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Abstract

In this paper we address the problem of optimal dividend payout strategies from a surplus
process governed by Brownian motion with drift under a drawdown constraint, i.e. the dividend
rate can never decrease below a given fraction a of its historical maximum. We solve the resulting
two-dimensional optimal control problem and identify the value function as the unique viscosity
solution of the corresponding Hamilton-Jacobi-Bellman equation. We then derive sufficient con-
ditions under which a two-curve strategy is optimal, and show how to determine its concrete form
using calculus of variations. We establish a smooth-pasting principle and show how it can be used
to prove the optimality of two-curve strategies for sufficiently large initial and maximum dividend
rate. We also give a number of numerical illustrations in which the optimality of the two-curve
strategy can be established for instances with smaller values of the maximum dividend rate, and
the concrete form of the curves can be determined. One observes that the resulting drawdown
strategies nicely interpolate between the solution for the classical unconstrained dividend problem
and the one for a ratcheting constraint as recently studied in [1]. When the maximum allowed
dividend rate tends to infinity, we show a surprisingly simple and somewhat intriguing limit re-
sult in terms of the parameter a for the surplus level on from which, for sufficiently large current
dividend rate, a take-the-money-and-run strategy is optimal in the presence of the drawdown
constraint.

1. Introduction and model

Assume that the surplus process of a company is given by a Brownian motion with drift

Xt = x+ µt+ σWt, (1.1)

where Wt is a standard Brownian motion, and µ, σ > 0 are given constants. Let (Ω,F , (Ft)t≥0 ,P) be the
complete probability space generated by the process Xt. Assume further that the company uses part of the
surplus to pay dividends to the shareholders with rates in a set [0, c], where c > 0 is the maximum dividend
rate possible. Let Dt denote the rate at which the company pays dividends at time t, then the controlled
surplus process can be written as

XD
t = Xt −

∫ t

0

Dsds. (1.2)

It is a classical problem in risk theory to find the dividend strategy D = (Dt)t≥0 that maximizes the expected
sum of discounted dividend payments

J(x;D) = E
[∫ τ

0

e−qsDsds

]
(1.3)
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over a set of admissible candidate strategies. Here q > 0 is a discount factor and τ = inf
{
t ≥ 0 : XD

t < 0
}

is the ruin time of the controlled process. De Finetti [15] was the first to consider a problem of this kind for
a simple random walk, and Gerber [19, 20] considered extensions, including the diffusion setup (1.1) given
above. For a finite maximum dividend rate c, this problem was then further investigated by Shreve et al.
[29], Jeanblanc and Shiryaev [23], Radner and Shepp [27], Asmussen and Taksar [7] and Gerber and Shiu
[21]. Since then, a lot of variants of this problem for the process (1.1) and more general underlying risk
processes have been considered, see e.g. the surveys [4] and [8].
For the diffusion model (1.1), in [1] we recently studied this optimal dividend problem under a ratcheting
constraint, i.e. under the assumption that the dividend rate can never be decreased over the lifetime of the
process, which renders the respective control problem two-dimensional, where the first dimension is the cur-
rent surplus and the second dimension is the currently employed dividend rate. One motivation to consider
that constraint was that it may be psychologically preferable to shareholders to not experience a decrease
of dividend payments, and it is interesting to see to what extent such a constraint leads to an overall per-
formance loss.

In this paper we would like to go one step further and allow reductions of the dividend rate over time,
but only up to a certain percentage a of the largest already exercised dividend rate (”drawdown”). More
formally, a dividend drawdown strategy D = (Dt)t≥0 with drawdown constraint a ∈ [0, 1] is one that satisfies
Dt ∈ [aRt, c], where Rt is the running maximum of the dividend rates, that is

Rt := max{Ds : 0 ≤ s ≤ t} ∨ c;

here we denote the initial dividend rate by R0− = c. A dividend drawdown strategy is called admissible if
it is right-continuous and adapted with respect to the filtration (Ft)t≥0 .

Define Π
[0,c]
x,c,a as the set of all admissible dividend drawdown strategies with initial surplus x ≥ 0, initial

running maximum dividend rate c ∈ [0, c] and drawdown constraint a ∈ [0, 1]. Given D ∈ Π
[0,c]
x,c,a, the value

function of this strategy is given by (1.3). Hence, for any initial surplus x ≥ 0, initial running maximum
dividend rate c ∈ [0, c] and drawdown constraint a ∈ [0, 1], our aim in this paper is to maximize

V ca (x, c) = sup
D∈Π

[0,c]
x,c,a

J(x;D). (1.4)

Note that the limit case a = 1 corresponds to the ratcheting case (considered previously in [1]) and the limit
case a = 0 corresponds to the optimization of bounded dividend rates without any drawdown constraint.

Drawdown phenomena have been studied in various contexts in the literature. On the one hand, draw-
down times and properties of uncontrolled stochastic processes were investigated in quite some generality
(see for instance Landriault et al. [25] for the case of Lévy processes). In the context of control problems,
drawdown constraints on the wealth have been considered in portfolio problems in the mathematical finance
literature, see for instance Elie and Touzi [18], Chen et al. [14] and Kardaras et al. [24]. For a minimization
of drawdown times of a risk process through dynamic reinsurance, see Brinker [11] and Brinker and Schmidli
[12]. Our context, however, is different, as we are interested in implementing a drawdown constraint on
the payment structure of the dividend rates, i.e., as a constraint on the admissible dividend policies. In
that sense, our approach is closer related to problems of lifetime consumption in the mathematical finance
literature, see Angoshtari et al. [5] who extend the Dusenberry’s ratcheting problem of consumption studied
by Dybvig [16] to drawdown constraints. However, the concrete model setup and embedding, and also the
involved techniques there are very different from dividend problems of the De Finetti-type as studied in this
paper.

After deriving some basic analytic properties of the value function V ca (x, c) of our drawdown problem
in Section 3, we will derive a Hamilton-Jacobi-Bellman equation for V ca (x, c) in Section 4 and show that
V ca (x, c) is its unique viscosity solution with suitable boundary condition. We then, in Section 5, briefly
study in more detail the value function when one already starts at the maximal dividend rate c, which serves
as a crucial ingredient in the derivation of V ca (x, c) in Section 6. Sufficient conditions are given under which
the optimal strategy for bounded dividend rates is a two-curve strategy in the space (x, c) ∈ (0,∞)× [0, c],
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which is partitioned by two curves γc(c) and ζc(c), with γc(c) < ζc(c) for all c ∈ [0, c]: if for a given c,
x < γc(c), then dividends are paid at rate ac; if γc(c) ≤ x ≤ ζc(c), then dividends are paid at rate c; finally,
if x > ζc(c), then the dividend rate c is increased immediately until x = ζc(c1) for some c1 ∈ (c, c) (or
c = c, whichever happens first) is reached. We furthermore establish a smooth-pasting principle for these
optimal curves. In Section 7 it is shown that the limits of γc(c) and ζc(c) as c→∞ are finite, and given by
surprisingly explicit formulas:

lim
c→∞

γc(c) =
µ

q
and lim

c→∞
ζc(c) =

µ

q

(
1 +

1√
a

)
. (1.5)

