (b) must be set to 1 if xij = xi′j′ = 1.

4. Facets of the 2D subarray polytope

Let π ∈ Zmn. For c ∈ Z, we define Iπc = {(i, j) ∈ P : πij = c} to be the set
of pixels with coefficient c in π. We also define Iπ>0 to be the set of pixels with
positive coefficient in π, and Iπ<0 to be the set of pixels with negative coefficient
in π. Finally, we define Iπ6=0 = Iπ>0 ∪ Iπ<0. These definitions allow us to provide

a general characterization of valid inequalities for P�
m,n.

Theorem 1. Let π ∈ Zmn and π0 ∈ Z. The inequality πx ≤ π0 is valid for
P�
m,n if and only if ∑

(i,j)∈S

πij +
∑

(i,j)∈�(S)∩Iπ<0

πij ≤ π0 (10)

for every S ⊆ Iπ>0.

Proof. (⇒) Let πx ≤ π0 be a valid inequality for P�
m,n and S̄ ⊆ Iπ>0 induce a

feasible solution �(S̄). We have

π0 ≥ π�(S̄) =
∑

(i,j)∈�(S̄)∩Iπ>0

πij x̄ij +
∑

(i,j)∈�(S̄)∩Iπ<0

πij x̄ij

=
∑

(i,j)∈�(S̄)∩Iπ>0

πij +
∑

(i,j)∈�(S̄)∩Iπ<0

πij ,

where this last equality follows from the fact that the x̄-components related to
�(S̄) are equal to 1. Because

∑
(i,j)∈�(S̄)∩Iπ>0

πij ≥
∑

(i,j)∈S πij for every subset

S ⊆ �(S̄) ∩ Iπ>0, including when S = S̄, the result follows.
(⇐) Assume that

∑
(i,j)∈S πij +

∑
(i,j)∈�(S)∩Iπ<0

πij ≤ π0 for every subset

S ⊆ Iπ>0. Let x̄ ∈ {0, 1}mn represent an arbitrary feasible solution for P�
m,n,

and let A ⊆ P be the rectangle represented by x̄. Define S̄ = A ∩ Iπ>0. In this
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case,

πx̄ = π�(A) =
∑

(i,j)∈A∩Iπ>0

πij x̄ij +
∑

(i,j)∈A∩Iπ<0

πij x̄ij

=
∑

(i,j)∈A∩Iπ>0

πij +
∑

(i,j)∈A∩Iπ<0

πij

≤
∑

(i,j)∈S̄

πij +
∑

(i,j)∈�(S̄)∩Iπ<0

πij ≤ π0,

where the before-to-last inequality follows from the fact that �(S̄) ⊆ A and the
coefficients in the second summation are negative, and the last one follows from
the assumption. This concludes the proof. �

Although difficult to check in practice, the condition ensuring validity in
Theorem 1 will be useful in the next sections.

4.1. Facet-inducing inequalities with coefficients in {−1, 0, 1}
We first explore valid inequalities with coefficients in {−1, 0, 1}. In this case,

Theorem 1 implies the following characterization for validity.

Corollary 1. Let π ∈ {−1, 0, 1}mn. The inequality πx ≤ 1 is valid for P�
m,n if

and only if |�(S) ∩ Iπ−1| ≥ |S| − 1 for every S ⊆ Iπ1 .

We say that a pixel (k, `) ∈ Iπ0 is reachable in π from the pixel (i, j) ∈ P
if �(i, j, k, `)\{(i, j)} ⊆ Iπ0 , i.e., all pixels in the rectangular hull �(i, j, k, `)
have coefficient 0 in π, with the exception of (i, j). For B ⊆ P , we define
π(B) :=

∑
(i,j)∈B πij and λ(B) :=

∑
(i,j)∈B λij . Finally, we define Fπ := {x ∈

P�
m,n : πx = 1}.

Lemma 1. Let πx ≤ 1 be a valid inequality for P�
m,n. Assume λx = λ0 for

every x ∈ Fπ. If p ∈ Iπ1 and q ∈ Iπ0 is reachable from p, then λq = 0.

Proof. Assume w.l.o.g. p = (i1, j1) and q = (i2, j2), with i1 ≤ i2 and j1 ≤ j2.
If i1 = i2, then j1 < j2 since p 6= q. Consider the feasible solutions x̄1 :=
�(i1, j1, i1, j2 − 1) and x̄2 := �(i1, j1, i1, j2). Since πp = 1 and πi1j = 0 for
j = j1 + 1, . . . , j2, we have x̄1, x̄2 ∈ Fπ, hence λx̄1 = λx̄2. Since x̄1 and x̄2 only
differ in the variable xq, the conclusion λq = 0 follows.

A similar analysis settles the case j1 = j2 (and i1 < i2), so assume i1 < i2
and j1 < j2. Consider now the feasible solutions x̄1 := �(i1, j1, i2, j2 − 1)
and x̄2 := �(i1, j1, i2 − 1, j2 − 1). Also define B := �(i2, j1, i2, j2 − 1) and
R := �(i1, j2, i2 − 1, j2) (see Figure 3). Since πr = 0 for every r ∈ �(p, q)\{p},
then x̄1 ∈ Fπ and x̄2 ∈ Fπ. This implies λx̄1 = λx̄2, hence λ(B) = 0. Consider
now the solution x̄3 := �(i1, j1, i2 − 1, j2). Again, x̄3 ∈ Fπ, hence λx̄2 = λx̄3,
implying λ(R) = 0. Finally, let x̄4 := �(p, q). Again, x̄4 ∈ Fπ, so λx̄2 = λx̄4,
and this implies λ(B) + λ(R) + λq = 0. Since λ(B) = λ(R) = 0, the conclusion
follows. �
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Figure 3: Constructions for the proof of Lemma 1.

Lemma 1 will be the basis for many facetness results as, e.g., the following
theorem. From now on, when we refer to a reachable pixel q in the expression
πx = 1 and λx = λ0 for every x ∈ Fπ, we assume λq = 0.

Theorem 2. Let πx ≤ 1 be a valid inequality with π ∈ {−1, 0, 1}mn. If (a)
every pixel in Iπ0 is reachable from some pixel in Iπ1 and (b) for every p ∈ Iπ−1

there exist q, q′ ∈ Iπ1 such that �(q, q′) ∩ Iπ1 = {q, q′} and �(q, q′) ∩ Iπ−1 = {p},
then πx ≤ 1 defines a facet of P�

m,n.

Proof. Let (λ, λ0) such that λx = λ0 for every x ∈ Fπ. The following claims
settle this proof.

