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Abstract

In this paper, we consider an optimal reinsurance problem to minimize the probability of draw-

down for the scaled Cramér-Lundberg risk model when the reinsurance premium is computed

according to the mean-variance premium principle. We extend the work of Liang et al. [16] to

the case of minimizing the probability of drawdown. By using the comparison method and the

tool of adjustment coefficients, we show that the minimum probability of drawdown for the scaled

classical risk model converges to the minimum probability for its diffusion approximation, and the

rate of convergence is of order O(n−1/2). We further show that using the optimal strategy from

the diffusion approximation in the scaled classical risk model is O(n−1/2)-optimal.
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1 Introduction

Drawdown occurs when the value of a portfolio or company’s surplus is lower than a proportion

of its historic maximum, which is an important risk metric for fund or corporate managers when

evaluating their portfolios or companies, respectively. The frequent occurrence of drawdown implies

low financial profit, potential large losses, or even bankruptcy, which may help managers take

effective action for the company’s operation.

Due to the importance of analyzing the occurrence of drawdown, recently researchers have been

considering the problem of minimizing the probability of drawdown. Specifically, a decision maker

chooses an optimal strategy to minimize the probability that the fund or surplus decreases to a

fixed proportion, say α ∈ [0, 1), of its historic maximum value. If we set α = 0, then minimizing the

probability of drawdown degenerates to minimizing the probability of ruin. Angoshtari et al. [1]

minimize the probability of drawdown with investment in a Black-Scholes financial market. They

find that the strategy for minimizing the probability of drawdown is identical to the one for mini-

mizing the probability of ruin. Han et al. [14] consider the reinsurance problem of minimizing the

probability of drawdown under the mean-variance premium principle and under the diffusion ap-

proximation of the classical Cramér-Lundberg risk model. They find an explicit form of the optimal

reinsurance strategy and show that the optimal reinsurance strategy for minimizing the probability

of drawdown coincides with the one for minimizing the probability of ruin, as in Angoshtari et al.

[1]. There is also research related to optimization problems under drawdown from the perspective

of individual investors; see, for example, Grossman and Zhou [12], Cvitanić and Karatzas [9], Elie

and Touzi [10], Chen et al. [6], and Angoshtari et al. [2].

There are many papers that employ the diffusion approximation in the actuarial science liter-

ature. By comparison, research on optimization problems with jump-diffusion models or classical

Cramér-Lundberg (CL) models are less. The reason is that explicit solutions for the latter mod-

els are difficult to derive. Some researchers use probabilistic techniques to verify the convergent

relationship between the probability of ruin for the scaled model and that of its corresponding

diffusion approximation; see, for example, Iglehart [15], Grandell [11], Asmussen [3], and Bäuerle
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[5]. More recently, Cohen and Young [7] use the comparison method from differential equations to

find upper and lower bounds of the probability of ruin and prove that the probability of ruin for the

scaled CL model converges to the probability of ruin for the corresponding diffusion approximation.

Liang et al. [16] consider the problem of minimizing the probability of ruin with reinsurance under

the mean-variance premium principle. They show that the minimum probability of ruin is the

unique viscosity solution of the corresponding Hamilton-Jacobi-Bellman equation with boundary

conditions. They prove that, under appropriate scaling of the CL risk model, the probability of

ruin converges to its diffusion approximation. Liang and Young [17] extend Cohen and Young [7]

to the exponential Parisian ruin model. Cohen and Young [8] prove asymptotic results for the

optimal-dividend problem.

In this paper, we analyze the relationship between the probability of drawdown for the scaled

classical CL risk model and its corresponding diffusion approximation. We first prove two “smooth”

comparison results. Then, we use the comparison results and the analogs of adjustment coefficients

to prove that the minimum probability of drawdown for the scaled classical risk model converges

to the minimum probability for its diffusion approximation uniformly, with rate of convergence of

order O(n−1/2). To justify using the diffusion approximation in this optimization problem, we show

that using the optimal retention strategy from the diffusion approximation is O(n−1/2)-optimal in

the scaled classical CL risk model.

The rest of the paper is organized as follows. In Section 2.1, we present the classical CL model for

the insurer’s surplus, we describe the reinsurance market, and we define the minimum probability of

drawdown for the classical risk process. Then, in Section 2.2, we provide two comparison theorems

that form the backbone of the proofs in Section 4.1. In Section 2.3, we define the scaled model

and discuss how to extend the comparison theorems to this model. Section 2.4 provides an explicit

expression for the minimum probability of drawdown for the diffusion approximation of the scaled

classical risk model, and Section 2.5 gives an outline of the remainder of the paper.

In Sections 3.1 and 3.2, we define analogs of the adjustment coefficient for the scaled classical risk

model and for its diffusion approximation, respectively, and in Section 3.3, we prove two lemmas that

show how these adjustment coefficients are related. In Section 4.1, we use the comparison lemma

from Section 2.2 to modify the minimum probability of drawdown for the diffusion approximation

by functions of order O(n−1/2) to obtain upper and lower bounds of the corresponding probability

of drawdown for the scaled classical risk model. In Section 4.2, we use these bounds to prove that
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the minimum probability of drawdown for the scaled classical risk model converges to that of its

diffusion approximation. We show that the rate of convergence is of order O(n−1/2), uniformly

with respect to the surplus. Finally, in Section 4.3, we prove the main result of our paper, namely,

that if the insurer uses the optimal strategy from the diffusion approximation, then the resulting

probability of drawdown is O(n−1/2)-optimal. This result thereby justifies using the diffusion

approximation when minimizing the probability of drawdown.

2 Scaled Cramér-Lundberg model and its diffusion approximation

2.1 Cramér-Lundberg model and the probability of drawdown

In this section, we describe the reinsurance market available to the insurance company, and we for-

mulate the problem of minimizing the probability of drawdown. Assume that all random processes

exist on the filtered probability space
(

Ω,F ,F = {Ft}t≥0,P
)

.

We model the insurer’s claim process C = {Ct}t≥0 according to a compound Poisson process,

namely,

Ct =

Nt
∑

i=1

Yi, (2.1)

in which the claim severities Y1, Y2, . . . are independent and identically distributed according to a

common cumulative distribution function FY , with FY (0) = 0, and in which the claim frequency

N = {Nt}t≥0 follows a Poisson process with parameter λ > 0. Let SY = 1−FY denote the survival

function of the severity random variable Y , and assume that Y ’s moment generating function MY is

finite in a neighborhood of 0. Also, assume that the insurer receives premium payable continuously

at a rate c > λEY , and assume that the Poisson process N is independent of the claim severity

process {Yi}i∈N.

Remark 2.1. From Lemma 2.3.1 in Rolski et al. [19], we know that, because MY (t0) < ∞ for some

t0 > 0, then there exists b > 0 such that

SY (y) ≤ be−t0y, ∀y ≥ 0. (2.2)

In other words, if MY is finite in a neighborhood of 0, then SY has an exponentially decreasing

right tail. Conversely, if (2.2) holds, that is, if SY has an exponentially decreasing right tail, then

MY (t) < ∞ for all t < t0.
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We assume that the insurer can buy per-loss reinsurance, with a continuously payable pre-

mium computed according to the so-called mean-variance premium principle, which combines the

expected-value and variance premium principles, with risk loadings θ and η, respectively. Specifi-

cally, if Rt(ω, y) represents the retained claim at time t ≥ 0, as a function of the (possible) claim

Y = y at that time and state of the world ω ∈ Ω, then reinsurance indemnifies the insurer by the

amount y −Rt(ω, y) if there is a claim y at time t ≥ 0 and ω ∈ Ω, and the time-t premium rate is

given by

(1 + θ)λE(Y −Rt) +
η

2
λE((Y −Rt)

2). (2.3)

Assume that

c < (1 + θ)λEY +
η

2
λE(Y 2); (2.4)

in words, the insurer’s premium income is not sufficient to buy full reinsurance, and let κ denote

the positive difference

κ = (1 + θ)λEY +
η

2
λE(Y 2)− c. (2.5)

Definition 2.1. A strategy R = {Rt}t≥0 is an admissible retention strategy if it satisfies the

following properties:

(i) R is predictable; that is, the function (ω, y) 7→ Rt(ω, y) is Ft− × B(R+)-measurable for every

t ≥ 0, in which B(R+) denotes the Borel σ-algebra on R+.

(ii) 0 ≤ Rt(ω, y) ≤ y, for all t ≥ 0 and ω ∈ Ω.

(iii) The net premium of the controlled surplus is greater than the expected rate of claim payment,

that is,

c− (1 + θ)λE(Y −Rt)−
η

2
λE((Y −Rt)

2) > λERt, (2.6)

with probability one for all t ≥ 0. Hald and Schmidli [13] and Liang and Guo [18], among

others, refer to inequality (2.6) as the net-profit condition.

(iv) R is progressively measurable; that is, the function (ω, y, t) 7→ Rt(ω, y) is Ft×B(R+)×B(R+)-

measurable.

When initial surplus equals x, denote the set of admissible strategies by Rx.

Moreover, a function R : R+ → R+ is an admissible retention function if
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(i) The mapping y 7→ R(y) is B(R+)-measurable.

(ii) 0 ≤ R(y) ≤ y, for all y ≥ 0.

(iii) c− (1 + θ)λE(Y −R)− η

2
λE((Y −R)2) > λER.

In other words, a function R is an admissible retention function if the constant strategy R = {Rt ≡
R} is an admissible retention strategy.