This nicely extends the respective limit 2µ/q of the ratcheting curve that was identified for pure ratcheting
(a = 1) in [1, Lem.5.21].
In Section 8 we then look further into the limiting case, and show that for sufficiently large c, one has
γc(c) ↗ γc(c) and ζc(c) ↘ ζc(c) as c → c. This enables to establish the general optimality of two-curve
strategies whenever the current dividend rate c and the maximal dividend rate c are sufficiently large. At
the same time, the negative derivative of ζc(c) close to (sufficiently large) c is notably different from the
pure ratcheting case (a = 1) for which it was shown in [1] that the corresponding derivative is positive for
all c close to c (and indeed the leading term in the asymptotics of 0 < a < 1 breaks down for a = 1 so that
some sort of phase transition happens). The simplicity of the right-hand limit in (1.5) and in particular the
appearance of the square-root of the drawdown coefficient a in the right-hand limit are somewhat intriguing.
In the absence of an upper limit for the dividend rate, it identifies the minimum surplus level x on from
which, for sufficiently large current dividend rate, it is preferable to pay out all the surplus x immediately
and generate ruin by doing so (a so-called ”take-the-money-and-run”-strategy, see e.g. [26]), and that value
does not depend on the size of the volatility σ. Consequently, one can get some intuition on its nature
in the much simpler deterministic model with σ = 0, which we will therefore consider in Section 2 before
approaching the general case σ > 0 in the rest of the paper.
We give numerical illustrations in Section 9, where we establish the optimality of two-curve strategies also
for smaller magnitudes of c and c by numerically showing that the sufficient conditions from Section 6 are
satisfied. We obtain the optimal curves by calculus of variation techniques and discuss the properties of
the value functions of the drawdown dividend problem and their comparison to classical and ratcheting
solutions for various parameter combinations. Finally, Section 10 concludes, and Section 11 collects some
longer formulas appearing in the paper in a compact form.

2. Some intuition from the deterministic case

Assume in this section for simplicity a completely deterministic model

Xt = x+ µt

with a positive drift µ > 0 (for the study of such a model in another context in the dividend literature, see
e.g. [17]). Then a constant dividend rate c = µ throughout time will keep the surplus at level x for all t ≥ 0
and correspondingly

E
[∫ τ

0

e−qsDsds

]
= E

[∫ ∞
0

e−qsµds

]
=
µ

q

for any x > 0. Consequently, whenever the initial surplus x is larger than µ/δ, paying out all the surplus
at the beginning (causing immediate ruin) will be preferable to any other dividend strategy subject to the
constraint c ≤ µ.
At the same time, if a constant dividend rate c > µ is applied, the controlled process will lead to ruin at
time t = x/(c− µ) and we obtain instead

E
[∫ τ

0

e−qsDsds

]
= E

[∫ x/(c−µ)

0

e−qsc ds

]
=
c

q

(
1− e−qx/(c−µ)

)
= x+ x

2µ− qx
2c

+O

(
1

c2

)
.
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The latter shows that whenever x > 2µ/q, if allowed to do so, paying out all the surplus x immediately (and
causing immediate ruin) will be preferable to any other constant dividend strategy with large c. In other
words, the potential gain from later ruin and therefore more dividend income (by exploiting the positive
drift, without any risk) is outweighed by the discounting of such later dividend payments. This can also be
seen as an intuitive explanation of the limit 2µ/q in [1, Lem.5.21].

Let us now proceed to the case with drawdown: Assume that we start with initial capital x > b for
some b to be determined and that we pay dividends at rate c > µ until we reach that lower level b at time
t = (x − b)/(c − µ), from which time on we reduce the dividend payments to level a · c according to our
drawdown constraint. In the deterministic model of this section, this then leads to

E
[∫ τ

0

e−qsDsds

]
=
c

q

(
1− e−q

x−b
c−µ

)
+ e−q

x−b
c−µ · a c

q

(
1− e−q

b
ac−µ

)
. (2.1)

Taking the derivative with respect to b and setting it zero gives, after simple calculations, for large c, the
optimal level

b∗(c) =
ac− µ
q

log

(
ac

ac− µ

)
(2.2)

=
µ

q
− µ2

2aqc
+O

(
1

c2

)
.

But if one substitutes that value of b into (2.1), then an expansion at c =∞ gives

E
[∫ τ

0

e−qsDsds

]
= x+

2axqµ− ax2q2 + µ2(1− a)

2aq c
+O

(
1

c2

)
. (2.3)

The numerator in the second term is negative exactly when

x >
µ

q

(
1 +

1√
a

)
,

so that in those cases it is preferable to immediately pay x as a lump sum dividend and go to ruin immediately
(if that is allowed) rather than following the above refracting strategy, as the value x can not be realized at
any later point in time in view of the discounting, despite the continuing deterministic income with drift µ.
One may expect that the size of the volatility does not matter when c→∞, and indeed, as a by-product of
the results of this paper, it will be shown in Section 7 that the same limit can be established for the general
case σ > 0, cf. Proposition 7.3. Another way to state this is the following: if one defines x∗(c) as the surplus
value for which, when already currently paying the maximum dividend rate c, one is indifferent whether to
further increase the dividend rate or not, then the above result establishes that limc→∞ x∗(c) = µ

q (1+1/
√
a),

and it will be in terms of that notation that the more general result is proved in Section 7.

3. Basic results

Recall the definition of our optimal value function V ca (x, c) (1.4) and denote by V∞a (x, c) the corresponding
function when there is no ceiling on dividend rates, i.e. c =∞. It is immediate to see that V ca (0, c) = 0 for
all c ∈ [0, c] and a ∈ [0, 1].

Remark 3.1. As mentioned in the introduction, the dividend optimization problem without drawdown
constraint has a long history and, for a finite c and the diffusion setup, was first addressed in Shreve
et al. [29]. Unlike the drawdown optimization problem, the problem without the drawdown constraint is

one-dimensional. If we denote its optimal value function by V
c
(x), then clearly V c0 (x, c) = V

c
(x) and

V ca (x, c) ≤ V
c
(x) for all x ≥ 0, a ∈ [0, 1] and c ∈ [0, c]. The function V

c
is increasing, concave, twice

continuously differentiable with V
c
(0) = 0 and limx→∞ V

c
(x) = c/q; so it is Lipschitz with Lipschitz

constant
(
V
c
)′

(0).

4



Remark 3.2. The dividend optimization problem without any constraint was addressed by Gerber and
Shiu [21] and Schmidli [28]. If V (x) denotes its optimal value function, we have V (x) = V∞0 (x, c) for any
c > 0. Clearly V∞a (x, c) ≤ V (x) for all a ∈ [0, 1]. The function V is increasing, concave, twice continuously

differentiable with V (0) = 0 and x ≤ V (x) ≤ x+ µ/q; so it is Lipschitz with Lipschitz constant V
′
(0).