• Let p1, p2 ∈ Iπ1 . The solutions �(p1) and �(p2) belong to F , implying
λp1 = λp2 . This implies that there exists α ∈ R such that λp = α = λ0

for every p ∈ Iπ1 .

• Let q ∈ Iπ0 . By the hypothesis (a), there exists p ∈ Iπ1 such that q is
reachable from p. Lemma 1 implies λq = 0.

• Let p ∈ Iπ−1. By the hypothesis (b), there exist q, q′ ∈ Iπ1 such that
�(q, q′) ∩ Iπ1 = {q, q′} and �(q, q′) ∩ Iπ−1 = {p}. Consider the solutions
x̄1 := �(q) and x̄2 := �(q, q′). Since x̄1, x̄2 ∈ F , we have λx̄1 = λx̄2.
Together with λr = 0 for every r ∈ �(q, q′)\{p, q, q′}, this implies λp +
λq′ = 0, hence λp = −α.

By combining these claims we get λ = απ, so the result follows. �
Theorem 2 allows us to derive several families of facet-inducing inequalities

πx ≤ 1 for P�
m,n with coefficients in {−1, 0, 1} (see Figure 4 for an example), and

is the starting point for the subsequent theorems. It is important to note that
Theorem 2 does not characterize all facet-inducing inequalities with coefficients
in {−1, 0, 1}. Indeed, some of the following facet-inducing inequalities do not
stem from this result directly.

Theorem 3. Let π ∈ {−1, 0, 1}mn. If Iπ1 = {(i1, j1), (i2, j2)} and Iπ−1 =

{(k, `)} ⊆ �(i1, j1, i2, j2), then πx ≤ 1 is facet-inducing for P�
m,n.
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Figure 4: A valid inequality πx ≤ 1 that verifies the hypotheses of Theorem 2. The inequality
is represented by specifying the nonzero coefficients of π in the corresponding pixels of the
input matrix. The gray rectangles in subfigures (i)−(iii) show that Condition (a) of Theorem 2
is verified, while the gray rectangles in (iv) and (v) show that Condition (b) is also met.

Proof. Assume w.l.o.g. i1 ≤ i2 and j1 ≤ j2. If i1 < k < i2 and j1 < ` < j2,
then all pixels in Iπ0 are reachable from either (i1, j1) or (i2, j2), and the result
follows from Theorem 2.

So assume w.l.o.g. ` = j2 (hence k < i2). Let (λ, λ0) such that λx = λ0 for
every x ∈ Fπ. We consider the following cases (see Figure 5).

i1

k

i2

j1 j2 = ℓ

1

1

−1

Case 1

i1 = k

i2

j1 j2 = ℓ

1

1

Case 2

Figure 5: Cases in the proof of Theorem 3.

Case 1: k > i1. All pixels in Iπ0 \�(k, j2 + 1, k, n) are reachable from either
(i1, j1) or (i2, j2), so Lemma 1 implies λr = 0 for every r ∈ Iπ0 \�(k, j2 + 1, k, n).

For t = `, . . . , n − 1, consider the solutions x̄1 := �(i1, j1, i2, t) and x̄2 :=
�(i1, j1, i2, t+ 1). Both solutions belong to Fπ, hence λx̄1 = λx̄2, implying

i2∑
i=i1

λi,t+1 = 0.

But λi,t+1 = 0 for i 6= k, hence λk,t+1 = 0. This implies λr = 0 for every r ∈ Iπ0 .
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Finally, the solutions �(i1, j1), �(i2, j2), and �(i1, j1, i2, j2) show λi1,j1 =
λi2,j2 = −λk`, allowing us to conclude the result.
Case 2: k = i1. Define T := �(1, j2, k, n). All pixels in Iπ0 \T are reachable
from either (i1, j1) or (i2, j2), so Lemma 1 implies λr = 0 for every r ∈ Iπ0 \T .
We can also show λi1,j1 = λi2,j2 = −λk` as in the previous case, so we are left
to prove λr = 0 for every r ∈ T\{(k, `)}.

For (i, j) ∈ T , define x̄ij := �(i, j1, i2, j). The solutions {x̄ij}(i,j)∈T belong
to Fπ. If we order these solutions in descending order of the first coordinate and
ascending order of the second coordinate, then their projection onto the variables
associated with pixels in T is a diagonal matrix with ones in the diagonal, so the
points {x̄ij}(i,j)∈T are affinely independent. Since λr = 0 for every r ∈ Iπ0 \T ,
the existence of these solutions implies λr = 0 for every r ∈ T\{(k, `)}.

Therefore, there exists α ∈ R such that λ = απ, and the result follows. �
The following technical lemma will be useful in the remainder of this section.

If A ⊆ P is a subset of pixels and π ∈ Rmn, we define πA to be the projection
of π onto the variables associated with the pixels in A. Similarly, if x ∈ P�

m,n,
we define xA to be the projection of x onto the variables associated with the
pixels in A.

Lemma 2. Let πx ≤ π0 be a valid inequality for P�
m,n, and let k ∈ {1, . . . ,m}.

Define T := �(1, 1, k, n) and B := �(k, 1,m, n), and assume πk` 6= 0 for some
(k, `) ∈ T ∩B. If πTxT ≤ π0 induces a facet of P�

k,n and πBxB ≤ π0 induces a

facet of P�
m−k+1,n, then πx ≤ π0 induces a facet of P�

m,n.

Proof. Let x̄1, . . . , x̄|T | be affinely independent points with πT x̄
t = π0 for

t = 1, . . . , |T |, and let ȳ1, . . . , ȳ|B| be affinely independent points with πBx̄
t = π0

for t = 1, . . . , |B|. For t = 1, . . . , |T |, we define x̂t ∈ P�
m,n as

x̂tij =

{
x̄tij if (i, j) ∈ T,
0 otherwise,

for i = 1, . . . ,m and j = 1, . . . , n. Similarly, for t = 1, . . . , |B|, we define
ŷt ∈ P�

m,n as

ŷtij =

{
ȳtij if (i, j) ∈ B,
0 otherwise,

for i = 1, . . . ,m and j = 1, . . . , n. The points {x̂t}|T |t=1 are affinely independent

and satisfy πx ≤ π0 with equality, and the same holds for {ŷt}|B|t=1. Let U :=

{x̂t}|T |t=1 ∪ {ŷt}
|B|
t=1.