Given a retention strategy R ∈ Rx, the insurer’s surplus follows the dynamics

dXR
t =

(

c− (1 + θ)λE(Y −Rt)−
η

2
λE((Y −Rt)

2)
)

dt−RtdNt

=
(

−κ+ λ
(

(1 + θ)ERt + ηE(Y Rt)−
η

2
E(R2

t )
))

dt−RtdNt, (2.7)

with XR
0− = x ≥ 0.1 Define the corresponding maximum surplus process MR =

{

MR
t

}

t≥0
by

MR
t = max

{

sup
0≤s≤t

XR
s , MR

0−

}

, (2.8)

with MR
0 = m ≥ x. We allow the surplus process to have a financial past, as embodied by the

term MR
0− in (2.8). Drawdown is the time when the surplus process drops below the proportion

α ∈ [0, 1) of its maximum value, that is, at the hitting time τRα given by

τRα = inf
{

t ≥ 0 : XR
t < αMR

t

}

. (2.9)

If α = 0, then the time or event of drawdown is the same as that for ruin under the ruin level 0.

The goal of the insurer is to minimize its probability of drawdown by purchasing per-loss

reinsurance. The corresponding minimum probability of drawdown ψ is defined by

ψ(x,m) = inf
R∈Rx

P
x,m

(

τRα < ∞
)

= inf
R∈Rx

E
x,m

(

1{τRα <∞}
)

, (2.10)

in which P
x,m and E

x,m denote the probability and expectation, respectively, conditional on X0 = x

and M0 = m. Note that, if x < αm, then ψ(x,m) = 1. It remains for us to study the minimum

probability of drawdown ψ on the domain

D =
{

(x,m) ∈ R
2
+ : αm ≤ x ≤ m

}

. (2.11)

In the following proposition, we prove some interesting properties of ψ.

1We assume that no claim occurs at time 0, which is true with probability 1, so we also have XR
0 = x ≥ 0.
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Proposition 2.1. ψ(x, ·) is nondecreasing on D, and ψ(·,m) is nonincreasing and Lipschitz on D.

Moreover,

lim
m→∞

ψ(m,m) = 0. (2.12)

Proof. For a fixed value of x, if (x ≤) m1 < m2, then the ruin levels are ordered, that is, αm1 < αm2,

which implies that the probability of drawdown under ruin level αm1 is less than or equal to the

probability of drawdown under αm2. In other words, ψ(x, ·) is nondecreasing on D.

For a fixed value of m, if αm ≤ x1 < x2 ≤ m, then clearly the probability of drawdown when

surplus equals x1 is greater than or equal to the probability of drawdown when surplus equals x2.

In other words, ψ(·,m) is nonincreasing on D. It remains to show that ψ(·,m) is Lipschitz on D.

For a fixed value of m, suppose αm ≤ x1 < x2 ≤ m. Choose an admissible retention function

R̂, and form the constant admissible retention strategy R̂ = {R̂}t≥0 ∈ Rx1 . Given ε > 0, let

R̄1 = {R1
t }t≥0 ∈ Rx2 be such that

ψ(x2,m; R̄1) ≤ ψ(x2,m) + ε,

in which ψ(·, ·;R) denotes the probability of drawdown when the insurer follows strategy R.

Now, define R̄ = {Rt}t≥0 ∈ Rx1 as follows:

Rt =











R̂, t ≤ τx2 := inf{t ≥ 0 : XR̄
t = x2},

R1
t−τx2

, t > τx2 .

If no claims occur, then the process XR̄ with initial surplus x1 reaches x2 at time h = (x2−x1)/pR̂,

in which

pR = c− (1 + θ)λE(Y −R)− η

2
λE((Y −R)2). (2.13)

Note that condition (iii) in Definition 2.1 implies pR > λER for any admissible retention function

R. Thus, if we let τ1 denote the time of the first claim when initial surplus equals x1, we have

1− ψ(x1,m) ≥ 1− ψ(x1,m; R̄)

≥
(

1− ψ(x2,m; R̄)
)

P(τ1 > h)

=
(

1− ψ(x2,m; R̄)
)

e−λh

≥ (1− ψ(x2,m)− ε)e−λh.
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Because ε > 0 is arbitrary, we deduce

1− ψ(x1,m) ≥ (1− ψ(x2,m))e−λh. (2.14)

From inequality (2.14) and ψ(·,m) nonincreasing, we obtain

0 ≤ ψ(x1,m)− ψ(x2,m) ≤ (1− ψ(x2,m))(1 − e−λh)

≤ 1− e−λh ≤ λh =
λ

pR̂
(x2 − x1).

Because R̂ is arbitrary such that pR̂ > λER̂, it follows that

∣

∣ψ(x1,m)− ψ(x2,m)
∣

∣ ≤ λ

supR pR
|x2 − x1|.

Thus, ψ is Lipschitz in x.

It remains to prove the limit in (2.12). To that end, for any value (x,m) ∈ D, let R be an

admissible retention function, and let R = {R}t≥0 ∈ R be the corresponding constant retention

strategy. We wish to prove that

ψ(x,m;R) ≤ e−J(x−αm), (2.15)

in which J is the positive solution of the following equation:

λ
(

EeJR − 1− JER
)

= J
[

−κ+ λ
(

θER+ ηE(Y R)− η

2
E(R2)

)]

. (2.16)

As an aside, to see that (2.16) has a unique positive solution, note that condition (iii) of Definition

2.1 implies the coefficient of J on the right side is positive. The two sides equal 0 when J = 0, and

the rates of growth with respect to J when J = 0 of the left and right sides equal, respectively, 0

and the positive coefficient in square brackets. Thus, because the left side grows exponentially and

the right grows linearly with J , there is a unique positive solution of (2.16).

Next, let ψk(·, ·;R) denote the probability of drawdown (under the strategy R) at or before

the kth claim. For all (x,m) ∈ D, ψk(x,m;R) increases with respect to k, and lim
k→∞

ψk(x,m;R) =

ψ(x,m;R). Indeed, if we let Tk denote the time of the kth claim, then ψk(x,m;R) = P(τRα ≤ Tk),

and lim
k→∞

Tk = ∞, which give us

lim
k→∞

ψk(x,m;R) = lim
k→∞

P(τRα ≤ Tk) = P
(

∪∞
k=1 {τRα ≤ Tk}

)

= P(τRα < ∞) = ψ(x,m;R).

Thus, to prove (2.15), it is enough to prove

ψk(x,m;R) ≤ e−J(x−αm), (2.17)
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for all k ∈ N. By a recursive argument, ψk solves

ψk(x,m;R) =

∫ ∞

0

∫ ∞

0
ψk−1(x+ pRt−R(y),m;R)λe−λtdFY (y)dt, (2.18)

for k ∈ N, in which

ψ0(x,m;R) =











0, x ≥ αm,

1, x < αm.

(2.19)

For (x,m) ∈ D, ψ0(x,m;R) = 0 ≤ e−J(x−αm). Assume (2.17) holds for some k − 1 = 0, 1, 2, . . . ;

then,

ψk(x,m;R) ≤
∫ ∞

0

∫ ∞

0
e−J(x+pRt−R(y)−αm)λe−λtdFY (y)dt

= e−J(x−αm)

∫ ∞

0
λeJR(y)dFY (y) ·

∫ ∞

0
e−(λ+JpR)tdt

= e−J(x−αm)(λ+ JpR) ·
1

λ+ JpR
= e−J(x−αm),

in which the second equality follows from (2.16). Thus, inequality (2.17) follows by recursion, which

implies inequality (2.15). From the minimality of ψ and from (2.15), we obtain

0 ≤ lim
m→∞

ψ(m,m) ≤ lim
m→∞

ψ(m,m;R) ≤ lim
m→∞

e−J(1−α)m = 0,

which proves the limit in (2.12).

2.2 Comparison theorems

For the classical risk model, we cannot find an explicit expression for the minimum probability of

drawdown ψ, so in Section 4, we prove that the minimum probability of drawdown for the diffusion

approximation of XR approximates ψ. To that end, in this section, we prove two comparison

theorems which we use in Section 4.

We present the following lemma, which we will use in the proofs of Theorems 2.1 and 2.2 below.

Lemma 2.1. For (x,m) ∈ D, fix an admissible retention strategy R ∈ Rx. Define sb = inf{t ≥ 0 :

XR
t ≥ b} with XR

0 = x, and define sαb = τα ∧ sb.
2 Then, Px,m(sαb < ∞) = 1.

2These stopping times depend on R via XR, but for simplicity of notation in the remainder of this section, we

suppress the superscript R on τα, sb, and sαb.
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Proof. Proposition 2.2 in Azcue and Muler [4] states: with probability one, either ruin occurs in

finite time or XR
t diverges to infinity as t goes to infinity. Because αMt ≥ 0 and because b < ∞,

it follows that Px,m(sαb < ∞) = 1.

In the first theorem, we show that any smooth subsolution of our problem is less than or equal

to the value function. Before stating the theorem, we introduce some notation. For an admissible

retention function R, define the operator LR on C1,1(D) as follows: for u ∈ C1,1(D),

LRu(x,m) = −κux(x,m)

+ λ
[(

(1 + θ)ER+ ηE(Y R)− η

2
E(R2)

)

ux(x,m) + Eu(x−R,m)− u(x,m)
]

,

(2.20)

in which we extend u by defining u(x,m) = 1 for x < αm. Note that the HJB equation for ψ is

infR LRψ(x,m) = 0.

Theorem 2.1 (Subsolution). Suppose u ∈ C1,1(D) is a bounded function that satisfies the following

conditions:

(i) lim
m→∞

u(m,m) ≤ 0.

(ii) u(x,m) is defined for all x ≤ m and m ≥ 0, with u(x,m) = 1 for all x < αm.

(iii) um(m,m) ≥ 0 for all m ≥ 0.