Proposition 3.1. It holds that V ca (x, c)↗ V∞a (x, c) as c→∞.

Proof. It is straightforward that for any c1 ≤ c2, V c1a (x, c) ≤ V c2a (x, c) ≤ V∞a (x, c) for 0 ≤ c ≤ c1. Take

for any ε > 0, a strategy D = (Dt)t≥0 ∈ Π
[0,∞)
x,c,a with ruin time τ , such that V∞a (x, c) ≤ J(x;D) + ε. Let us

consider for an increasing sequence with cn →∞ and c1 > c, Dn = (Dt ∧ cn)t≥0 ∈ Π
[0,cn)
x,c,a and let τn ≥ τ be

the ruin time of Dn. Then, by the theorem of monotone convergence,

lim
n→∞

J(x;Dn
t ) = lim

n→∞
E

[∫ τn

0

e−qsDn
s ds

]
≥ lim
n→∞

E
[∫ τ

0

e−qsDn
s ds

]
= J(x;D)

and so we have the result. �

We now state a straightforward result regarding the boundedness and monotonicity of the optimal value
functions.

Proposition 3.2. In the case c <∞, the optimal value function V ca (x, c) is bounded by c/q with limx→∞ V ca (x) =
c/q, non-decreasing in x and non-increasing in c.

Proof. By Remark 3.1 and Theorem 3.3 of [1], we have that

V c1 (x, c) ≤ V ca (x, c) ≤ V c(x)

with limx→∞ V c1 (x, c) = limx→∞ V
c
(x) = c/q, so V ca is bounded by c/q with limx→∞ V ca (x, c) = c/q.

On the one hand V ca (x, c) is non-increasing in c because given c1 < c2 ≤ c, we have Π
[0,c]
x,c2,a ⊂ Π

[0,c]
x,c1,a for

any x ≥ 0. On the other hand, given 0 ≤ x1 < x2 and an admissible ratcheting strategy D1 ∈ Π
[0,c]
x1,c,a for any

c ∈ [0, c], let us define D2 ∈ Π
[0,c]
x2,c,a as D2,t = D1.t until the ruin time of the controlled process XD1

t with

XD1

0 = x1, and pay the maximum rate c afterwards. Thus, J(x;D1) ≤ J(x;D2) and we have the result. �

Proposition 3.3. V∞a (x, c) is non-decreasing in x and non-increasing in c. For the case a > 0, we have
limc→∞ V∞a (x, c) = x. Moreover x ≤ V∞a (x, c) ≤ x+ µ/q.

Proof. By Propositions 3.1 and 3.2, we have that V∞a (x, c) is non-decreasing in x and non-increasing
in c. Let us show now that V∞a (x, c) ≥ x. The function V∞a (x, c) is bounded from below by the expected
discounted dividends resulting from the strategy of paying a constant rate n up to ruin. Defining τn = inf{t :
x+ (µ− n)t+ σWt = 0}, one gets

V∞a (x, c) = lim
n→∞

V na (x, c) ≥ lim
n→∞

E
[∫ τn

0

e−qs nds

]
= lim
n→∞

n

q
(1− E[e−qτn ]) = x,

where the last equality follows from Formula 2.0.1 on page 295 of Borodin & Salminen [10].

Finally, let us see that limc→∞ V∞a (x, c) ≤ x. Take for any ε > 0 and for each c, Dc = (Dc
t )t≥0 ∈ Π

[0,∞)
x,c,a ,

such that
V∞a (x, c) ≤ J(x;Dc) + ε.

The corresponding ruin time is then given by

τ c = inf
{
t : x+ µt+ σWt −

∫ t
0
Dc
sds = 0

}
and Dc

s ≥ ac. Hence, ∫ τc
0
Dc
sds = x+ µτ c + σWτc

5



and so

τ c ≤ inf {s : x+ (µ− ac)s+ σWs ≤ 0} = inf

{
s : Ws ≤

−x+ (ac− µ)s

σ

}
.

Hence, for c > µ/a, τ c <∞ a.s. and E [τ c]→ 0 as c→∞. Therefore,

limc→∞ E[
∫ τc

0
e−qsDc

sds] ≤ limc→∞ E[
∫ τc

0
Dc
sds]

= limc→∞ E[x+ µτ c + σWτc ]
= x+ µ limc→∞ E[τ c] = x

and so we have the result. �

The Lipschitz property of the function V can now be used to prove a global Lipschitz result on the
regularity of the optimal value function.

Proposition 3.4. In both the restricted case c <∞ and the unrestricted case c =∞, we have that

0 ≤ V ca (x2, c1)− V ca (x1, c2) ≤ K [(x2 − x1) + (c2 − c1)]

for all 0 ≤ x1 ≤ x2 and c1, c2 ∈ [0, c] with c1 ≤ c2, with K = max{ e
−1

q a, 1}V ′(0).

Proof. In the case c <∞, by Proposition 3.2, we have

0 ≤ V ca (x2, c1)− V ca (x1, c2) (3.1)

for all 0 ≤ x1 ≤ x2 and c1, c2 ∈ [0, c] with c1 ≤ c2.
Let us show now, that there exists K1 > 0 such that

V ca (x2, c)− V ca (x1, c) ≤ K1 (x2 − x1) (3.2)

for all 0 ≤ x1 ≤ x2. Take ε > 0 and D ∈ Π
[0,c]
x2,c,a such that

J(x2;D) ≥ V ca (x2, c)− ε, (3.3)

the associated control process is given by

XD
t = x2 +

∫ t

0

(µ−Ds)ds+ σWt.

Let τ be the ruin time of the process XD
t . Define D̃ ∈ Π

[0,c]
x1,c,a as D̃t = Dt and the associated control process

XD̃
t = x1 +

∫ t

0

(µ−Ds)ds+ σWt.

Let τ̃ ≤ τ be the ruin time of the process XD̃
t ; it holds that XD

t −XD̃
t = x2 − x1 for t ≤ τ̃ .

We can write

J(x2;D)− J(x1; D̃) = E
[∫ τ
τ̃
e−qsDsds

]
= E

[
E
[∫ τ
τ̃
e−qsDsds

∣∣Fτ̃ ]]
= E

[
E
[
e−qτ̃

∫ τ−τ̃
0

e−quDτ̃+udu
∣∣∣Fτ̃]]

≤ E
[
E
[∫ τ−τ̃

0
e−quDτ̃+udu

∣∣∣Fτ̃]]
≤ V ca (x2 − x1, 0).

(3.4)

The last inequality of (3.4) involves a shift of stopping times and follows from Theorem 2 of Claisse, Talay
and Tan [13]. Indeed, the assumptions of this theorem are satisfied, because we can write our controlled
process as

dXs = b(s,X,Ds)ds+ σ(s,X,Ds)dWs,

6



where b(s, x, d) = µ− d, σ(s, x, d) ≡ σ and Ws is a standard Brownian motion. Hence we have

V ca (x2, c)− V ca (x1, c) ≤ J(x2;D)− J(x1; D̃) + ε
≤ V c(x2 − x1, 0) + ε
≤ V (x2 − x1) + ε
≤ K1(x2 − x1) + ε.