We claim that U containts mn affinely independent points. To this end, let
(γ, γ0) such that γx = γ0 for every x ∈ U . We have γT x̄

t = γ0 for t = 1, . . . , |T |
and γB ȳ

t = γ0 for t = 1, . . . , |B|. Since {x̄t}|T |t=1 has dimension |T |−1, then there

exists α ∈ R such that γT = απT . Similarly, the fact that {ȳt}|B|t=1 has dimension
|B| − 1 implies that there exists β ∈ R such that γB = βπB . The hypothesis
ensures that there exists (k, `) ∈ T ∩ B with πk` 6= 0, so απk` = γk` = βπk`,
implying α = β. Therefore, γ = απ and then U has dimension mn − 1. Thus,
πx ≤ π0 induces a facet of P�

m,n. �
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Theorem 4. Let π ∈ {−1, 0, 1}mn with |Iπ1 | = |Iπ−1| + 1. If Iπ1 = {(it, jt)}kt=1

with it ≤ it+1 and jt ≤ jt+1 for t = 1, . . . , k−1, and �(it, jt, it+1, jt+1) contains
exactly one pixel from Iπ−1 for t = 1, . . . , k − 1, then πx ≤ 1 is facet-inducing

for P�
m,n.

Proof. Let Iπ−1 = {(i′t, j′t)}k−1
t=1 in such a way that (i′t, j

′
t) ∈ �(it, jt, it+1, jt+1),

for t = 1, . . . , k − 1. We settle this result by induction on k. The case k = 2
follows from Theorem 3, so assume k > 2. Consider

k−1∑
t=1

xit,jt −
k−2∑
t=1

xi′t,j′t ≤ 1, (11)

xik−1,jk−1
+ xik,jk − xi′k−1,j

′
k−1

≤ 1. (12)

Let T := �(1, 1, ik−1, n) and B := �(ik−1, 1,m, n). The inequality (11) induces
a facet of P�

ik−1,n
by the inductive hypothesis. On the other hand, Theorem 3

implies that (12) induces a facet of P�
m−ik−1+1,n. This implies that the hypothe-

ses of Lemma 2 are satisfied, so πx ≤ π0 induces a facet of P�
m,n. �

We may have it = it+1 or jt = jt+1 in Theorem 4 for any t ∈ {1, . . . , k −
1} (but not both, since this would contradict the fact that �(it, jt, it+1, jt+1)
contains exactly one pixel from Iπ−1). This implies that the family of facet-
inducing inequalities specified by Theorem 4 includes the interval constraints
xi1,j − xi2,j + xi3,j − xi4,j + · · · + xi2k+1,j ≤ 1, with j ∈ {1, . . . , n} and it ∈
{1, . . . ,m} for t = 1, . . . , 2k + 1 such that it < it+1 for t = 1, . . . , 2k, coming
from the full interval vectors polytope [9]. The results in [9] imply that these
inequalities, together with the nonnegativity constraints, fully characterize P�

m,n

when m = 1.
Lemma 2 directly implies the following result.

Theorem 5. Let π ∈ {−1, 0, 1}mn. Let p1 = (i1, j1), p2 = (i2, j2), and p3 =
(i3, j3) with i1 ≤ i2 ≤ i3 and j1 < j3 < j2, and assume Iπ1 = {p1, p2, p3}. Also
assume Iπ−1 = {q1, q2} such that

• Iπ−1 ∩�(p1, p2) ∩�(p1, p3) = {q1} and

• Iπ−1 ∩ [�(p2, p3)\�(p1, p2)] = {q2},

then πx ≤ 1 is facet-inducing for P�
m,n (see Figure 6).

Using the same proof technique as in Theorem 2, we can show the following
generalization.

Theorem 6. Let π ∈ {−1, 0, 1}mn with |Iπ1 | = |Iπ−1| + 1. Assume that ev-
ery pixel in Iπ0 is reachable from some pixel in Iπ1 . If there exists a list L =
{R1, . . . , Rk} of rectangles such that

(a) every pixel in Iπ−1 is contained in Ri for some i ∈ {1, . . . , k},

10



i1

i2

i3

j1 j3 j2

q1

p1

p2

p3

Figure 6: Structure considered in Theorem 5. The pixel q2 can appear within the shaded
area.

(b) |Ri ∩ Iπ1 | = |Ri ∩ Iπ−1|+ 1 for i = 1, . . . , k, and

(c) |Iπ−1 ∩R1| = 1,

(d) |Iπ−1 ∩ (Ri \
⋃i−1
j=1Rj)| = 1 for i = 2, . . . , k,

then πx ≤ 1 is facet-inducing for P�
m,n.

1

1

−1 −1

R1 R2 R3 R4

1

−1

−1

1

1

1

1

−1 −1

1

−1

−1

1

1

1

1

−1 −1

1

−1

−1

1

1

1

1

−1 −1

1

−1

−1

1

1

1

1

−1 −1

1

−1

−1

1

1

Figure 7: The coefficient vector π (in matrix form) of a valid inequality πx ≤ 1 that verifies the
hypotheses of Theorem 6. The gray rectangles in the subfigures represent the rectangles Ri of
the list L of the hypothesis. Notice that the sets Iπ1 and Iπ−1 associated with this inequality
do not satisfy the hypothesis (b) of Theorem 2.

When k = 1, the inequalities considered in Theorem 6 are exactly the in-
equalities studied in Theorem 2 with |Iπ1 | = 2. For k > 1, each rectangle in
the sequence R2, . . . , Rk “adds” a variable with coefficient 1 and a variable with
coefficient −1 to the inequality, both corresponding to pixels not included in
the previous rectangles. Interestingly, hypotheses (a)-(d) of Theorem 6 seem to
be necessary for facetness of inequalities πx ≤ 1 with π ∈ {−1, 0, 1}mn having
|Iπ1 | = |Iπ−1|+ 1 and such that every pixel in Iπ0 is reachable from some pixel in
Iπ1 . We provide computational evidence of this fact in Section 5.

Theorems 3, 4, 5, and 6 provide facet-inducing inequalities satisfying |Iπ1 | =
|Iπ−1| + 1, a property shared with the interval constraints of the full interval
vectors polytope. Theorem 7, on the other hand, provides facet-inducing in-
equalities with |Iπ1 | = |Iπ−1|. The proof of this result relies on similar arguments
to the ones given in the previous proofs, and is therefore omitted.
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Theorem 7. Let π ∈ {−1, 0, 1}mn. Let p1 = (i1, j1), p2 = (i2, j2), and p3 =
(i3, j3) with i1 ≤ i2 ≤ i3 and j1 < j3 < j2, and assume Iπ1 = {p1, p2, p3}. Also
assume Iπ−1 = {q1, q2, q3} such that

• Iπ−1 ∩ [�(p1, p2)\(�(p2, p3) ∪�(p1, p3))] = {q1},

• Iπ−1 ∩ [�(p2, p3)\(�(p1, p2) ∪�(p1, p3))] = {q2},

• Iπ−1 ∩ [�(p1, p3)\(�(p1, p2) ∪�(p2, p3))] = {q3},

(see Figure 8) then πx ≤ 1 is facet-inducing for P�
m,n.

i1

i2

i3

j1 j3 j2

p1

p2

p3

Figure 8: Structure considered in Theorem 7. The shaded areas correspond to the locations
of the three negative coefficients.