(iv) LRu(x,m) ≥ 0 for all (x,m) ∈ D and for all admissible retention functions R.

Then, u ≤ ψ on D.

Proof. Assume that u satisfies the conditions specified in the statement of this theorem, and fix an

admissible retention strategy R.

For a fixed value of m ≥ 0, let b > m, and define sb and sαb as in Lemma 2.1. By applying Itô’s
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formula to u(x,m), we have

u
(

XR
sαb

,MR
sαb

)

= u(x,m) +

∫ sαb

0

(

−κ+ λ
(

(1 + θ)ERt + ηE(Y Rt)−
η

2
E(R2

t )
))

ux
(

XR
t− ,M

R
t

)

dt

+

∫ sαb

0

(

Eu
(

XR
t− −Rt,M

R
t

)

− u
(

XR
t− ,M

R
t

))

dNt +

∫ sαb

0
um

(

XR
t− ,M

R
t

)

dMR
t

= u(x,m) +

∫ sαb

0
LRtu

(

XR
t− ,M

R
t

)

dt

+

∫ sαb

0

(

Eu
(

XR
t− −Rt,M

R
t

)

− u
(

XR
t− ,M

R
t

))

d(Nt − λt)

+

∫ sαb

0
um

(

XR
t− ,M

R
t

)

dMR
t . (2.21)

The first integral in (2.21) is non-negative because of condition (iv) of the theorem. The expectation

of the second integral equals 0 because u is bounded. The third integral is non-negative almost

surely because dMR
t is non-zero only when MR

t = XR
t and um(m,m) ≥ 0 by condition (iii). Here,

we also used the fact that MR is non-decreasing; therefore, the first variation process associated

with it is finite almost surely, and we conclude that the cross variation of MR and XR is zero

almost surely. Thus, by taking expectations in (2.21), we have

E
x,m

[

u
(

XR
sαb

,MR
sαb

)]

≥ u(x,m). (2.22)

Because sαb < ∞ with probability 1 and because b > m, it follows from the extension of u to

u(x,m) = 1 for all x < αm and from inequality (2.22) that

u(x,m) ≤ P
x,m(τα < sb) · 1 + P

x,m(sb < τα) · u(b, b)

≤ P
x,m(τα < ∞) + P

x,m(sb < τα) · u(b, b). (2.23)

In (2.23), we purposefully omit Px,m(τα = sb) because that probability equals 0, which follows from

P
x,m(sαb < ∞) = 1 and αm < b.

By applying the Dominated Convergence Theorem to (2.23) as we take the limit b → ∞ and

by using limb→∞ u(b, b) ≤ 0 from condition (i), we obtain

u(x,m) ≤ P
x,m(τα < ∞). (2.24)

By taking the infimum over admissible strategies, we obtain u ≤ ψ on D.

In the second theorem, we show that any smooth supersolution of our problem is greater than

or equal to the value function.
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Theorem 2.2 (Supersolution). Suppose v ∈ C1,1(D) is a bounded function that satisfies the fol-

lowing conditions:

(i) lim
m→∞

v(m,m) ≥ 0.

(ii) v(x,m) is defined for all x ≤ m and m ≥ 0, with v(x,m) = 1 for all x < αm.

(iii) vm(m,m) ≤ 0 for all m ≥ 0.

(iv) LR̂v(x,m) ≤ 0 for all (x,m) ∈ D and for some admissible retention function R̂.

Then, ψ ≤ v on D.

Proof. Assume that v and R̂ satisfy the conditions specified in the statement of this theorem, and

let R̂ denote the constant retention strategy corresponding to R̂.

For a fixed value of m ≥ 0, let b > m, and define sb and sαb as in Lemma 2.1. By applying Itô’s

formula to v(x,m), we have

v
(

XR̂
sαb

,M R̂
sαb

)

= v(x,m) +

∫ sαb

0

(

−κ+ λ
(

(1 + θ)ER̂t + ηE
(

Y R̂t

)

− η

2
E
(

R̂2
t

)

))

vx

(

XR̂
t− ,M

R̂
t

)

dt

+

∫ sαb

0

(

Ev
(

XR̂
t− − R̂t,M

R̂
t

)

− v
(

XR̂
t− ,M

R̂
t

))

dNt +

∫ sαb

0
vm

(

XR̂
t− ,M

R̂
t

)

dM R̂
t

= v(x,m) +

∫ sαb

0
LR̂tv

(

XR̂
t− ,M

R̂
t

)

dt

+

∫ sαb

0

(

Ev
(

XR̂
t− − R̂t,M

R̂
t

)

− v
(

XR̂
t− ,M

R̂
t

))

d(Nt − λt)

+

∫ sαb

0
vm

(

XR̂
t− ,M

R̂
t

)

dM R̂
t . (2.25)

The first integral in (2.25) is non-positive because of condition (iv) of the theorem. The expectation

of the second integral equals 0 because v is bounded. The third integral is non-positive almost surely

because dM R̂
t is non-zero only when M R̂

t = XR̂
t and vm(m,m) ≤ 0 by condition (iii). Thus, by

taking expectations in (2.25), we have

E
x,m

[

v
(

XR̂
sαb

,M R̂
sαb

)]

≤ v(x,m). (2.26)

Because sαb < ∞ with probability 1 and because b > m, it follows from the extension of v to

v(x,m) = 1 for all x < αm and from inequality (2.26) that

v(x,m) ≥ P
x,m(τα < sb) · 1 + P

x,m(sb < τα) · v(b, b). (2.27)
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Next, we wish to show that

lim
b→∞

{τα < sb} = {τα < ∞}. (2.28)

Because {τα < sb} ⊆ {τα < ∞} for all b > m, it follows that limb→∞{τα < sb} ⊆ {τα < ∞}. To

prove the opposite inclusion, suppose ω ∈ {τα < ∞}, that is, drawdown occurs in finite time, say,

at time t. Thus, M R̂
t < ∞, which implies ω ∈ {τα < sb} for all b > M R̂

t , and we have shown that

{τα < ∞} ⊆ limb→∞{τα < sb}, from which (2.28) follows.

By applying the Dominated Convergence Theorem to (2.27) as we take the limit b → ∞, by

using (2.28), and by using limb→∞ v(b, b) ≥ 0 from condition (i), we obtain

v(x,m) ≥ P
x,m(τα < ∞), (2.29)

which implies v ≥ ψ on D.

2.3 Scaled Cramér-Lundberg model

In this section, we scale the Cramér-Lundberg risk model by n > 0. To obtain the scaled model,

multiply the Poisson rate λ by n, divide the claim severity by
√
n, and adjust the premium rate so

that net premium income remains constant. Specifically, define λn = nλ, so n large is equivalent

to λn large. Scale the claim severity by defining Yn = Y/
√
n. Also, define θn = θ/

√
n and

cn = c+ (
√
n− 1)λEY , which implies cn − λnEnYn = c− λEY , independent of n.3 The parameter

η remains unchanged. Finally, define

κn = (1 + θn)λnEnYn +
η

2
λnEn(Y

2
n )− cn

= (1 + θ)λEY +
η

2
λE(Y 2)− c = κ,

so κn is also independent of n.

In the scaled model, define an n-admissible retention strategy Rn = {(Rn)t}t≥0 is as in Definition

2.1, except with condition (iii) replaced by

(iii′) cn − (1 + θn)λnEn(Yn − (Rn)t)−
η

2
λnEn((Yn − (Rn)t)

2) > λnEn(Rn)t. (2.30)

3By writing En, we mean expectation with respect to the measure induced by Yn. Specifically,

En(g(Yn)) =

∫ ∞

0

g(y)dFYn(y) =

∫ ∞

0

g(y)dFY (
√
ny)

=

∫ ∞

0

g(t/
√
n)dFY (t) = E(g(Y/

√
n)),

in which E = E1.
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Similarly, define an n-admissible retention function Rn. If we are given an n-admissible retention

strategy Rn = {(Rn)t}t≥0, then we can define an admissible retention strategy R = {Rt}t≥0 by

Rt(ω, y) =
√
n (Rn)t(ω, y/

√
n ). (2.31)

Indeed, by using the assignment in (2.31), condition (iii′) in (2.30) implies

(c+ (
√
n− 1)λEY )−

(

1 +
θ√
n

)

nλE

(

Y −Rt√
n

)

− η

2
nλE

((

Y −Rt√
n

)2)

> nλE

(

Rt√
n

)

⇐⇒ c− λ(1 + θ)EY + λθERt −
η

2
λE((Y −Rt)

2) > 0

⇐⇒ c− λ(1 + θ)E(Y −Rt)−
η

2
λE((Y −Rt)

2) > λERt.

Conversely, given an admissible strategy R, we can define an n-admissible strategy Rn via (2.31).

Thus, we deduce there is a one-to-one correspondence between admissible strategies and n-admissible

strategies. Similarly, via the relationship

R(y) =
√
nRn(y/

√
n ), (2.32)

we obtain a one-to-one correspondence between admissible retention functions and n-admissible

retention functions.