(3.5)

So, by Remark 3.2, we have (3.2) with K1 = V
′
(0).

Let us show now that, given c1, c2 ∈ [0, c] with c1 ≤ c2, there exists K2 > 0 such that

V ca (x, c1)− V ca (x, c2) ≤ K2 (c2 − c1) . (3.6)

Take ε > 0 and D ∈ Π
[0,c]
x,c1,a such that

J(x;D) ≥ V ca (x, c1)− ε (3.7)

and denote by τ the ruin time of the process XD
t .

Let us consider D̃ ∈ Π
[0,c]
x,c2 as D̃t = max{Dt, ac2}; denote by XD̃

t the associated controlled surplus process

and by τ ≤ τ the corresponding ruin time. We have that D̃s −Ds ≤ ac2 − ac1 and so XD
τ = XD

τ −XD̃
τ ≤

a(c2 − c1)τ . By Remark 3.2, we have

E
[∫ τ
τ
Dse

−qsds
]

= E
[
E
[
e−qτ

∫ τ
τ
Dse

−q(s−τ)ds
∣∣Fτ ]]

≤ E
[
E
[∫ τ−τ

0
Du+τe

−qudu
∣∣∣Fτ]]

≤ E
[
V ca (XD

τ , 0)
]
.

As before, the last inequality involves a shift of stopping times and it follows from Theorem 2 of Claisse,
Talay and Tan [13]. Then

E
[∫ τ
τ
Dse

−qsds
]
≤ E

[
V (XD

τ )
]

≤ E
[
V ((c2 − c1)τ

]
≤ K1E[e−qτ τ(c2 − c1)].

Hence, we can write,

V ca (x, c1)− V ca (x, c2) ≤ J(x;D) + ε− J(x; D̃)

= E
[∫ τ

0

(
Ds − D̃s

)
e−qsds

]
+ E

[∫ τ
τ
Dse

−qsds
]

+ ε

≤ 0 + E
[∫ τ
τ
Dse

−qsds
]

+ ε
≤ K1E[ae−qτ τ(c2 − c1)] + ε
≤ K2(c2 − c1) + ε.

(3.8)

So, we deduce (3.6), taking K2 = K1 maxt≥0{e−qtta} = K1
e−1

q a and K = K1 max{ e
−1

q a, 1}. We conclude

the result from (3.1), (3.2) and (3.6).
In the case c =∞, the result follows from Proposition 3.1. �

The following lemma states the dynamic programming principle, its proof is similar to the one of Lemma
1.2 in Azcue and Muler [9].

Lemma 3.5. Given any stopping time τ̃ , we can write in both the restricted case c <∞ and the unrestricted
case c =∞,

V ca (x, c) = sup
D∈Π

[0,c]
x,c,a

E

[∫ τ∧τ̃

0

e−qsDsds+ e−q(τ∧τ̃)V ca (XD
τ∧τ̃ , Rτ∧τ̃ )

]
.

We now show a Lipschitz condition of h(a) = V ca (x, c) on the drawdown constant a ∈ [0, 1], for fixed x,
c and finite c.

7



Proposition 3.6. Given c <∞ and a1, a2 ∈ [0, 1] with a1 < a2, there exists K3 > 0 such that

0 ≤ V ca1(x, c)− V ca2(x, c) ≤ K3 (a2 − a1) ,

with K3 = V
′
(0) e

−1

q c only depending on c. In the case c =∞, V∞a (x, c) is continuous in a ∈ [0, 1].

Proof. Consider first the case c <∞. Take ε > 0 and D ∈ Π
[0,c]
x,c,a1 such that

J(x;D) ≥ V ca1(x, c)− ε.

Let us consider D̃ ∈ Π
[0,c]
x,c,a2 defined as D̃t = max{Dt, a2Rt}. Denote by XD̃

t the associated controlled surplus

process and by τ ≤ τ the corresponding ruin time. We have that 0 ≤ D̃s −Ds ≤ (a2 − a1)Rs and so

XD
τ = XD

τ −XD̃
τ ≤

∫ τ

0

(a2 − a1)Rsds = (a2 − a1)τ c.

We can write

V ca1(x, c)− V ca2(x, c) = J(x;D)− J(x; D̃) + ε

= E
[∫ τ

0
e−qs

(
Ds − D̃s

)
ds
]

+ E
[∫ τ
τ
e−qsDsds

]
+ ε

≤ 0 + E
[
E
[∫ τ
τ
e−qsDsds

∣∣Fτ ]]+ ε

= E
[
E
[
e−qτ

∫ τ−τ
0

e−quDτ+udu
∣∣∣Fτ]]+ ε

≤ E[e−qτV ((a2 − a1)τc)] + ε

≤ E[e−qτV
′
(0)((a2 − a1)τc] + ε

≤ V
′
(0) e

−1

q c(a2 − a1) + ε,

and one can conclude the result defining K3 = V
′
(0) e

−1

q c.
In the case c = ∞, we want to show that given ε > 0 and a1 ≥ 0, there exists δ > 0 such that, if

0 < a2 − a1 < δ then V∞a1 (x, c)− V∞a2 (x, c) < ε. Take c0 large enough such that V∞a1 (x, c)− V c0a1 (x, c) < ε/2

and δ = ε/(2V
′
(0) e

−1

q c0). Given any a2 ∈ (a1, a1 + δ), we have

V∞a1 (x, c)− V∞a2 (x, c) = V∞a1 (x, c)− V c0a1 (x, c) + V c0a1 (x, c)− V c0a2 (x, c) + V c0a2 (x, c)− V∞a2 (x, c)

≤ ε/2 + V
′
(0) e

−1

q c0(a2 − a1) + 0

≤ ε.

�

Remark 3.3. Note that in the case a = 0, Proposition 3.3 does not hold. Indeed, V∞0 (x, c) = V (x), so
that limc→∞ V∞0 (x, c) = V (x) > x. Although limc→∞ V∞a (x, c) = x for a ∈ (0, 1] and lima→0+ V∞a (x, c) =
V∞0 (x, c) by the previous proposition, the lack of the Lipschitz property of V∞a (x, c) at a = 0 enables the
iterated limits

lim
c→∞

(
lim
a→0+

V∞a (x, c)

)
= V (x) and lim

a→0+

(
lim
c→∞

V∞a (x, c)
)

= x

to not coincide.

In the next proposition, we study the continuity of V ca (x, c) with respect to c.