This implies that P�
m,n admits facets with |Iπ1 | = |Iπ−1|. It would be interest-

ing to explore whether this construction can be extended to |Iπ1 | > 3.

4.2. Facet-inducing inequalities with coefficients in {−2, 0, 1} and {−3, 0, 1}
We now explore valid inequalities with at least one coefficient greater than

1 in absolute value.

Theorem 8. Let π ∈ {−2, 0, 1}mn. If Iπ1 = {(i1, j1), (i2, j2), (i3, j3)} with i3 ≤
i1 < i2, j1 < j2 ≤ j3, and Iπ−2 = {(i1, j2)} (see Figure 9), then πx ≤ 1 is

facet-inducing for P�
m,n.

Proof. Let x̄ ∈ P�
m,n ∩ {0, 1}mn be a feasible solution, and let A = {(i, j) ∈ P :

x̄ij = 1} be the set of pixels in x̄. On the one hand, if |A∩ Iπ1 | ≤ 1, then πx̄ ≤ 1
and the inequality is satisfied by x̄. On the other hand, if any two pixels from
Iπ1 belong to A, then Iπ−2 ⊆ A, so πx̄ ≤ 1 and again the inequality is satisfied.
Since x̄ is an arbitrary feasible solution, then πx ≤ 1 is a valid inequality.

Now for facetness. Assume λx = λ0 for every x ∈ Fπ. We shall first show
that λr = 0 for r ∈ Iπ0 . If i3 < i1 and j2 < j3 then all pixels in Iπ0 are reachable
from some pixel in Iπ1 , so λr = 0 for every r ∈ Iπ0 by Lemma 1.

So assume i3 = i1, hence j2 < j3. Let C = �(1, j2, i1 − 1, j2) be the
pixels located above (i1, j2). All pixels in Iπ0 \C are reachable from some pixel
in Iπ1 , so λr = 0 for r ∈ Iπ0 \C by Lemma 1. Now, for t = 1, . . . , i1 − 1,
consider the solutions �(t, j1, i2, j3) and �(t+ 1, j1, i2, j3). Both satisfy πx ≤ 1
with equality, and differ by the pixels �(t, j1, t, j3). Since λr = 0 for every

12



r ∈ �(t, j1, t, j3)\{(t, j2)}, we conclude that λt,j2 = 0. This implies λr = 0 for
every r ∈ Iπ0 .

A similar argument settles the case j2 = j3. To conclude the proof, the
solutions {�((it, jt))}3t=1 show λi1j2 = λi2j2 = λi3j3 and, together with the
solution �(i3, j1, i2, j3), they imply λi1j2 = −2λi1j1 . So πx ≤ 1 induces a facet
of P�

m,n. �

i3

i1

i2

j1 j2 j3

1

1

1

−2

(i)

i1 = i3

i2

j1 j2 j3

1 1

1

−2

(ii)

i3

i1

i2

j1 j2 = j3

1

1

1

−2

(iii)

Figure 9: The three possible configurations for π in Theorem 8.

In our experiments with the PORTA [10] software package we observed that
many facet-inducing inequalities have the structure present in the inequalities
described in Theorem 8 and two additional variables with coefficients 1 and −1,
respectively. The following lemma helps explain these inequalities and is an
example of a facet-preserving procedure, namely a procedure that takes as input
a facet-inducing inequality and “produces” a new inequality with larger support
that is also facet-inducing if the hypotheses are satisfied.

Lemma 3. Let π ∈ Zmn such that πx ≤ 1 is facet-inducing for P�
m,n. Let

p, q ∈ Iπ0 and π̄x ≤ 1 be the inequality πx+ xp − xq ≤ 1. If

(a) for every S ⊆ Iπ>0 such that π�(S) = 1, we have q ∈ �(S ∪ {p}),

(b) every pixel in I π̄0 is reachable from some pixel in I π̄1 ,

(c) neither p nor q belong to �(Iπ6=0), and

(d) there exists S ⊆ �(Iπ6=0) with �(S) ∈ Fπ such that �(S ∪ {p, q}) ∈ Fπ,

then πx+ xp − xq ≤ 1 is also facet-inducing for P�
m,n.

Proof. We first show that πx + xp − xq ≤ 1 is valid for P�
m,n. To this end,

suppose there exists a feasible solution x̄ with πx̄+ x̄p − x̄q > 1, and let S ⊆ P
be the rectangle represented by x̄. Since πx̄ ≤ 1 (due to the validity of πx ≤ 1)
and π ∈ Zmn, we have that πx̄ = 1 and x̄p = 1. This implies that p ∈ S, and by
the hypothesis (a) we also have q ∈ S. Hence, x̄q = 1 and thus πx̄+ x̄p− x̄q ≤ 1,
which is a contradiction.

For facetness, assume λx = λ0 for every x ∈ F π̄. Lemma 1 together with
the hypothesis (b) imply that λr = 0 for every r ∈ I π̄0 . Since πx ≤ 1 induces a

13



facet of P�
m,n, there exist k := |Iπ6=0| affinely independent points x̄1, . . . , x̄k such

that the system {γx̄i = γ0}ki=1 (together with γr = 0 for r ∈ Iπ0 ) only admits
solutions of the form γ = απ, for α ∈ R. For i = 1, . . . , k, if x̄i = �(Si), define
x̃i = �(Si ∩ Iπ6=0), i.e., x̃i represents the solution obtained from x̄i by restricting

Si to the smallest rectangle within Si containing the pixels in Si ∩ Iπ6=0. None
of these solutions includes the pixels p and q, by the hypothesis (c). This also
implies that there exists α ∈ R such that λr = απr = απ̄r for every r ∈ Iπ6=0.

Finally, the combination of x̃1 and �(p) shows λp = απ̄p = α.
By the hypothesis (d), there exists S ⊆ �(Iπ6=0) with �(S) ∈ Fπ and �(S ∪

{p, q}) ∈ Fπ, hence �(S ∪ {p, q}) ∈ F π̄. These two solutions, together with
the observation that λp = α, imply λq = −α. This shows that λ = απ̄, so
πx+ xp − xq ≤ 1 induces a facet of P�

m,n. �
Lemma 3 allows us to identify additional families of facet-inducing inequal-

ities as, e.g., in the next result.