Let XRn
n denote the surplus process for the scaled model; thus, XRn

n follows the dynamics

d
(

XRn
n

)

t
=

(

−κn + λn

(

(1 + θn)En(Rn)t + ηEn(Yn(Rn)t)−
η

2
En((Rn)

2
t )
))

dt− (Rn)t d(Nn)t

=
(

−κ+ nλ
(

(1 + θ/
√
n)En(Rn)t + ηEn(Y (Rn)t/

√
n)− η

2
En((Rn)

2
t )
))

dt− (Rn)t d(Nn)t,

(2.33)

in which Nn denotes the Poisson process with rate λn = nλ. Let ψn denote the minimum probability

of drawdown for the scaled system, and note that Theorems 2.1 and 2.2 apply to ψn with LR

replaced by LRn
n , in which LRn

n is defined as follows: for u ∈ C1,1(D) and for an n-admissible

retention function Rn,

LRn
n u(x,m) = −κnux(x,m)

+ λn

[(

(1 + θn)EnRn + ηEn(YnRn)−
η

2
En(R

2
n)
)

ux(x,m) + Enu(x−Rn,m)− u(x,m)
]

. (2.34)

In (2.34), we again extend u by defining u(x,m) = 1 for x < αm.
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2.4 Diffusion approximation

Let XR
n,D denote the diffusion approximation to the n-scaled process in (2.33), which we form by

(Rn)t d(Nn)t ≈ nλEn(Rn)t dt−
√

nλEn((Rn)2t ) dBt,

in which B is a standard Brownian motion on the filtered probability space. Then, XRn
n,D follows

the dynamics

d
(

XRn
n,D

)

t
=

(

−κ+ nλ
(

(θ/
√
n)En(Rn)t + ηEn(Yn(Rn)t)−

η

2
En((Rn)

2
t )
))

dt+
√

nλEn((Rn)2t ) dBt

=
(

−κ+ λ
(

θEn(
√
n(Rn)t) + ηEn(

√
nYn ·

√
n(Rn)t)−

η

2
En(n(Rn)

2
t )
))

dt

+
√

λEn(n(Rn)
2
t ) dBt

=
(

−κ+ λ
(

θERt + ηE(Y Rt)−
η

2
E(R2

t )
))

dt+
√

λE(R2
t ) dBt, (2.35)

in which we define the strategy R = {Rt}t≥0 by the assignment in (2.31). Thus, the dynamics of

XRn
n,D are independent of n after this assignment, which implies that the minimum probability of

ruin for the diffusion approximation of the n-scaled process is independent of n.

Let ψD denote the minimum probability of drawdown for the diffusion approximation of the

(scaled) Cramér-Lundberg model. Han et al. [14] solved the optimization problem associated with

ψD. The following theorem is a limiting case (as the riskless rate r → 0+) of Theorem 3.2, the

main result of Han et al. [14].

Theorem 2.3. The minimum probability of drawdown ψD on

D =
{

(x,m) ∈ R
2
+ : αm ≤ x ≤ m

}

under the diffusion approximation in (2.35) equals

ψD(x,m) = 1− hD(m)
(

1− e−ρD(x−αm)
)

, (2.36)

in which hD is defined by

hD(m) =
(

1− e−ρD(1−α)m
)

α
1−α

, (2.37)

and ρD > 0 uniquely solves

c− λEY = λρ

∫ ∞

0

(

θ + ηy

ρ+ η
∧ y

)

SY (y)dy. (2.38)
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The corresponding optimal retention strategy is a constant strategy {RD}t≥0, in which

RD(y) =
θ + ηy

ρD + η
∧ y, (2.39)

with y ≥ 0 the possible claim size.

Remark 2.2. If we reverse (2.32) as applied to R = RD in (2.39), then we obtain

RD,n(y) :=
1√
n
RD(

√
ny) =

1√
n

(

θ + η
√
ny

ρD + η
∧
√
ny

)

=
θn + ηy

ρD + η
∧ y, (2.40)

that is, we get the optimal retention function for the diffusion approximation of the n-scaled model,

as expected, from the discussion following (2.35).

Remark 2.3. In Section 3.2, we show that ρD is the maximum adjustment coefficient, which

parallels a similar result in Liang, Liang, and Young [16].

An important result of this paper is that ψD and ψn are approximately equal, specifically, to

order O(n−1/2). The technique for showing that ψD approximates ψn is to modify ψD by a function

of order O(n−1/2) and, then, prove that the modified function is a sub- or supersolution of ψn via

Theorem 2.1 or 2.2, respectively. In the next section, we detail the steps in the remainder of the

paper.

2.5 Outline of paper

To make it easier to follow the material in Sections 3 and 4, we outline our steps in those sections:

1. In Section 3, we define analogs of the so-called adjustment coefficient from risk theory; for

background on the adjustment coefficient see, for example, Section 5.4 in Schmidli [20].

(a) In Section 3.1, we define an analog of the maximum adjustment coefficient for the scaled

Cramér-Lundberg model, which we denote by ρn.

(b) In Section 3.2, we show that ρD from Section 2.4 is the analog of the maximum adjust-

ment coefficient for the diffusion approximation.

(c) In Section 3.3, we prove two lemmas that relate ρn and ρD. In particular, we show

lim
n→∞

ρn = ρD.

2. In Section 4, we justify using the diffusion approximation for the classical risk process when

analyzing the minimum probability of drawdown.
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(a) In Section 4.1, we modify ψD by functions of order O(n−1/2) to obtain upper and lower

bounds of ψn; denote those bounds by un and ℓn, respectively. We use Theorems 2.1

and 2.2 to prove that, indeed, ℓn ≤ ψn ≤ un on R. Propositions 4.2 and 4.1 prove these

two inequalities, respectively.

(b) In Section 4.2, we use Propositions 4.1 and 4.2 to prove Theorem 4.1, which states that,

as n goes to infinity, ψn converges to ψD uniformly on D with rate of convergence of

order O(n−1/2).

(c) Finally, in Section 4.3, we prove the main result of our paper, namely, that if the insurer

uses the optimal strategy from the diffusion approximation, then the resulting proba-

bility of drawdown is O(n−1/2)-optimal. This result thereby justifies using the diffusion

approximation when minimizing the probability of drawdown.

3 Analogs of the adjustment coefficient

3.1 Scaled Cramér-Lundberg model

In this section, we define the analog of the adjustment coefficient for the scaled Cramér-Lundberg

model for the probability of drawdown. We will use that analog to create an exponential upper

bound of ψn.

For a given n-admissible retention function Rn, formally obtain the adjustment coefficient

ρn(Rn) > 0 by substituting e−ρx for u in LRn
n u = 0, including when x − Y/

√
n < αm. When

we perform this substitution, we obtain the following equation for ρn(Rn):

[

−κn + λn

(

(1 + θn)EnRn + ηEn(YnRn)−
η

2
En(R

2
n)
)]

ρ− λn

(

MRn(ρ)− 1
)

= 0,

in which MRn denotes the moment generating function of Rn, which is finite in a neighborhood of

0 because MY is finite in a neighborhood of 0. After we substitute for the n-scaled parameters and

set R(y) =
√
nRn(y/

√
n) as in (2.32), this equation is equivalent to

nλgn(ρ;R) = λ
(

θER+ ηE(Y R)− η

2
E(R2)

)

− κ, (3.1)

in which we define gn by

gn(ρ;R) =
1

ρ

(

Ee
ρ√
n
R − 1− ρ√

n
ER

)

. (3.2)
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Condition (iii) in Definition 2.1 for an admissible retention function implies that the right side of

(3.1) is positive; in fact, those two statements are equivalent. Also, gn(ρ;R) increases from 0+ to

infinity as ρ increases from 0+ to infinity; thus, ρn(Rn) > 0 exists for any n-admissible retention

function Rn.

Let ρn denote the maximum adjustment coefficient for the classical risk model, in which we

maximize over n-admissible retention functions Rn. By following the argument in Section 4.1 of

Liang, Liang, and Young [16], we deduce that ρn solves the following maximization problem:

sup
Rn

{[

−κn + λn

(

(1 + θn)EnRn + ηEn(YnRn)−
η

2
En(R

2
n)
)]

ρ− λn

(

MRn(ρ)− 1
)

}

= 0, (3.3)

in which we maximize over n-admissible retention functions Rn. By using the assignment in (2.32),

this maximization problem is equivalent to

−κ+ λ sup
R

[(

θER+ ηE(Y R)− η

2
E(R2)

)

− ngn(ρ;R)
]

= 0, (3.4)

in which we maximize over admissible retention functions R.

In the following proposition, we give an expression for ρn and the corresponding optimal n-

retention function Rρ
n.

Proposition 3.1. The maximum adjustment coefficient ρn > 0 for the n-scaled risk process in

(2.33) uniquely solves

c− λEY = nλ

∫ ∞

0

(

eρR
ρ
n(y) − 1

)

SYn(y)dy. (3.5)

in which SYn(y) = SY (
√
ny), for all y ≥ 0, and the corresponding optimal n-retention function Rρ

n

is given by

Rρ
n(y) =















y, 0 ≤ y ≤ 1

ρn
ln(1 + θn),

Rc(y), y >
1

ρn
ln(1 + θn).

(3.6)

In (3.6), Rc(y) ∈ [0, y) for y > 1
ρn

ln(1 + θn) uniquely solves

(1 + θn) + η(y −R) = eρnR. (3.7)

Proof. Consider the R-dependent terms in (3.4); rewrite them as follows:

∫ ∞

0

[

(
√
n+ θ)R(y) + ηyR(y)− η

2
R2(y)− n

ρ
e

ρ√
n
R(y)

]

dFY (y).
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If we maximize the integrand y-by-y, subject to 0 ≤ R(y) ≤ y, then the integral itself is maximized.

To that end, for a fixed value of ρ, define the function j by

j(R) = (
√
n+ θ)R+ ηyR− η

2
R2 − n

ρ
e

ρ√
n
R
. (3.8)

Then,

j′(R) = (
√
n+ θ) + η(y −R)−

√
n e

ρ√
n
R
,

and

j′′(R) = −η − ρe
ρ√
n
R
< 0.