Proposition 3.7. Given c1, c2 ∈ [0,∞) with c1 < c2 <∞, there exists a K2 > 0 such that

0 ≤ V c2a (x, c)− V c1a (x, c) ≤ 1

q
(c2 − c1)

for c ≤ c1.
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Proof. Take ε > 0 and D ∈ Π
[0,c2]
x,c,a such that

J(x;D) ≥ V c2a (x, c)− ε,

and denote the ruin time of the process XD
t by τ . Let us consider D̃ ∈ Π

[0,c1]
x,c,a as D̃t = min{Dt, c1} =

c1IDt>c1 +DtIDt≤c1 for t ≤ τ and D̃t = c1 for t > τ , denote by XD̃
t the associated controlled surplus process

and by τ ≥ τ the corresponding ruin time. We then have Ds − D̃s ≤ c2 − c1 and one can deduce

V c2a (x, c)− V c1a (x, c) ≤ J(x;D) + ε− J(x; D̃)

= E
[∫ τ

0

(
Ds − D̃s

)
e−qsds

]
− E

[∫ τ
τ
Dse

−qsds
]

+ ε

≤ E
[∫ τ

0

(
Ds − D̃s

)
e−qsds

]
+ ε

≤ E
[∫ τ

0
(c2 − c1) e−qsds

]
+ ε

= (c2−c1)
q E [1− e−qτ ] + ε

≤ (c2−c1)
q + ε.

�

4. The Hamilton-Jacobi-Bellman equation

In this section we introduce the Hamilton-Jacobi-Bellman (HJB) equation of the drawdown problem. We
show that the optimal value function V defined in (1.4) is the unique viscosity solution of the corresponding
HJB equation with suitable boundary conditions.

As we stated in the previous section, the limit case a = 0 (no drawdown restriction) has been studied for
both c <∞ and c =∞, and the case a = 1 (ratcheting) for c <∞.

Define

Ld(W )(x, c) :=
σ2

2
∂xxW (x, c) + (µ− d)∂xW (x, c)− qW (x, c) + d. (4.1)

The HJB equation associated to (1.4) for both c <∞ and c =∞ is given by

max{ max
d∈[ac,c]

Ld(u)(x, c), ∂cu(x, c)} = 0 for x ≥ 0 and 0 ≤ c < c. (4.2)

Note that an alternative equivalent formulation is

max{Lc(u)(x, c),Lac(u)(x, c), ∂cu(x, c)} = 0 for x ≥ 0 and 0 ≤ c < c. (4.3)

For the ratcheting case a = 1, the HJB equation correspondingly simplifies to

max{Lc(u)(x, c), ∂cu(x, c)} = 0 for x ≥ 0 and 0 ≤ c < c.

Let us introduce the usual notion of viscosity solution for the HJB equation in both cases 0 < c < ∞ or
c =∞.

Definition 4.1. (a) A locally Lipschitz function u : [0,∞)× [0, c)→ R is a viscosity supersolution of (4.3)
at (x, c) ∈ (0,∞) × [0, c), if any (2,1)-differentiable function ϕ : [0,∞) × [0, c) → R with ϕ(x, c) = u(x, c)
such that u− ϕ reaches the minimum at (x, c) satisfies

max {Lc(ϕ)(x, c),Lac(ϕ)(x, c), ∂cϕ(x, y)} ≤ 0.

The function ϕ is called a test function for supersolution at (x, c).
(b) A function u : [0,∞) × [0, c) → R is a viscosity subsolution of (4.3) at (x, c) ∈ (0,∞) × [0, c), if

any (2,1)-differentiable function ψ : [0,∞) × [0, c) → R with ψ(x, c) = u(x, c) such that u − ψ reaches the
maximum at (x, c) satisfies

max {Lc(ψ)(x, c),Lac(ψ)(x, c), ∂cψ(x, c)} ≥ 0.

The function ψ is called a test function for subsolution at (x, c).
(c) A function u : [0,∞)×[0, c)→ R which is both a supersolution and subsolution at (x, c) ∈ [0,∞)×[0, c)

is called a viscosity solution of (4.3) at (x, c).
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4.1. HJB equation with bounded dividend rates

Given a ∈ (0, 1] and c <∞, we denote for in the sequel, for simplicity of exposition,

Πx,c := Π[0,c]
x,c,a and V := V ca . (4.4)

Here the state variables are the current surplus and the running maximum dividend rate. The results of this
subsection for the case a = 1 (ratcheting dividend constraint) were already proved in [1].

In the next proposition we state that V is a viscosity solution of the corresponding HJB equation.

Proposition 4.1. V is a viscosity solution of (4.3) in (0,∞)× [0, c).

Proof. Let us show first that V is a viscosity supersolution in (0,∞)× [0, c) . By Proposition 3.2, ∂cV ≤ 0
in (0,∞)× [0, c) in the viscosity sense.

Consider now (x, c) ∈ (0,∞) × [0, c) and the admissible strategy D ∈ Πx,c, which pays dividends at
constant rate d ∈ [ac, c] up to the ruin time τ . Let XD

t be the corresponding controlled surplus process and
suppose that there exists a test function ϕ for supersolution (4.3) at (x, c), then ϕ ≤ V and ϕ(x, c) = V (x, c).
We want to prove that Ld(ϕ)(x, c) ≤ 0. For that purpose, we consider an auxiliary test function for the
supersolution ϕ̃ in such a way that ϕ̃ ≤ ϕ ≤ V in [0,∞)×[0, c], ϕ̃ = ϕ in [0, 2x] (so Ld(ϕ)(x, c) = Ld(ϕ̃)(x, c))
and Ld(ϕ̃)(·, c) is bounded in [0,∞). We introduce ϕ̃ because Ld(ϕ)(·, c) may be unbounded in [0,∞). We
construct ϕ̃ as follows: take g : [0,∞) → [0, 1] twice continuously differentiable with g = 0 in [2x + 1,∞)
and g = 1 in [0, 2x], and define ϕ̃(y, d) = ϕ(y, d)g(y).

Using Lemma 3.5, we obtain for h > 0

ϕ̃(x, c) = V (x, c)

≥ E
[∫ τ∧h

0
de−q s ds

]
+ E

[
e−q(τ∧h)ϕ̃(XD

τ∧h, c)
]

.

Hence, we get using Itô’s formula

0 ≥ E
[∫ τ∧h

0
e−q s ds

]
+ E

[
e−q(τ∧h)ϕ̃(XD

τ∧h, c)− ϕ̃(x, c)
]

= E
[∫ τ∧h

0
de−q s ds

]
+ E

[∫ τ∧h
0

e−q s(σ
2

2 ∂xxϕ̃(XD
s , c) + ∂xϕ̃(XD

s , c)(µ− d)− qϕ̃(XD
s , c))ds

]
+E

[∫ τ∧h
0

∂xϕ̃(XD
s , c)σdWs

]
= E

[∫ τ∧h
0

e−q sLd(ϕ̃)(XD
s , c)ds

]
.

Since τ > 0 a.s., ∣∣∣∣∣ 1h
∫ τ∧h

0

e−q sLd(ϕ̃)(XD
s , c)ds

∣∣∣∣∣ ≤ sup
y∈[0,∞)

∣∣Ld(ϕ̃)(y, c)
∣∣ ,

and

lim
h→0+

1

h

∫ τ∧h

0

e−q sLd(ϕ̃)(XD
s , c)ds = Ld(ϕ̃)(x, c) a.s..