Corollary 2. Let π ∈ {−2, 0, 1,−1}mn. If Iπ1 = {(i1, j1), (i2, j2), (i3, j3), (i4, j4)},
Iπ−2 = {(i1, j2)}, and Iπ−1 = {(i5, j5)} with i4 ≤ i5 ≤ i3 ≤ i1 < i2 and
j4 ≤ j5 ≤ j1 < j2 ≤ j3, and such that i5 < i3 or j5 < j1 (see Figure 10
(i)), then πx ≤ 1 is facet-inducing for P�

m,n.

We now turn our attention to facet-inducing inequalities with at least one
variable with coefficient −3.

Theorem 9. Let π ∈ {−3, 0, 1}mn. If Iπ−3 = {(i, j)} and Iπ1 = {(i, j1), (i, j2),
(i1, j), (i2, j)} with i1 < i < i2 and j1 < j < j2, then πx ≤ 1 is facet-inducing
for P�

m,n.

Proof. The proof of validity goes along the same lines as the proof of Theorem 8,
hence it is omitted. In order to verify facetness, assume λx = λ0 for every
x ∈ Fπ. Each pixel in Iπ0 is reachable from some pixel in Iπ1 , hence λr = 0 for
every r ∈ Iπ0 by Lemma 1. Call q = (i, j), p1 = (i, j1), p2 = (i, j2), p3 = (i1, j),
and p4 = (i2, j). The solutions {�(pi)}4i=1 show λp1 = λp2 = λp3 = λp4 and,
together with �(Iπ1 ), they imply λq = −3λp1 . This implies in turn that λ is a
multiple of π, hence πx ≤ 1 defines a facet of P�

m,n. �

Corollary 3. Let π ∈ {−3, 0, 1,−1}mn. If Iπ−3 = {(i, j)}, Iπ1 = {(i, j1), (i, j2),
(i1, j), (i2, j), (i3, j3)}, and Iπ−1 = {(i4, j4)} with i3 ≤ i4 ≤ i1 < i < i2 and
j3 ≤ j4 ≤ j1 < j < j2, and such that i4 < i1 or j4 < j1, (see Figure 10 (ii))
then πx ≤ 1 is facet-inducing for P�

m,n.

It would be interesting to search for further configurations originating facet-
inducing inequalities with such large coefficients. In our experiments with small
instances, we could not find facet-inducing inequalities with (normalized) integer
coefficients outside the range {−3, . . . , 4}, and it could be relevant to explore
whether this is the case in general.
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Figure 10: Valid inequalities of the form πx ≤ 1 that verify the hypotheses of Corollary 2
(subfigure (i)) and Corollary 3 (subfigure (ii)).

5. Polyhedral computations

We report in this section the computational experiments we performed with
the families of valid inequalities presented in the previous section.

The first set of experiments was designed in order to provide evidence of the
fact that hypotheses (a)-(d) of Theorem 6 seem to be necessary for facetness of
inequalities πx ≤ 1 with π ∈ {−1, 0, 1}mn having |Iπ1 | = |Iπ−1|+ 1 and such that
every pixel in Iπ0 is reachable from some pixel in Iπ1 . We performed an exhaustive
computational verification of all facet-inducing inequalities of P�

3,5, P�
4,4 and

P�
3,6, with the help of the PORTA software package. In all cases (approx. 7700

facet-inducing inequalities for P�
3,5, 9900 facet-inducing inequalities for P�

4,4, and

47500 facet-inducing inequalities for P�
3,6) a list L satisfying the hypotheses was

indeed found. Due to impractical running times, larger instances could not be
checked.

The main set of experiments, to be described in the remainder of this section,
aimed at evaluating the practical effectiveness of the valid inequalities identified
in Section 4. To this end, we generate inequalities from Theorems 2-9 and
Corollaries 2-3, add them to the linear relaxation of the formulation (5)-(9),
and study the improvement of the objective function achieved by this addition.
These measurements provide computational evidence of the contribution of each
family of inequalities to a cutting-plane based approach, and act as a proxy for
their practical effectiveness in such a procedure.

5.1. Computational procedures for generating the inequalities

We first comment on the procedures generating the inequalities to be added
to the linear relaxation, since the exhaustive generation of all inequalities was
prohibitive in several cases.
Theorem 2: We enumerate all values (i1, i2, i3, j1, j2, j3) with 1 ≤ i1 < i2 <
i3 ≤ m and 1 ≤ j1 < j2 < j3 ≤ n. For each such combination, let p1 = (i1, j1),
p2 = (i2, j2), p3 = (i3, j3), and R1 = �(p1, p2) and R2 = �(p1, p3). Select at
random two pixels q1 ∈ (R1 \ R2) \ {p2} and q2 ∈ (R2 \ R1) \ {p3} (see Figure
11). Let now π ∈ {−1, 0, 1}mn given by Iπ1 = {p1, p2, p3} and Iπ−1 = {q1, q2}. It
is easy to see that the inequality πx ≤ 1 satisfies the hypotheses of Theorem 2.
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p1

p3

q2

q1

R1

p2

R2

Figure 11: Structure of generated inequalities for Theorem 2.

Theorem 3: The inequalities described by this theorem are exhaustively added
by considering all possible pairs of pixels p1 = (i1, j1) and p2 = (i2, j2) with
i1 ≤ i2 and j1 ≤ j2, and all pixels q ∈ �(p1, p2)\{p1, p2}. For each such set
{p1, p2, q}, we construct the inequality πx ≤ 1 with π ∈ {−1, 0, 1}mn given by
Iπ1 = {p1, p2} and Iπ−1 = {q}.
Theorem 4: For every 2 ≤ k ≤ m, we generate the inequality πx ≤ 1, π ∈
{−1, 0, 1}mn, by considering Iπ1 = {pt}kt=1, with pt = (it, jt), it ≤ it+1, jt ≤ jt+1

(all possible sequences are enumerated), and by defining Iπ−1 = {q1, q2, . . . , qk−1},
where qi ∈ �(pi, pi+1)\{pi, pi+1} (all possible values are also exhaustively enu-
merated). See Figure 12 for an illustration.

p1

p3

q2

q1
p2

p4

q3

Figure 12: Structure of the generated inequalities for Theorem 4.