Thus, because j is strictly concave with respect to R, the critical value (truncated on the left by 0

and on the right by y) maximizes j. As R increases from 0 to y, j′(R) decreases from θ+ ηy ≥ 0 to

√
n(1− eρy/

√
n) + θ. (3.9)

If the expression in (3.9) is negative, then the maximizing R lies in [0, y). If it is non-negative, then

the maximizing R equals y. Let Ř(·; ρ) denote the maximizing retention function for a given ρ > 0;

then,

Ř(y; ρ) =















y, 0 ≤ y ≤
√
n

ρ
ln

(

1 +
θ√
n

)

,

Řc(y; ρ), y >

√
n

ρ
ln

(

1 +
θ√
n

)

,

(3.10)

in which Řc(y; ρ) ∈ [0, y) for y >
√
n
ρ ln

(

1 + θ√
n

)

uniquely solves

(
√
n+ θ) + η(y −R) =

√
n e

ρ√
n
R
. (3.11)

As an aside, Liang, Liang, and Young [16] show that limn→∞ Ř(y; ρn) = RD(y).

Next, substitute Ř(·; ρ) from (3.10) into (3.4), or equivalently,

c− λEY = λ
(

θE(Y −R) +
η

2
E((Y −R)2)

)

+
nλ

ρ
E

(

e
ρ√
n
R − 1− ρR√

n

)

,

and solve for ρn to obtain

c− λEY =
√
nλ

∫ ∞

0

(

exp

(

ρ
Ř(t; ρ)√

n

)

− 1

)

SY (t)dt. (3.12)

By substituting t =
√
ny in (3.12), and by reversing the assignment in (2.32), we obtain Rρ

n(y) =

1√
n
Ř(

√
ny; ρn) in (3.6) with ρn solving (3.5).
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It remains to show that (3.5) has a unique positive solution ρn. To that end, consider the

exponent in the integrand of (3.5), namely, ρRn(y; ρ), in which we define Rn(y; ρ) by replacing ρn

in (3.6) with a generic ρ > 0. When 0 < y < 1
ρ ln(1 + θn),

∂

∂ρ

(

ρRρ
n(y)

)

=
∂

∂ρ
(ρy) = y > 0.

When y > 1
ρ ln(1 + θn),

∂

∂ρ

(

ρRρ
n(y)

)

=
∂

∂ρ

(

ρRc(y)
)

= Rc(y) + ρ
∂Rc(y)

∂ρ

= Rc(y)− ρ
Rc(y)e

ρRc(y)

η + ρeρRc(y)
=

ηRc(y)

η + ρeρRc(y)
> 0.

Thus, the right side of (3.5) increases with respect to ρ. As ρ → 0+, the right side of (3.5)

approaches 0, which is less than the left side because we assume c > λEY . As ρ → ∞, Rn(y; ρ)

approaches 0 in such a way that

lim
ρ→∞

eρRn(y;ρ) = (1 + θn) + ηy.

Thus, the right side of (3.5) approaches

nλ

∫ ∞

0
(θn + ηy)SYn(y)dy = λ

∫ ∞

0
(θ + ηt)SY (t)dt = λ

(

θEY +
η

2
E(Y 2)

)

,

which is greater than c − λEY , from the assumption in (2.4). It follows that (3.5) has a unique

positive solution ρn.

3.2 Diffusion approximation

The analog of (3.4) for the maximum adjustment coefficient for the diffusion approximation is

−κ+ λ sup
R

[

θER+ ηE(Y R)− ρ+ η

2
E(R2)

]

= 0, (3.13)

in which we maximize over admissible retention functions R. In the following proposition, we show

that the maximum adjustment coefficient for the diffusion approximation equals ρD from Theorem

2.3, with RD the optimal retention function.

Proposition 3.2. The maximum adjustment coefficient ρD > 0 for the diffusion approximation in

(2.35) uniquely solves (2.38), and the corresponding optimal retention function equals RD in (2.39).
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Proof. By following the argument in the proof of Proposition 3.1, for a given value of ρ > 0, the

retention function maximizing the expression in (3.13) equals

R(y; ρ) =
θ + ηy

ρ+ η
∧ y.

By substituting this expression into (3.13), we obtain equation (2.38) for ρD. The remainder of the

proof is similar to, but simpler than, the proof of Proposition 3.1, so we omit the details.

As we expect from the maximization problems in (3.4) and (3.13), the maximum adjustment

coefficients ρn and ρD are related, which we prove in the next section.

3.3 Relationship between ρn and ρD

In this section, we prove two lemmas that relate ρn and ρD. We use those lemmas in Section 4.1

to modify ψD by function of order O(n−1/2) to bound ψn.

In the first lemma, we prove ρn < ρD.

Lemma 3.1. The maximum adjustment coefficient for the n-scaled risk process is less than the

maximum adjustment coefficient for the diffusion approximation, that is, ρn < ρD.

Proof. For a given admissible retention function R, let ρn(R) and ρD(R) denote the solutions of

(3.4) and (3.13), respectively, with the supR removed. We begin by showing that ρn(R) < ρD(R).

(As an aside, the left side of both (3.4) and (3.13) decrease from a positive number to negative

infinity as ρ increases from 0 to infinity. Therefore, positive solutions ρn(R) and ρD(R) exist.)

ρD(R) > 0 solves

−κ+ λ

[

θER+ ηE(Y R)− ρ+ η

2
E(R2)

]

= 0. (3.14)

Because the left side of this equation decreases with respect to ρ, then ρn(R) < ρD(R) if and only

if

−κ+ λ

[

θER+ ηE(Y R)− ρn(R) + η

2
E(R2)

]

> 0.

By using (3.1) and canceling a factor of λ > 0, this inequality becomes

n gn(ρn(R);R)− ρn(R)

2
E(R2) > 0,

or equivalently,
n

ρn(R)
E

(

e
ρn(R)·R√

n − 1− ρn(R) · R√
n

− ρ2n(R) · R2

n

)

> 0,
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which is true because ex > 1 + x+ x2 for x > 0.

Thus, we have shown ρn(R) < ρD(R) for all admissible retention function R. Now, let R = Ř

from (3.10); then, we have

ρn = ρn(Ř) < ρD(Ř) ≤ ρD,

and we have proved this lemma.

In the following lemma, we show that we can modify ρD by a constant of order O(n−1/2) to get

a lower bound of ρn.

Lemma 3.2. Choose C so that

C >
E(R3

D)

3E(R2
D)

ρ2D. (3.15)

Then, there exists N > 0 such that, for all n ≥ N ,

0 < ρD − C√
n
< ρn < ρD, (3.16)

from which it follows that

lim
n→∞

ρn = ρD, (3.17)

with rate of convergence of order O(n−1/2).

Proof. The limit in (3.17) follows directly from the bounds in (3.16). The third inequality in (3.16)

follows from Lemma 3.1; thus, it remains to show the first and second inequalities in (3.16). To

that end, consider the admissible retention strategy RD in (2.39). Then, from (3.1) and (3.2), we

know ρn(RD) solves

−κ+ λ

[

θERD + ηE(Y RD)−
η

2
E(R2

D)−
n

ρ

(

Ee
ρ√
n
RD − 1− ρ√

n
ERD

)]

= 0, (3.18)

or equivalently, from the expression for ρD in (3.13), ρn(RD) solves

E(R2
D)

2
ρD − ngn(ρ;RD) = 0 (3.19)

The left side of this equation decreases with respect to ρ; thus, to show that

ρD − C√
n
< ρn(RD)

for some value of C, it is enough to show that the left side of (3.19) is positive when we set

ρ = ρD − C√
n
. That is, we want to show there exist C and N such that

E(R2
D)

2
ρD > ngn(ρD − C/

√
n;RD),
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for all n ≥ N , with ρD − C√
n
> 0, or equivalently,

E(R2
D)

2
ρD >

n

ρD − C/
√
n

(

Ee
ρD−C/

√
n√

n
RD − 1− ρD − C/

√
n√

n
ERD

)

. (3.20)

To simplify the right side of inequality (3.20), we use the following identity:

ex − 1− x =
x2

2
+

x3

6
+

x4

6

∫ 1

0
(1− ω)3eωxdω.

Then, inequality (3.20) is equivalent to

E(R2
D)

2
ρD

(

ρD − C√
n

)

> E

(

(ρD − C/
√
n)2R2

D

2
+

(ρD − C/
√
n)3R3

D

6
√
n

+
(ρD − C/

√
n)4R4

D

6n

∫ 1

0
(1− ω)3e

ω
ρD−C/

√
n√

n
RDdω

)

,

or

E(R2
D)

C√
n
> E

(

(ρD − C/
√
n)2R3

D

3
√
n

+
(ρD − C/

√
n)3R4

D

3n

∫ 1

0
(1− ω)3e

ω
ρD−C/

√
n√

n
RDdω

)

,

which holds if the following stronger inequality holds:

E(R2
D)C > E

(

ρ2DR
3
D

3
+

ρ3DR
4
D

3
√
n

e
ρD√

n
RD

)

,

or

E(R2
D)C − ρ2D

E(R3
D)

3
>

ρ3D
3
√
n
E

(

R4
D e

ρD√
n
RD

)

. (3.21)

If we choose C according to (3.15), then there exists N > 0 such that ρD − C/
√
N > 0 and such

that inequality (3.21) holds at n = N . Because the right side of (3.21) decreases with n, it follows

that inequality (3.21) holds for all n ≥ N .

We have, thereby, shown that

0 < ρD − C√
n
< ρn(RD), (3.22)

for all n ≥ N , and we know that ρn(RD) ≤ ρn because ρn is maximal. Thus, we have proven the

first two inequalities in (3.16).