We conclude, using the bounded convergence theorem, that Ld(ϕ)(x, c) = Ld(ϕ̃)(x, c) ≤ 0 for any d ∈ [ac, c];
so V is a viscosity supersolution at (x, c).

We skip the proof that V is a viscosity subsolution in (0,∞) × [0, c), because it is similar to the one of
Proposition 3.1 in [1]. �

Let us consider the function
vc(x) := V (x, c) : [0,∞)→ [0,∞). (4.5)

In the next proposition, we state a comparison result for the viscosity solutions of (4.3) for c > 0. The proof
is similar to the one of Lemma 3.2 of [1].

Lemma 4.2. Assume that (i) u is a viscosity subsolution and u is a viscosity supersolution of the HJB
equation (4.3) for all x > 0 and for all c ∈ [0, c), (ii) u and u are non-decreasing in the variable x and
Lipschitz in [0,∞) × [0, c], (iii) u(0, c) = u(0, c) = 0, limx→∞ u(x, c) ≤ c/q ≤ limx→∞ u(x, c) and (iv)
u(x, c) ≤ vc(x) ≤ u(x, c) for x ≥ 0. Then u ≤ u in [0,∞)× [0, c).
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The following characterization theorem is a direct consequence of the previous lemma and Propositions
3.2 and 4.1.

Theorem 4.3. The optimal value function V is the unique function non-decreasing in x that is a viscosity
solution of (4.3) in (0,∞)× [0, c) with V (0, c) = 0, V (x, c) = vc(x) and limx→∞ V (x, c) = c/q for c ∈ [0, c).

From Definition 1.4, Lemma 4.2, and Proposition 3.2 together with Proposition 4.1, we also get the
following verification theorem.

Theorem 4.4. Consider a family of strategies

{Cx,c ∈ Πx,c : (x, c) ∈ [0,∞)× [0, c]} .

If the function W (x, c) := J(x;Cx,c) is a viscosity supersolution of the HJB equation (4.3) in (0,∞)× [0, c)
with limx→∞W (x, c) = c/q, then W is the optimal value function V . Also, if for each k ≥ 1 there exists
a family of strategies

{
Ckx,c ∈ Πx,c : (x, c) ∈ [0,∞)× [0, c]

}
such that W (x, c) := limk→∞ J(x;Ckx,c) is a

viscosity supersolution of the HJB equation (4.3) in (0,∞) × [0, c) with limx→∞W (x, c) = c/q, then W is
the optimal value function V .

4.2. HJB equation with unbounded dividend rates

Let us now consider the case c =∞ with a ∈ (0, 1]. Since a is fixed, we denote V∞ = V∞a . The proof of the
following proposition is similar to the one of the case with bounded dividend rate.

Proposition 4.5. V∞ is a viscosity solution of (4.3) for any (x, c) ∈ (0,∞)× [0,∞).

We now state a comparison result for the unbounded case.

Lemma 4.6. Assume that (i) u is a viscosity subsolution and u is a viscosity supersolution of the HJB
equation (4.3) for all x > 0 and for all c ∈ [0,∞), (ii) u and u are non-decreasing in the variable x
and Lipschitz in [0,∞) × [0,∞), (iii) u(0, c) = u(0, c) = 0, (iv) u(x, c) ≤ x + µ/q, x ≤ u(x, c) and (v)
limc→∞ u(x, c) ≤ x ≤ limc→∞ u(x, c) for x ≥ 0. Then u ≤ u in [0,∞)× [0,∞).

Proof. Suppose that there is a point (x0, c0) ∈ (0,∞) × (0,∞) such that u(x0, c0) − u(x0, c0) > 0.
We prove here that the maxx≥0,c≥0 (u(x, c)− us0(x, c)) is achieved in a bounded set. From this we get a
contradiction following the arguments of the proof of Lemma 3.2 of [1].

Let us define

h(c) = 1 + (
u(x0, c0)− u(x0, c0)

2u(x0, c0)
)e−c > 1 and us(x, c) = s h(c)u(x, c)

for any s > 1. We have

u(x0, c0)− us(x0, c0) = u(x0, c0)−
(

1 + u(x0,c0)−u(x0,c0)
2u(x0,c0) e−c

)
s u(x0, c0)

= (1− e−c s
2 ) (u(x0, c0)− su(x0, c0))

> 0

for s ∈ (1, 2).
Let us show now that us is a strict supersolution. We have that ϕ is a test function for the supersolution

of u at (x, c) if and only if ϕs := s h(c)ϕ is a test function for the supersolution of us at (x, c). Moreover,

Ld(ϕs)(x, c) = sh(c)Ld(ϕ)(x, c) + d(1− sh(c)) < 0, (4.6)

for d ∈ [ac, c] and
∂cϕ

s(x, c) ≤ −s(h(c)− 1)ϕ(x, c) < 0 (4.7)

since ϕ(x, c) = u(x, c) ≥ x > 0.
Take s0 > 1 such that u(x0, c0)− us0(x0, c0) > 0. We define

M := sup
x≥0,c≥0

(u(x, c)− us0(x, c)) . (4.8)
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Let us show that
arg max

x≥0,c≥0
(u(x, c)− us0(x, c)) ∈ (0, b)× (0, c1) (4.9)

for some positive b and c1. Since u(x, c) ≤ x+ µ
q and x ≤ u(x, c),

u(x, c)− us0(x, c) ≤
(
x+ µ

q

)
− s0h(c)x

< x(1− s0) + µ
q

< 0

for x large enough, so there exists a b > x0 such that arg maxx≥0,c≥0 (u(x, c)− us0(x, c)) ∈ (0, b) × (0,∞).
Besides, we have that the function

g(c) := max
x≥0
{u(x, c)− us0(x, c)} = max

x∈(0,b)
{u(x, c)− us0(x, c)}

satisfies that lim sup c→∞ g(c) ≤ 0 because limc→∞ u(x, c) ≤ x ≤ limc→∞ u(x, c) for x ≥ 0, so there exists a
c1 > 0 such that g(c) ≤ M

2 for c ≥ c1 and then we conclude (4.9).
Hence, we obtain that the maximum is achieved in a bounded set, that is

0 < u(x0, c0)− us0(x0, c0) ≤M = max
x∈(0,b)×(0,c1)

(u(x, c)− us0(x, c)) .

�

As for bounded dividend rates, the following characterization theorem is a direct consequence of the
previous lemma, Remark 3.3 and Proposition 4.5.

Theorem 4.7. The optimal value function V∞ is the unique function non-decreasing in x that is a viscosity
solution of (4.3) in (0,∞)× [0,∞) with V∞(0, c) = 0, V∞(x, c)− x bounded and limc→∞ V∞(x, c) = x.

From Definition 1.4, Lemma 4.6, and Remark 3.3 together with Proposition 4.5, we also get the following
verification theorem.

Theorem 4.8. Consider a family of strategies

{Cx,c ∈ Πx,c : (x, c) ∈ [0,∞)× [0,∞)} .