Theorem 5: For every set of three pixels p1 = (i1, j1), p2 = (i2, j2), and p3 =
(i3, j3) with i1 ≤ i2 ≤ i3 and j1 < j3 < j2, we randomly pick pixels q1 = (i4, j4)
and q2 = (i5, j5) in such a way that i1 ≤ i4 ≤ i2, j1 ≤ j4 ≤ j3, and i2 < i5 ≤ i3,
j3 < j5 ≤ j2 (see Figure 6), thus ensuring that the hypotheses in Theorem 5
hold. In this setting, we generate the inequality πx ≤ 1 with π ∈ {−1, 0, 1}mn
given by Iπ1 = {p1, p2, p3} and Iπ−1 = {q1, q2}.
Theorem 6: We generate the list of rectangles L = {R1, . . . , Rk} required by
Theorem 6 as follows (see Figure 13). Rectangle R1 is constructed by selecting
an arbitrary pixel q1 = (i1, j1), and then pixels p1 = (i2, j1), i1 < i2 and p2 =
(i1, j2), j1 < j2. We define R1 = �(p1, p2), and set q1 ∈ Iπ−1 and p1, p2 ∈ Iπ1 .
Select now pixel q2 = (i3, j3) randomly, respecting the constraints i2 < i3 ≤ m
and j2 < j3 ≤ n. Pixels p3 = (i4, j3), p4 = (i3, j4) are selected as above,
with i3 < i4 and j3 < j4. Define R2 = �(p3, p4), q2 ∈ Iπ−1, and p3, p4 ∈ Iπ1 .
Finally, define rectangle R3 = �(i1, j1, i4, j4). We pick at random a pixel q3 =
(i5, j5) ∈ �(i1, j3, i3 − 1, j4), and set q3 ∈ Iπ−1. Notice that every rectangle
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verifies the hypotheses of the theorem. At this point, we repeat the next steps:
we select a vertex q4 = (i6, j6) for rectangle R4 as we did with R1, considering
now i4 < i6 ≤ m and j5 < j6 ≤ n, and performing the same sequence of steps as
above. This continues until no more rectangles can be added, because we reach
either the bottom-right pixel of the matrix or a predefined maximum value of k.
The procedure is repeated for several starting pixels q1, and for several values
of k. Our goal with this procedure is to construct a set of inequalities with no
intersection with the inequalities generated for Theorem 2 (which is generalized
by Theorem 6).

p1 p4q2

q1
p2

p3
q4

R1

R2

R3

R4

q3

j1 j2 j3 j4j5

i1

i2
i3

i4

i5

j6

i6

Figure 13: Structure of generated inequalities for Theorem 6.

Theorem 7: Analogously to the procedure for Theorem 2, each possible three-
pixel set P = {p1, p2, p3}, where p1 = (i1, j1), p2 = (i2, j2), and p3 = (i3, j3)
with i1 ≤ i2 ≤ i3 and j1 < j3 < j2 is considered, and for each such set, three
new pixels Q = {q1, q2, q3} satisfying the hypotheses for the negative coefficients
are randomly selected. This yields the inequality πx ≤ 1 with π ∈ {−1, 0, 1}mn
given by Iπ1 = P and Iπ−1 = Q.
Theorems 8 and 9: The inequalities for these theorems are exhaustively con-
structed, by enumerating all possible positions for placing pixel q with coefficient
−2 (resp. −3), and then enumerating all possible candidate sets of pixels encir-
cling q that satisfy the hypotheses.
Corollaries 2 and 3: The inequalities for Corollary 2 are constructed by con-
sidering each possible four-pixel set P = {p1, p2, p3, q}, where p1 = (i1, j1),
p2 = (i2, j2), p3 = (i3, j3), and q = (i1, j2) with i3 ≤ i1 < i2 and j1 < j2 ≤ j3.
We randomly select two more pixels p4 = (i4, j4) and p5 = (i5, j5), satisfying
i4 ≤ i5 < i3 and j4 ≤ j5 < j1. In this setting, we generate the inequality
πx ≤ 1 with π ∈ {−2,−1, 0, 1}mn given by Iπ1 = {p1, p2, p3, p4}, Iπ−2 = {q},
and Iπ−1 = {p5}. The inequality πx ≤ 1 satisfies the hypotheses of Corollary 2.
Inequalities for Corollary 3 are added in a similar manner.

5.2. Computational results

We consider randomly-generated instances given by real-valued matrices
with positive and negative coefficients, of different dimensions and densities
(i.e., the proportion of nonzero entries). We employ Cplex 12.10 as the lin-
ear and integer programming solver. The experiments were carried out on a
computer with an Intel Core i7-8550U CPU with 16 GB of RAM memory.
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Table 1 reports our results on instances with known optima. For these cases,
Cplex was able to produce an optimal solution for the integer problem within
reasonable time limits. The columns “Instance - Size” and “Instance - Density”
describe the instance characteristics. The column group “Int. model” contains
the results of the complete solution of the integer programming formulation (4)-
(9), reporting the objective function value in the column “Opt.” and the total
execution time in seconds in the column “T(s)”. The column group “Linear
relaxation” indicates that the solution value and execution time correspond to
the linear relaxation of the formulation. The column group “Strengthened for-
mulation” shows the results for the linear relaxation with the addition of the
generated inequalities (we refer to this as the strengthened formulation). Within
these last two groups, the column “Obj.” reports the objective function value
for the corresponding relaxation, the column “T(s)” reflects the execution time
in seconds, and the column “Gap” reports the relative difference between the
objective function value of the linear relaxation and the objective function value
of the optimal integer solution. The column “Strengthened formulation - #In-
eqs.” contains the number of individual inequalities added in the strengthened
formulation with respect to the initial model. Finally, the last column reports
the reduction of the gap of the strengthened formulation with respect to the
linear relaxation of the original formulation.

The results clearly show the effectiveness of the added inequalities: the op-
timal value is attained for 21% of the instances, every instance improves the
solution value, and the average gap reduction is 91%. The number of gener-
ated inequalities quickly grows to large values, despite the fact that for several
families only a fraction of all existing inequalities is constructed. Further, we
remark that the generation of these inequalities does not depend on the input
coefficients, only on the dimension of the input matrix. If these dimensions do
not change, then the generated inequalities may be cached across several exe-
cutions (i.e., we may store them in a pool, in order to not generate them again
for a new instance with an input matrix with the same dimensions).

Tables 2 and 3 show the effectiveness of each indidivual family of valid in-
equalities. In Table 2, the column “Linear rel. Gap” reports the gap of the lin-
ear relaxation of the formulation, and the column group “Strengthened form.”
presents the gap of the linear relaxation of the strengthened formulation (col-
umn “Gap”) and the number of inequalities added to the original model (column
“# Ineqs.”). The remaining columns report the gap and number of inequalities
corresponding to the addition of each individual family of valid inequalities to
the linear model. As this table shows, each family is effective in its own right.
Although there are instances where the addition of some families does not lead
to improvements, it is interesting to note that in several cases (e.g., instances
6× 6, 0.6 and 10× 10, 0.8) the combined inequalities yield a much smaller gap
that any individual family of valid inequalities.