4 Justifying the diffusion approximation

4.1 Bounds for ψn

In this section, we modify ψD by functions of order O(n−1/2) to obtain upper and lower bounds of

ψn. In the process of finding an upper bound of ψn, we obtain a type of Lundberg bound for ψn.
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To that end, by analogy with the expression for ψD in (2.36), define ψn for x ≤ m and m ≥ 0 as

follows:

ψn(x,m) =











1− hn(m)
(

1− e−ρn(x−αm)
)

, (x,m) ∈ D,

1, x < αm,

(4.1)

in which hn is defined by

hn(m) =
(

1− e−ρn(1−α)m
)

α
1−α

, (4.2)

for all m ≥ 0. In the following lemma, we use Theorem 2.2 to prove that ψn is an upper bound of

ψn.

Lemma 4.1. For all (x,m) ∈ D,

ψn(x,m) ≤ ψn(x,m), (4.3)

in which ψn is the minimum probability of drawdown for the n-scaled model, and ψn is defined in

(4.1).

Proof. We prove this lemma via Theorem 2.2 modified to account for the n-scaled model, which

essentially replaces LR̂ in condition (iv) with LR̂n
n , given in (2.34). First, note that ψn ∈ C1,1(D)

by its definition. Next, we go through each condition in Theorem 2.2 in turn.

Condition (i):

lim
m→∞

ψn(m,m) = lim
m→∞

(

1− hn(m)
(

1− e−ρn(1−α)m
))

= 1− lim
m→∞

(

1− e−ρn(1−α)m
)

α
1−α

+1
= 1− 1 = 0,

so condition (i) is satisfied with equality.

Condition (ii): This condition, namely, that ψn(x,m) is defined for all x ≤ m and m ≥ 0, with

ψn(x,m) = 1 for all x < αm, is satisfied by the definition of ψn in (4.1).

Condition (iii): For m > 0, differentiate ψn with respect to m and simplify the expression to obtain

(ψn)m(x,m) =
αρnhn(m)

1− e−ρn(1−α)m

(

e−ρn(x−αm) − e−ρn(1−α)m
)

,

which equals 0 when x = m. Therefore, condition (iii) is satisfied with equality.

Condition (iv): Let R̂n be the n-admissible retention function Rρ
n that maximizes the adjustment

coefficient. Then, by (3.3), Rρ
n and ρn satisfy

λn

(

Ene
ρnR

ρ
n − 1

)

=
[

−κn + λn

(

(1 + θn)EnR
ρ
n + ηEn(YnR

ρ
n)−

η

2
En((R

ρ
n)

2)
)]

ρn.
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Then, for (x,m) ∈ D, the expression in (2.34) gives us

LRρ
n

n ψn(x,m) =
[

−κn + λn

(

(1 + θn)EnR
ρ
n + ηEn(YnR

ρ
n)−

η

2
En((R

ρ
n)

2)
)]

(ψn)x(x,m)

+ λn

(

Enψn(x−Rρ
n,m)− ψn(x,m)

)

=
[

−κn + λn

(

(1 + θn)EnR
ρ
n + ηEn(YnR

ρ
n)−

η

2
En((R

ρ
n)

2)
)]

(

− ρnhn(m)e−ρn(x−αm)
)

+ λn

[

En

((

1− hn(m)
(

1− e−ρn(x−Rρ
n−αm)

))

1{x−Rρ
n≥αm}

)]

+ λn

[

En

(

1{x−Rρ
n<αm}

)

−
(

1− hn(m)
(

1− e−ρn(x−αm)
))]

= −λnhn(m)e−ρn(x−αm)
(

Ene
ρnR

ρ
n − 1

)

+ λnhn(m)
(

1− En

(

1{x−Rρ
n≥αm}

)

)

+ λnhn(m)e−ρn(x−αm)
(

En

(

eρnR
ρ
n1{x−Rρ

n≥αm}
)

− 1
)

= λnhn(m)
{

−En

(

e−ρn(x−Rρ
n−αm)

1{x−Rρ
n<αm}

)

+ En

(

1{x−Rρ
n<αm}

)

}

= −λnhn(m)En

(

(

eρn(αm−(x−Rρ
n)) − 1

)

1{x−Rρ
n<αm}

)

≤ 0.

Thus, we have proved condition (iv). Theorem 2.2, then, implies inequality (4.3) on D.

We obtain the following proposition from Lemmas 3.2 and 4.1, in which we modify ψD in (2.36)

by a function of order O(n−1/2) to obtain an upper bound of ψn.

Proposition 4.1. Let C and N be as in the statement of Lemma 3.2, and for n ∈ N, define un by

un(x,m) =











1− kn(m)
(

1− e−(ρD−C/
√
n)(x−αm)

)

, (x,m) ∈ D,

1, x < αm,

(4.4)

in which kn is defined by

kn(m) =
(

1− e−(ρD−C/
√
n)(1−α)m

)
α

1−α
, (4.5)

Then, for n ≥ N ,

ψn ≤ un, (4.6)

on D.

Proof. It is straightforward to show that ψn in (4.1) decreases with respect to ρn > 0 on D. Thus,

if we replace ρn in ψn’s definition with a (positive) parameter less than ρn, then we get a function
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that is an upper bound of ψn. That is exactly how we defined un in (4.4) because, from Lemma

3.2, we know 0 < ρD − C/
√
n < ρn for all n ≥ N ; thus, we have, from Lemma 4.1,

ψn ≤ ψn ≤ un,

on D.

In the following proposition, we modify ψD to obtain a lower bound of ψn.

Proposition 4.2. Formally, define the random variable Zd = (Y − d)
∣

∣(Y > d) for d ≥ 0, and

suppose ς exists such that MY

(

ρD/
√
ς
)

< ∞, with

sup
d≥0

E

(

e
ρD√

ς
Zd
)

< ∞. (4.7)

Choose ε > 0, and define δ by

δ = sup
d≥0

(

ρDEZd + ε
)

, (4.8)

and choose N > max
(

δ2, 4ς
)

such that4

sup
d≥0

ρ2D√
N

E

(

Z2
d e

ρD√
N
Zd

)

≤ ε. (4.9)

For n ∈ N, define ℓn by

ℓn(x,m) =















(

1− δ√
n

)

ψD(x,m), (x,m) ∈ D,

1, x < αm.

(4.10)

Then, for all n ≥ N ,

ℓn ≤ ψn, (4.11)

on D.

4Condition (4.7) implies that we can find such an N . Indeed, for z large enough, we have

z2 <
e

ρDz
√

ς

e
ρDz

2
√

ς

= e
ρDz

2
√

ς ,

which implies there exists M > 0 such that

E

(

Z2
d e

ρD
2
√

ς
Zd

)

≤ E

(

e
ρD
√

ς
Zd
1{Zd>M}

)

+ E

(

M2e
ρD
√

ς
M
1{Zd≤M}

)

.
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Proof. We prove this lemma via Theorem 2.1 modified to account for the n-scaled model, which

essentially replaces LR̂ in condition (iv) with LR̂n
n , given in (2.34). First, note that ℓn ∈ C1,1(D) by

its definition. Next, we go through each condition in Theorem 2.1 in turn.

Without loss of generality, assume n > δ2.

Condition (i):

lim
m→∞

ℓn(m,m) =

(

1− δ√
n

)

lim
m→∞

ψD(m,m) = 0,

so condition (i) is satisfied with equality.

Condition (ii): This condition, namely, that ℓn(x,m) is defined for all x ≤ m and m ≥ 0, with

ℓn(x,m) = 1 for all x < αm, is satisfied by the definition of ℓn in (4.10).

Condition (iii): For m > 0, differentiate ℓn with respect to m and simplify the expression to obtain

(ℓn)m(x,m) =

(

1− δ√
n

)

αρDhD(m)

1− e−ρD(1−α)m

(

e−ρD(x−αm) − e−ρD(1−α)m
)

,

which equals 0 when x = m. Therefore, condition (iii) is satisfied with equality.

Condition (iv): Let Rn be any n-admissible retention function. We wish to show that LRn
n ℓn(x,m) ≥

0 for all (x,m) ∈ D.

LRn
n ℓn(x,m) =

[

−κn + λn

(

(1 + θn)EnRn + ηEn(YnRn)−
η

2
En(R

2
n)
)]

(ℓn)x(x,m)

+ λn

(

Enℓn(x−Rn,m)− ℓn(x,m)
)

. (4.12)

We compute

(ℓn)x(x,m) = −
(

1− δ√
n

)

ρDhD(m)e−ρD(x−αm), (4.13)

and

Enℓn(x−Rn,m)− ℓn(x,m) = En

((

1− δ√
n

)

(

1− hD(m)
(

1− e−ρD(x−Rn−αm)
))

1{x−Rn≥αm}

+ 1{x−Rn<αm} −
(

1− δ√
n

)

(

1− hD(m)
(

1− e−ρD(x−αm)
))

)

.

(4.14)
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Now, by substituting (4.13) and (4.14) into (4.12) and by rearranging terms, we obtain

LRn
n ℓn(x,m) ∝ κρD − λ

(

(
√
n+ θ)ER+ ηE(Y R)− η

2
E(R2)

)

ρD

+
nλeρD(x−αm)

hD(m)
E

((

1− hD(m)
(

1− e−ρD(x−R/
√
n−αm)

))

1{x−R/
√
n≥αm}

)

+
nλeρD(x−αm)

hD(m)

E
(

1{x−R/
√
n<αm}

)

1− δ/
√
n

− nλeρD(x−αm)

hD(m)
E

(

1− hD(m)
(

1− e−ρD(x−αm)
))

,

in which ∝ denotes “positively proportional to,” and in which R and Rn are related via (2.32).