If the function W (x, c) := J(x;Cx,c) is a viscosity supersolution of the HJB equation (4.3) in (0,∞)× [0,∞)
with W (x, c) ≥ x, then W is the optimal value function V∞. Also, if for each k ≥ 1 there exists a family
of strategies

{
Ckx,c ∈ Πx,c : (x, c) ∈ [0,∞)× [0,∞)

}
such that W (x, c) := limk→∞ J(x;Ckx,c) is a viscosity

supersolution of the HJB equation (4.3) in (0,∞) × [0,∞) with W (x, c) ≥ x, then W is the optimal value
function V∞.

5. Refracting dividend strategies and vc

In the case 0 < c < ∞ and a ∈ (0, 1), we now want to investigate further the function vc (defined in
(4.5)) of paying dividends with rates in d ∈ [ac, c] in an optimal way. The following characterization is the
one-dimensional version of the results of Section 4.1.

Proposition 5.1. The function vc : [0,∞)→ R is the unique viscosity solution of

max
{
Lc(W )(x),Lac(W )(x)

}
= 0

with boundary conditions W (0) = 0 and limx→∞W (x) = c/q.

We present in this section a formula for vc, which turns out to be the value function of the optimal
refracting strategy as derived in [3].

The functions W that satisfy Ld(W ) = 0 are given by

d

q
+ a1e

θ1(d)x + a2e
θ2(d)x with a1, a2 ∈ R, (5.1)
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where θ1(d) > 0 and θ2(d) < 0 are the roots of the characteristic equation

σ2

2
z2 + (µ− d)z − q = 0

associated to the operator Ld, that is

θ1(d) :=
d− µ+

√
(d− µ)2 + 2qσ2

σ2
, θ2(d) :=

d− µ−
√

(d− µ)2 + 2qσ2

σ2
. (5.2)

The following are basic properties of θ1(d) and θ2(d):

1. θ1(d) = −θ2(d) if d = µ and θ2
1(d) ≥ θ2

2(d) if, and only if, d− µ ≥ 0.

2. θ′1(d) = 1
σ2 (1 + d−µ√

(d−µ)2+2qσ2
) and θ′2(d) = 1

σ2 (1− d−µ√
(d−µ)2+2qσ2

), so θ′1(d), θ′2(d) ∈ (0, 2
σ2 ).

The solutions of Ld(W ) = 0 with boundary condition W (0) = 0 are then of the more specific form

d

q

(
1− eθ2(d)x

)
+A(eθ1(d)x − eθ2(d)x) with A ∈ R. (5.3)

Finally, the unique solution of Ld(W ) = 0 with boundary conditions W (0) = 0 and limx→∞ W (x) =
d/q corresponds to A = 0, so that

W (x) =
d

q

(
1− eθ2(d)x

)
. (5.4)

We have that W is increasing and concave in [0,∞).
In [3, Th.3.1], the value function of a ’refracting strategy’ that pays ac when the current surplus is below

a refracting threshold b and pays c when the current surplus is above b was shown to be

v(x, c, b) =
(
B(c, b)W0(x, c) +

ac

q
(1− eθ2(ac)x)

)
Ix<b +

( c
q

+D(c, b)eθ2(c)x
)
Ix≥b, (5.5)

where

W0(x, c) =
eθ1(ac)x − eθ2(ac)x√

(µ− ac)2 + 2qσ2
,

B(c, b) =
1

q

aceθ2(ac)b (θ2(ac)− θ2(c))− (1− a)cθ2(c)

∂xW0(b, c)− θ2(c)W0(b, c)
, (5.6)

and

D(c, b) = B(c, b)e−θ2(c)bW0(b, c)− ac

q
e(θ2(ac)−θ2(c))b − (1− a)c

q
e−θ2(c)b.

The optimal threshold b∗(c) corresponds to

b∗(c) = arg max
b≥0

v(x, c, b). (5.7)

In case it is positive, by (5.5) this is the value of b satisfying

∂bB(c, b) = 0. (5.8)

From [3], we know that the threshold can be characterized as the unique b such that v(x, c, b) is twice
continuously differentiable in x = b. Hence, since v(x, c, b∗(c)) is twice continuously differentiable with
v(0, c, b∗(c)) = 0, limx→∞ v(x, c, b∗(c)) = c/q and it is also a solution of

max
{
Lc(W )(x),Lac(W )(x)

}
= 0,

by Proposition 5.1 we have that
vc(x) = v(x, c, b∗(c)). (5.9)

That is, the strategy achieving vc has a ’refracting’ threshold structure with optimal threshold b∗(c).
Note also, that since vc is twice continuously differentiable at b∗(c) and L(vc)(b∗(c)) = Lac(vc)(b∗(c)) = 0,

then ∂xv
c(b∗(c)) = 1. Also, since

Lac(vc)(x)− Lc(vc)(x) = c(1− a)
(
∂xv

c(x)− 1
)

we obtain
∂xv

c(x) ≥ 1 for x ≤ b∗(c) and ∂xv
c(x) ≤ 1 for x ≥ b∗(c). (5.10)
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6. Curve strategies and the optimal two-curve strategy for bounded dividend
rates

Using the formulas of the previous section, we can find the optimal value function defined in (4.4).

Remark 6.1. Before proceeding, note that this problem is only interesting for c > qσ2/(2µ), as for smaller
values of c we know from [7, Eqn.1.8] (translated to our notation) that even without a drawdown constraint
it is optimal to pay dividends at maximal rate c until the time of ruin. This then also is the optimal strategy
in our situation, as the drawdown constraint does not affect its applicability. Indeed, and as a self-contained
derivation of this result in the present context, the value function of that strategy fulfills

Ld( cq
(
1− eθ2(c)x

)
)(x) = (c− d)(− c

q θ2(c)eθ2(c)x − 1)

≤ (c− d)(− c
q θ2(c)− 1)

≤ 0

(6.1)

for both d = ac and d = c. So, by Proposition 5.1, vc(x) = c
q

(
1− eθ2(c)x

)
and b∗(c) = 0. With the notation

U(x, c) := c
q

(
1− eθ2(c)x

)
, by Theorem 4.3 it is then sufficient to prove that

max{Lac(U)(x, c),Lc(U)(x, c), ∂cU(x, c)} ≤ 0

for any c ∈ [0, c), but this indeed follows from (6.1).

In the rest of this paper, we will therefore assume that c > qσ2

2µ .

The way in which the optimal value function V (x, c) solves the HJB equation (4.3) suggests that the state
space [0,∞)× [0, c] is partitioned into two regions: a non-change running maximum dividend region NC∗ in
which the running maximum dividend rate c does not change and a change dividend region CH∗ in which
the dividend rate exceeds c (so the running maximum dividend rate increases). Moreover, the region NC∗
splits into two connected subregions: NC∗ac in which the dividends are paid at constant rate ac and NC∗c in
which the dividends are paid at constant rate c.