Table 3 summarizes the gap improvement of every family, compared to the
linear relaxation. We give combined results of Corollaries 2 and 3 in the last
two columns, since they are both consequences of Lemma 3. On average, the
families given by Theorems 2, 5, 6, 7, 8, 9 and Corollaries 2 and 3 seem more
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effective, and facet families of Theorems 3, 4 and 6 less effective.
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Instance Int. model Linear relaxation Strengthened formulation

Size Density Opt. T(s) Obj. T(s) Gap Obj. T(s) Gap #Ineqs. Gap red.

5× 5

0.2 297 0.024 343 0.001 15.5% 297 0.015 0.0%

3306

15.5%
0.4 314 0.016 358 0.001 14.0% 279 0.017 0.0% 14.0%
0.6 170 0.048 244 0.001 43.5% 180 0.011 5.9% 37.7%
0.8 292 0.036 440 0.001 50.7% 344 0.008 17.8% 32.9%

6× 6

0.2 313 0.033 383 0.001 22.4% 313 0.028 0.0%

9980

22.4%
0.4 179 0.016 296 0.001 65.4% 207 0.024 15.6% 49.7%
0.6 158 0.014 237 0.001 50.0% 191 0.027 20.9% 29.1%
0.8 705 0.014 894 0.002 26.8% 592 0.038 0.0% 26.8%

7× 7

0.2 438 0.116 660 0.002 50.7% 438 0.096 0.0%

25310

50.7%
0.4 289 0.137 552 0.003 91.0% 347 0.092 20.1% 70.9%
0.6 856 0.208 960 0.005 12.2% 746 0.111 0.0% 12.2%
0.8 510 0.116 807 0.002 58.2% 547 0.099 7.3% 51.0%

8× 8

0.2 264 0.118 659 0.004 149.6% 405 0.208 53.4%

56544

96.2%
0.4 569 0.127 923 0.004 62.2% 616 0.238 8.3% 54.0%
0.6 398 0.13 669 0.004 68.1% 442 0.166 11.1% 57.0%
0.8 294 0.119 751 0.004 155.4% 467 0.238 58.8% 96.6%

9× 9

0.2 756 0.312 1118 0.013 47.9% 743 0.657 0.0%

114851

47.9%
0.4 405 0.302 867 0.014 114.1% 584 0.626 44.2% 69.9%
0.6 674 0.341 1295 0.014 92.1% 756 0.644 12.2% 80.0%
0.8 782 0.3 1314 0.013 68.0% 796 0.625 1.8% 66.2%

10× 10

0.2 1403 0.451 1639 0.037 16.8% 1202 1.804 0.0%

216385

16.8%
0.4 333 0.315 1027 0.013 208.4% 600 1.739 80.2% 128.2%
0.6 282 0.451 1131 0.011 301.1% 639 1.599 126.6% 174.5%
0.8 584 0.449 1108 0.019 89.7% 648 1.759 11.0% 78.8%

11× 11

0.2 1131 0.945 1869 0.049 65.3% 1179 4.433 4.2%

383776

61.0%
0.4 960 0.925 1627 0.035 69.5% 962 4.035 0.2% 69.3%
0.6 1314 0.929 1807 0.046 37.5% 1209 4.798 0.0% 37.5%
0.8 503 0.813 1335 0.033 165.4% 764 3.724 51.9% 113.5%

12× 12

0.2 1101 2.529 1905 0.057 73.0% 1171 9.516 6.4%

647462

66.7%
0.4 1129 2.856 1939 0.055 71.7% 1215 10.518 7.6% 64.1%
0.6 806 1.873 1681 0.047 108.6% 980 7.914 21.6% 87.0%
0.8 356 3.435 1701 0.049 377.8% 890 8.053 150.0% 227.8%

13× 13

0.2 672 7.694 2166 0.045 222.3% 1145 15.82 70.4%

1047556

151.9%
0.4 969 3.736 1944 0.047 100.6% 1091 14.79 12.6% 88.0%
0.6 692 3.576 1756 0.046 153.8% 1050 15.291 51.7% 102.0%
0.8 443 2.961 1562 0.059 252.6% 860 14.288 94.1% 158.5%

14× 14

0.2 922 14.644 2644 0.112 186.8% 1427 30.23 54.8%

1635438

132.0%
0.4 961 13.648 2427 0.09 152.6% 1336 24.046 39.0% 113.5%
0.6 992 7.925 2261 0.076 127.9% 1218 27.211 22.8% 105.1%
0.8 778 11.156 2389 0.102 207.1% 1284 27.404 65.0% 142.0%

15× 15

0.2 2158 16.718 3256 0.167 50.9% 2034 68.618 0.0%

2476006

50.9%
0.4 616 27.127 2457 0.131 298.9% 1259 46.356 104.4% 194.5%
0.6 1005 30.915 3067 0.11 205.2% 1620 47.3 61.2% 144.0%
0.8 954 27.071 2791 0.11 192.6% 1530 48.59 60.4% 132.2%

16× 16

0.2 455 25.754 2582 0.106 467.5% 1334 61.779 193.2%

3649520

274.3%
0.4 1078 104.351 3430 0.132 218.2% 1831 76.636 69.9% 148.3%
0.6 856 75.323 3105 0.149 262.7% 1599 70.726 86.8% 175.9%
0.8 963 25.732 3082 0.158 220.0% 1566 61.733 62.6% 157.4%

Table 1: Results for random instances with known optima.
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Instance Gap improvement of each family

Size Density Thm. 2 Thm. 3 Thm. 4 Thm. 5 Thm. 6 Thm. 7 Thm. 8 Thm. 9 Cors. 2 and 3

5× 5

0.2 4.7% 9.4% 15.5% 15.5% 3.4% 3.7% 11.8% 9.1% 0.0%
0.4 0.3% 14.0% 14.0% 14.0% 3.8% 6.7% 4.8% 0.6% 0.0%
0.6 0.0% 17.1% 20.6% 3.5% 2.4% 1.2% 20.0% 20.0% 0.0%
0.8 0.0% 9.9% 26.4% 0.0% 25.0% 0.0% 12.0% 4.5% 0.0%

6× 6

0.2 13.1% 12.8% 12.8% 20.5% 6.1% 18.5% 18.2% 10.5% 1.6%
0.4 0.0% 1.1% 1.1% 5.6% 6.2% 3.4% 30.2% 30.7% 0.0%
0.6 1.3% 0.0% 0.0% 12.0% 0.0% 14.6% 16.5% 13.9% 0.0%
0.8 1.8% 10.8% 26.8% 22.1% 4.7% 2.4% 15.6% 8.1% 2.6%