Recall that ρD solves

κρD = λ sup
R

{

(

θER+ ηE
(

Y R
)

− η

2
E
(

R2
)

)

ρD − 1

2
E
(

R2
)

ρ2D

}

,

that is,

κρD − λ

{

(

θER+ ηE
(

Y R
)

− η

2
E
(

R2
)

)

ρD − 1

2
E
(

R2
)

ρ2D

}

≥ 0,

for any admissible retention function R. Thus, to prove LRn
n ℓn(x,m) ≥ 0 for all (x,m) ∈ D and for

all n-admissible retention functions Rn, it is enough to prove

λ

{

(

θER+ ηE
(

Y R
)

− η

2
E
(

R2
)

)

ρD − 1

2
E
(

R2
)

ρ2D

}

(4.15)

≥ λ
[(

(
√
n+ θ)ER+ ηE(Y R)− η

2
E(R2)

)]

ρD

− nλeρD(x−αm)

hD(m)
E

((

1− hD(m)
(

1− e−ρD(x−R/
√
n−αm)

))

1{x−R/
√
n≥αm}

)

− nλeρD(x−αm)

hD(m)

E
(

1{x−R/
√
n<αm}

)

1− δ/
√
n

+
nλeρD(x−αm)

hD(m)
E

(

1− hD(m)
(

1− e−ρD(x−αm)
))

,

for all admissible retention functions R, or equivalently,

1

2n
E
(

R2
)

ρ2D

≤ −1− ρDER√
n

+ eρD(x−αm)

(

δ/
√
n

hD(m)(1− δ/
√
n)

+ 1

)

E
(

1{x−R/
√
n<αm}

)

+ E

(

e
ρDR√

n 1{x−R/
√
n≥αm}

)

=

∫ ∞

0

(

e
ρDR(y)√

n − 1− ρDR(y)√
n

)

dFY (y)

+

∫ ∞

0

(

eρD(x−αm)

(

δ/
√
n

hD(m)(1 − δ/
√
n)

+ 1

)

− e
ρDR(y)√

n

)

1{x−R/
√
n<αm}dFY (y). (4.16)

From ex > 1− x− x2/2 for all x > 0, we deduce

1

2n
E
(

R2
)

ρ2D <

∫ ∞

0

(

e
ρDR(y)√

n − 1− ρDR(y)√
n

)

dFY (y).
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Thus, to prove (4.16), it is enough to prove the stronger inequality

∫ ∞

0

(

e
ρD√

n(R(y)−√
n(x−αm)) − δ/

√
n

hD(m)(1 − δ/
√
n)

− 1

)

1{x−R(y)/
√
n<αm}dFY (y) ≤ 0, (4.17)

and we wish to find values of δ and N > δ2 for which inequality (4.17) holds for all n > N and

x > 0. Note that the maximal retention function of the integrand in (4.17) is R(y) = y; thus, to

prove (4.17), it is sufficient to prove

∫ ∞

0

(

e
ρD√

n(y−
√
n(x−αm)) − δ/

√
n

hD(m)(1 − δ/
√
n)

− 1

)

1{x−y/
√
n<αm}dFY (y) ≤ 0,

that is,

∫ ∞

√
n(x−αm)

(

e
ρD√

n(y−
√
n(x−αm)) − δ/

√
n

hD(m)(1 − δ/
√
n)

− 1

)

dFY (y) ≤ 0.

Let d denote
√
n(x− αm). If SY (d) = 0, then the left side is identically 0, so suppose SY (d) > 0.

After replacing
√
n(x− αm) by d and dividing by SY (d), the above inequality becomes

∫ ∞

d

(

e
ρD√

n
(y−d) − δ/

√
n

hD(m)(1 − δ/
√
n)

− 1

)

dFY (y)

SY (d)
≤ 0,

for d ≥ 0, or equivalently,

∫ ∞

d

(

e
ρD√

n
(y−d) − 1

) dFY (y)

SY (d)
≤ δ/

√
n

hD(m)(1− δ/
√
n)

. (4.18)

Formally, define Zd = (Y − d)
∣

∣(Y > d); then, inequality (4.18) becomes

∫ ∞

0

(

e
ρDz√

n − 1
)

dFZd
(z) ≤ δ/

√
n

hD(m)(1− δ/
√
n)

.

Note that 0 < hD(m) < 1; thus, if we find δ to satisfy the following even stronger inequality, then

the above sequence of inequalities holds:

∫ ∞

0

(

e
ρDz√

n − 1
)

dFZd
(z) ≤ δ√

n
. (4.19)

Rewrite the integrand from the left side of inequality (4.19) as follows:

e
ρDz√

n − 1 =
ρDz√
n

+
ρ2Dz

2

n

∫ 1

0
(1− ω)e

ρDz√
n

ω
dω.

Thus, inequality (4.19) is equivalent to

∫ ∞

0

(

ρDz√
n

+
ρ2Dz

2

n

∫ 1

0
(1− ω)e

ρDz√
n

ω
dω

)

dFZd
(z) ≤ δ√

n
,
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or, after multiplying both side by
√
n and switching the order of integration,

ρDEZd +
ρ2D√
n

∫ 1

0
(1− ω)E

(

Z2
d e

ρDω√
n

Zd

)

dω ≤ δ,

or more strongly,

ρDEZd +
ρ2D√
n
E

(

Z2
d e

ρD√
n
Zd

)

≤ δ. (4.20)

Note that the left side of (4.20) decreases with increasing n. Define δ and N as in (4.8) and

(4.9), respectively; then, inequality (4.20) holds for all d ≥ 0 and all n > N , which implies that

LRn
n ℓn(x,m) ≥ 0 for all (x,m) ∈ D and all n > N . The conclusion in (4.11), then, follows from

Theorem 2.1.

In the following two propositions, we show that the condition in (4.7) includes most of the usual

claim distributions with light tails.

Proposition 4.3. Suppose Y has bounded support in R+, then (4.7) holds.

Proof. Let b > 0 be such that FY (b) = 1. Let a = ρD/
√
ς, and define the function G by

G(d) = E
(

eaZd
)

, (4.21)

which implies

G(d) =

∫ b
d ea(y−d)dFY (y)

SY (d)
1{d<b}.

Because ea(y−d) ≤ ea(b−d) for all 0 ≤ y ≤ b, we have

G(d) ≤ ea(b−d),

so its supremum over R+ is finite.

Proposition 4.4. Suppose Y has a probability density function fY with unbounded support on R+,

and let hY denote the hazard rate function of Y , that is,

hY (y) =
fY (y)

SY (y)
, (4.22)

for y ≥ 0. Furthermore, suppose

lim
y→∞

hY (y) = ℓ. (4.23)

If ℓ = 0, then MY (y) = ∞ for all y > 0, which contradicts our assumption concerning Y ’s moment

generating function. On the other hand, if ℓ > 0, then (4.7) holds.
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Proof. The first conclusion in the statement of this proposition follows from Theorem 2.5.1 in Rolski

et al. [19], so suppose ℓ > 0. Let ς be large enough so that a = ρD/
√
ς < ℓ/2 with MY (a) < ∞. As

in the proof of Proposition 4.3, define the function G by (4.21). By applying L’Hôpital’s rule, we

obtain

lim
d→∞

G(d) = lim
d→∞

∫∞
d eayfY (y)dy

eadSY (d)

L’H
= lim

d→∞
−eadfY (d)

aeadSY (d)− eadfY (d)

= lim
d→∞

hY (d)

−a+ hY (d)
=

ℓ

ℓ− a
> 0.

Because G is continuous on R+, it follows that supd≥0 G(d) < ∞.

4.2 Convergence of ψn to ψD

In this section we prove an important result, namely, that as n → ∞, ψn converges to ψD uniformly

on D, with rate of convergence of order O(n−1/2). In the following theorem, we combine the results

of Propositions 4.1 and 4.2.

Theorem 4.1. If (4.7) holds, then there exist C ′ > 0 and N ′ > 0 such that, for all n ≥ N ′ and

(x,m) ∈ D,

∣

∣ψn(x,m)− ψD(x,m)
∣

∣ ≤ C ′
√
n
. (4.24)

Proof. From Propositions 4.1 and 4.2 it follows that
(

1− δ√
n

)

ψD(x,m) < ψn(x,m) < un(x,m).

Subtracting ψD(x,m) from each side yields

− δ√
n
ψD(x,m) < ψn(x,m)− ψD(x,m) < un(x,m)− ψD(x,m). (4.25)

Clearly, the left side is bounded below by −δ/
√
n. From (2.36), (2.37), (4.4), and (4.5), we deduce

that the right side is positive and equals

(

1− e−ρD(1−α)m
)

α
1−α

(

1− e−ρD(x−αm)
)

−
(

1− e−(ρD−C/
√
n)(1−α)m

)
α

1−α
(

1− e−(ρD−C/
√
n)(x−αm)

)

=
(

1− e−ρD(x−αm)
)

[

(

1− e−ρD(1−α)m
)

α
1−α −

(

1− e−(ρD−C/
√
n)(1−α)m

)
α

1−α

]

+
(

1− e−(ρD−C/
√
n)(1−α)m

)
α

1−α
[(

1− e−ρD(x−αm)
)

−
(

1− e−(ρD−C/
√
n)(x−αm)

)]

. (4.26)
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First, analyze the next-to-the-last line in (4.26): for n > (C/ρD)
2, we have

0 ≤
(

1− e−ρD(x−αm)
)

[

(

1− e−ρD(1−α)m
)

α
1−α −

(

1− e−(ρD−C/
√
n)(1−α)m

)
α

1−α

]

≤
[

(

1− e−ρD(1−α)m
)

α
1−α −

(

1− e−(ρD−C/
√
n)(1−α)m

)
α

1−α

]

=
(

1− e−ρD(1−α)m
)

α
1−α



1−
(

1− e−(ρD−C/
√
n)(1−α)m

1− e−ρD(1−α)m

)
α

1−α





≤ 1−
(

1− e−(ρD−C/
√
n)(1−α)m

1− e−ρD(1−α)m

)
α

1−α

.

It is straightforward to show that the last line of the above expression decreases with respect to

m; therefore, by applying L’Hôpital’s rule to take the limit as m goes to 0 of the expression in

parentheses, we obtain

0 ≤
(

1− e−ρD(x−αm)
)

[

(

1− e−ρD(1−α)m
)

α
1−α −

(

1− e−(ρD−C/
√
n)(1−α)m

)
α

1−α

]

≤ 1−
(

1− C

ρD
√
n

)
α

1−α

.

If b ≥ 1, then 1− (1− x)b is concave on [0, 1], so lies below its tangent line at x = 0, which implies

1− (1− x)b ≤ bx for all 0 ≤ x ≤ 1. If 0 < b < 1, then 1− (1− x)b is convex on [0, 1], so lies below

its secant line between (0, 0) and (1, 1), which implies 1− (1− x)b ≤ x for all 0 ≤ x ≤ 1. Thus, by

choosing any M > (C/ρD)
2, we conclude that n ≥ M implies

0 ≤
(

1− e−ρD(x−αm)
)

[

(

1− e−ρD(1−α)m
)

α
1−α −

(

1− e−(ρD−C/
√
n)(1−α)m

)
α

1−α

]

≤ max

(

α

1− α
, 1

)

· C

ρD
√
n
. (4.27)

Next, analyze the last line of (4.26): for n > (C/ρD)
2, calculus shows that

(

1− e−ρD(x−αm)
)

−
(

1− e−(ρD−C/
√
n)(x−αm)

)

≤
(

1− C

ρD
√
n

)

ρD
√

n

C

( C√
n

ρD − C√
n

)

. (4.28)

The first factor on the right side of (4.28) converges to e−1; thus, there exists M ′ > (C/ρD)
2 such

that
(

1− C

ρD
√
n

)

ρD
√

n

C

≤ 2e−1,
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for all n ≥ M ′, which implies that the last line in (4.26) satisfies

0 ≤
(

1− e−(ρD−C/
√
n)(1−α)m

)
α

1−α
[(

1− e−ρD(x−αm)
)

−
(

1− e−(ρD−C/
√
n)(x−αm)

)]

≤ 2e−1 C

ρD − C√
M ′

· 1√
n
, (4.29)

for all n ≥ M ′.

By combining (4.27) and (4.29), by setting N ′ = max(N,M,M ′), and by setting

C ′ = max

{

δ, max

(

α

1− α
, 1

)

· C

ρD
+ 2e−1 C

ρD − C√
M ′

}

,

we obtain (4.24).

4.3 O(n−1/2)-optimality of retaining RD,n in the n-scaled model

We end this paper by showing that, if an insurer follows the optimal retention strategy for the

diffusion model but surplus follows the n-scaled model, then the resulting probability of drawdown

is O(n−1/2)-optimal. To that end, let ψD,n denote the probability of drawdown when the insurer

retains RD,n in (2.40) when surplus follows the n-scaled model. Then, we have the following theorem

whose proof is similar to the proof of Theorem 2.2, so we omit it.

Theorem 4.2. Suppose v ∈ C1,1(D) is a bounded function that satisfies the following conditions:

(i) lim
m→∞

v(m,m) ≥ 0.

(ii) v(x,m) is defined for all x ≤ m and m ≥ 0, with v(x,m) = 1 for all x < αm.

(iii) vm(m,m) ≤ 0 for all m ≥ 0.

(iv) LRD,n
n v(x,m) ≤ 0 for all (x,m) ∈ D.

Then, ψD,n ≤ v on D.

By analogy with the expressions for ψD and ψn in (2.36) and (4.1), respectively, define ψD,n

for x ≤ m and m ≥ 0 as follows:

ψD,n(x,m) =











1− hD,n(m)
(

1− e−ρn(RD)(x−αm)
)

, (x,m) ∈ D,

1, x < αm,

(4.30)
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in which hD,n is defined by

hD,n(m) =
(

1− e−ρn(RD)(1−α)m
)

α
1−α

, (4.31)

for all m ≥ 0. In (4.30) and (4.31), ρn(RD) > 0 uniquely solves (3.4) with the supR removed, as

defined at the beginning of the proof of Lemma 3.1.

In the following lemma, we use Theorem 4.2 to prove that ψD,n is an upper bound of ψD,n.

Lemma 4.2. For all (x,m) ∈ D,

ψD,n(x,m) ≤ ψD,n(x,m). (4.32)

Proof. We prove this lemma via Theorem 4.2. First, note that ψD,n ∈ C1,1(D) by its definition.

Next, we go through each condition in Theorem 4.2 in turn.

Condition (i):

lim
m→∞

ψD,n(m,m) = lim
m→∞

(

1− hD,n(m)
(

1− e−ρn(RD)(1−α)m
))

= 1− lim
m→∞

(

1− e−ρn(RD)(1−α)m
)

α
1−α

+1
= 1− 1 = 0,

so condition (i) is satisfied with equality.

Condition (ii): This condition, namely, that ψD,n(x,m) is defined for all x ≤ m and m ≥ 0, with

ψD,n(x,m) = 1 for all x < αm, is satisfied by the definition of ψD,n in (4.30).

Condition (iii): For m > 0, differentiate ψD,n with respect to m and simplify the expression to

obtain

(ψD,n)m(x,m) =
αρn(RD)hD,n(m)

1− e−ρn(RD)(1−α)m

(

e−ρn(RD)(x−αm) − e−ρn(RD)(1−α)m
)

,

which equals 0 when x = m. Therefore, condition (iii) is satisfied with equality.

Condition (iv): From (3.18), we know ρn(RD) satisfies

−κ+ λ
[

(
√
n+ θ)ERD + ηE(Y RD)−

η

2
E(R2

D)
]

=
nλ

ρn(RD)

(

Eeρn(RD)RD/
√
n − 1

)

.
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Then, for (x,m) ∈ D, the expression in (2.34) gives us

LRD,n
n ψD,n(x,m) =

[

−κn + λn

(

(1 + θn)EnRD,n + ηEn(YnRD,n)−
η

2
En((RD,n)

2)
)]

(ψD,n)x(x,m)

+ λn

(

EnψD,n(x−RD,n,m)− ψD,n(x,m)
)

=
[

−κ+ λ
(

(
√
n+ θ)ERD + ηE(Y RD)−

η

2
E(R2

D)
)]

(ψD,n)x(x,m)

+ nλ
(

EψD,n(x−RD/
√
n,m)− ψD,n(x,m)

)

=
nλ

ρn(RD)

(

Eeρn(RD)RD/
√
n − 1

)

(

− ρn(RD)hD,n(m)e−ρn(RD)(x−αm)
)

+ nλ
[

E

((

1− hD,n(m)
(

1− e−ρn(RD)(x−RD/
√
n−αm)

))

1{x−RD/
√
n≥αm}

)]

+ nλ
[

E
(

1{x−RD/
√
n<αm}

)

−
(

1− hD,n(m)
(

1− e−ρn(RD)(x−αm)
))]

= −nλhD,n(m)E
(

(

eρn(RD)(αm−(x−RD/
√
n)) − 1

)

1{x−RD/
√
n<αm}

)

≤ 0.

Thus, we have proved condition (iv). Theorem 4.2, then, implies inequality (4.32) on D.

We obtain the following proposition from Lemma 4.2, in which we show that un in (4.4) is an

upper bound of ψD,n.

Proposition 4.5. Let C and N be as in the statement of Lemma 3.2; then, for n ≥ N ,

ψD,n ≤ un, (4.33)

on D, in which un is defined in (4.4).

Proof. It is straightforward to show that ψD,n in (4.30) decreases with respect to ρn(RD) > 0 on

D. Thus, if we replace ρn(RD) in ψD,n’s definition with a (positive) parameter less than ρn(RD),

then we get a function that is an upper bound of ψD,n. That is exactly how we defined un in (4.4)

because, from inequality (3.22) in the proof of Lemma 3.2, we know 0 < ρD −C/
√
n < ρn(RD) for

all n ≥ N ; thus, we have, from Lemma 4.2,

ψD,n ≤ ψD,n ≤ un,

on D.

The following theorem is the main result of this paper, and it fully justifies using the optimal

retention function for the diffusion approximation in the classical Cramér-Lundberg model when

minimizing the probability of drawdown.
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Theorem 4.3. Suppose (4.7) holds, and let C ′ > 0 and N ′ > 0 be as in Theorem 4.1. Then, for

all n ≥ N ′ and (x,m) ∈ D,
∣

∣ψn(x,m)− ψD,n(x,m)
∣

∣ ≤ 2C ′
√
n
. (4.34)

Proof. From the suboptimality of using RD,n, we have ψn ≤ ψD,n on D. From Proposition 4.5, we

have ψD,n ≤ un for n ≥ N . Thus, from the proof of Theorem 4.1, we deduce

− C ′
√
n
≤ ψn − ψD ≤ ψD,n − ψD ≤ un − ψD ≤ C ′

√
n
,

on D for n ≥ N ′; recall N ′ ≥ N . Thus,

∣

∣ψD − ψD,n

∣

∣ ≤ C ′
√
n

on D for n ≥ N ′. This inequality, together with (4.24) and the triangle inequality, proves (4.34).
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