7× 7

0.2 4.1% 22.4% 22.4% 32.9% 16.9% 7.3% 31.5% 22.2% 7.5%
0.4 3.1% 5.5% 5.5% 36.0% 10.0% 9.3% 46.4% 49.8% 5.2%
0.6 0.4% 7.0% 12.2% 4.6% 7.1% 0.1% 1.4% 1.4% 1.4%
0.8 11.6% 25.9% 25.9% 46.9% 11.2% 7.5% 17.5% 22.9% 16.5%

8× 8

0.2 22.7% 0.0% 0.0% 55.3% 1.9% 27.7% 73.1% 81.1% 23.9%
0.4 6.0% 11.6% 13.5% 32.2% 10.2% 7.2% 38.7% 28.5% 5.5%
0.6 11.1% 0.0% 5.8% 43.2% 0.0% 25.6% 28.6% 27.9% 20.1%
0.8 24.8% 22.8% 22.8% 60.5% 9.9% 30.6% 70.1% 63.3% 46.9%

9× 9

0.2 15.0% 10.2% 13.5% 41.5% 3.6% 25.7% 27.8% 29.2% 16.7%
0.4 18.5% 3.2% 3.2% 47.7% 8.4% 21.7% 32.8% 35.1% 20.7%
0.6 26.0% 15.7% 15.7% 55.5% 20.6% 21.4% 49.4% 51.5% 38.3%
0.8 10.7% 22.0% 22.0% 39.4% 22.0% 12.8% 51.4% 40.9% 20.7%

10× 10

0.2 0.5% 10.3% 15.2% 8.3% 6.3% 4.2% 7.0% 2.5% 3.0%
0.4 53.8% 1.2% 1.5% 96.1% 1.2% 71.5% 66.1% 89.2% 57.1%
0.6 86.2% 0.0% 0.0% 124.8% 17.4% 100.4% 133.7% 149.7% 78.4%
0.8 32.5% 9.3% 9.4% 54.3% 2.2% 35.5% 37.5% 46.6% 36.1%

11× 11

0.2 17.8% 10.4% 10.4% 48.9% 8.5% 17.9% 31.8% 33.8% 27.1%
0.4 21.7% 14.3% 14.9% 53.7% 9.3% 27.4% 33.8% 33.2% 31.5%
0.6 11.0% 10.4% 10.4% 31.8% 8.5% 11.8% 23.5% 21.8% 14.6%
0.8 46.7% 3.0% 3.0% 86.1% 9.5% 61.8% 70.8% 81.1% 63.6%

12× 12

0.2 26.7% 1.5% 1.5% 50.1% 4.5% 31.3% 39.3% 40.7% 32.3%
0.4 14.8% 0.0% 1.8% 51.1% 0.0% 20.5% 37.5% 38.1% 31.6%
0.6 35.0% 0.0% 0.0% 58.8% 3.0% 37.8% 43.4% 70.5% 49.8%
0.8 128.9% 0.0% 10.1% 156.2% 0.0% 142.1% 130.6% 183.4% 159.0%

13× 13

0.2 70.4% 0.0% 8.9% 105.8% 0.0% 81.1% 97.6% 118.9% 91.8%
0.4 42.2% 0.0% 0.4% 65.7% 0.0% 47.2% 58.5% 65.8% 59.2%
0.6 47.8% 0.0% 0.4% 80.2% 3.3% 52.3% 61.9% 66.2% 62.6%
0.8 95.0% 0.0% 2.3% 110.8% 0.0% 99.6% 105.6% 124.8% 102.0%

14× 14

0.2 50.7% 2.7% 3.4% 91.5% 1.4% 53.0% 87.9% 102.5% 90.2%
0.4 60.8% 0.0% 0.4% 82.3% 0.0% 60.9% 63.5% 86.9% 74.3%
0.6 63.4% 0.0% 0.1% 72.7% 0.0% 65.8% 62.7% 80.0% 80.2%
0.8 67.0% 0.0% 0.0% 102.3% 0.0% 75.1% 80.1% 109.5% 93.1%

15× 15

0.2 11.9% 0.0% 0.0% 45.5% 0.8% 14.7% 35.8% 31.8% 30.6%
0.4 123.1% 0.0% 10.2% 131.0% 2.4% 121.4% 125.3% 168.0% 133.1%
0.6 76.6% 19.9% 20.0% 113.8% 21.8% 76.6% 87.0% 120.9% 101.9%
0.8 67.9% 0.8% 0.8% 97.8% 2.7% 69.1% 70.1% 93.0% 90.2%

16× 16

0.2 174.3% 0.0% 0.0% 187.5% 0.0% 172.5% 185.3% 250.8% 207.7%
0.4 66.4% 0.0% 0.8% 101.6% 2.9% 72.3% 93.4% 119.9% 111.8%
0.6 88.9% 0.0% 0.4% 116.1% 1.5% 97.8% 99.7% 144.5% 133.8%
0.8 94.8% 5.0% 5.0% 110.0% 5.3% 106.5% 104.5% 127.1% 120.3%

Average: 38.6% 6.5% 8.6% 63.0% 6.0% 43.2% 55.7% 65.7% 49.9%

Table 3: Gap improvement of individual families of valid inequalities.22



6. Conclusions

We present in this work a polyhedral study of the polytope associated with
a natural integer programming formulation for the maximum subarray prob-
lem for d = 2. Our objective is to identify strong families of valid inequali-
ties that could be useful within a cutting plane procedure, or within a linear
programming-based rounding heuristic for this problem. The final goal of this
analysis is to obtain a strong column generation algorithm for RPC.

This article introduces several families of facet-inducing inequalities, many
of them with coefficients in {−1, 0, 1}. From a polyhedral point of view, it would
be desirable to achieve a more thorough theoretical treatment of these inequali-
ties as, e.g., providing necessary and sufficient conditions ensuring facetness for
general valid inequalities with coefficients in {−1, 0, 1}. We believe that The-
orem 6 yields a promising basis for such a characterization, and proof of the
remaining necessary condition could be addressed in a future work.

In addition, our computational results provide evidence of the effectiveness
of the presented inequalities in the reduction of the dual bound for the proposed
formulation.

From a practical point of view, the computational complexity of the separa-
tion problems associated with the introduced families is of interest, in particular
since exhaustive enumerations do not provide polynomial-time algorithms for
all of these problems and, furthermore, may not be practical in medium- to
large-sized instances. The design of fast heuristics for separating these families
could be of practical interest as well.
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