Roughly speaking, the interior of the region NC∗ac consists of the points (x, c) in the state space where
Lac(V )(x, c) = 0, Lc(V )(x, c) < 0 and ∂cV < 0; the interior of the region NC∗c consists of the points (x, c)
in the state space where Lc(V )(x, c) = 0, Lac(V )(x, c) < 0 and ∂cV < 0; and the interior of CH∗ consists
of the points where ∂cV = 0, Lc(V )(x, c) < 0 and Lac(V )(x, c) < 0. We introduce a family of stationary
strategies (or limit of stationary strategies) where the different dividend payment regions are connected and
split by two free boundary curves.

Let us consider the two functions γ : [0, c] → (0,∞) continuously differentiable, ζ : [0, c] → (0,∞)
bounded, Riemann integrable and càdlàg, and let us define the set

B = {(γ, ζ) s.t. γ ≤ ζ and lim
c→c−

ζ(c) = ζ(c)}. (6.2)

In the first part of this section, we define the function W γ,ζ : [0,∞)× [0, c]→ [0,∞) for each (γ, ζ) ∈ B. We
will see that, in some sense, W γ,ζ(x, c) is a value function of the two-curve strategy which pays dividends at
constant rate ac for the points to the left of the curve R(γ), pays dividends at constant rate c in between
the curves R(γ) and R(ζ) and pays more than c as dividend rate otherwise, where

R(g) = {(g(c), c) : c ∈ [0, c]} .

Hence, the curves R(γ) and R(ζ) split the state space [0,∞)× [0, c) into three connected regions:

NCac(γ, ζ) ={(x, c) ∈ [0,∞)× [0, c) : 0 ≤ x < γ(c)}

where dividends are paid with constant rate ac,

NCc(γ, ζ) ={(x, c) ∈ [0,∞)× [0, c) : γ(c) ≤ x < ζ(c)}

where dividends are paid with constant rate c, and

CH(γ, ζ) ={(x, c) ∈ [0,∞)× [0, c) : x ≥ ζ(c)},

14



Figure 6.1: A two-curve strategy with its regions.

cf. Figure 6.1. Let us call NC(γ, ζ) = NCac(γ, ζ) ∪NCc(γ, ζ).
In the second part of the section, we use calculus of variations to look for

(
γ0, ζ0

)
∈ B which maximizes

the value function W γ,ζ among all (γ, ζ) ∈ B.

Let us consider the set
T := {(y, z) : 0 < y ≤ z} ,

and the following auxiliary functions b0, b1 : T × [0,∞)× [0, c]→ R

b0(y, z, w, c) :=
1

q (θ1(c)− θ2(c)) d(y, z, c)
(b00(y, z, c) + w(e(z−y)θ1(c) − e(z−y)θ2(c)) b01(y, c)),

b1(y, z, w, c) :=
1

(θ1(c)− θ2(c)) d(y, z, c)
(b10(y, z, c) + w(e(z−y)θ1(c) − e(z−y)θ2(c)) b11(y, c)),

(6.3)

where the functions b00, b01, b10, b11 and d are defined in Section 11.

Lemma 6.1. The function d(y, z, c) defined in Section 11 is positive in T × [0, c], and so b0 and b1 are well
defined.

Proof. Using that θ1 > 0 > θ2 and θ′1, θ
′
2 > 0, let us define the function g(y, h, c) = d(y, y + h, c)/ehθ2(c).

We have that
g(y, 0, c) =

(
eyθ1(ac) − eyθ2(ac)

)
(θ1(c)− θ2(c)) > 0

for y > 0 and

∂hg(y, h, c) = (θ2(c)− θ1(c))eh(θ1(c)−θ2(c))
(
eyθ1(ac)(θ2(c)− θ1(ac)) + eyθ2(ac)(θ2(ac)− θ2(c))

)
> 0

for y ≥ 0. So the result holds. �

In order to define W γ,ζ in the non-change regions NCac(γ, ζ) and NCc(γ, ζ), we will define and study in
the next technical lemma the functions Hγ,ζ and Aγ,ζ .

Lemma 6.2. Given (γ, ζ) ∈ B, the unique continuous function Hγ,ζ : [0,∞)×[0, c]→ [0,∞) , with Hγ,ζ(·, c)
continuously differentiable which satisfies for any c ∈ [0, c) that

Lac(Hγ,ζ)(x, c) = 0 for 0 ≤ x < γ(c), Lc(Hγ,ζ)(x, c) = 0 for γ(c) ≤ x
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with boundary conditions Hγ,ζ(0, c) = 0, Hγ,ζ(x, c) = v(x, c, γ(c)) and ∂cH
γ,ζ(ζ(c), c) = 0 at the points of

continuity of ζ is given by

Hγ,ζ(x, c) = (f10(x, c) + f11(x, c)Aγ,ζ(c))Ix<γ(c) + (f20(γ(c), x, c) + f21(γ(c), x, c)Aγ,ζ(c))Ix≥γ(c), (6.4)

where f10, f11, f20, f21 are defined in Section 11,

Aγ,ζ(c) = Aγ,ζ(c)e−
∫ c
c
b1(γ(s),ζ(s),γ′(s),s)ds −

∫ c

c

e−
∫ t
c
b1(γ(s),ζ(s),γ′(s),s)dsb0(γ(t), ζ(t), γ′(t), t)dt, (6.5)

and

Aγ,ζ(c) =
B(c, γ(c))√

(µ− ac)2 + 2qσ2
, (6.6)

where the function B is defined in (5.6) and the function b0 and b1 are defined in (6.3). Moreover, Aγ,ζ is
differentiable and satisfies(

Aγ,ζ
)′

(c) = b0(γ(c), ζ(c), γ′(c), c) + b1(γ(c), ζ(c), γ′(c), c)Aγ,ζ(c), (6.7)

at the points where ζ is continuous and satisfies the boundary condition (6.6).

Proof. SinceHγ,ζ(·, c) is continuously differentiable at x = γ(c) and satisfiesHγ,ζ(0, c) = 0, Lac(Hγ,ζ)(x, c) =
0 for 0 ≤ x < γ(c) and Lc(Hγ,ζ)(x, c) = 0 for γ(c) ≤ x, we can write, using (5.1) and (5.3),

Hγ,ζ(x, c) = (f10(x, c) + f11(x, c)A(c))Ix<γ(c) + (f20(γ(c), x, c) + f21(γ(c), x, c)A(c))Ix≥γ(c)

for some function A(c). Since
Hγ,ζ(x, c) = v(x, c, γ(c)),

we obtain, by (5.5), that

A(c) =
B(c, γ(c))√

(µ− ac)2 + 2qσ2
.

Let us find Aγ,ζ : [0, c] → R, the function A(c) such that ∂cH
γ,ζ(x, c)

∣∣
x=ζ(c)

= 0 for all c ∈ [0, c]. Since

ζ(c) > γ(c),

0 = ∂cH
γ,ζ(x, c)

∣∣
x=ζ(c)

= d
dc (f20(γ(c), x, c) + f21(γ(c), x, c)Aγ,ζ(c))

∣∣
x=ζ(c)

= d
dc (f20(γ(c), x, c)) + d

dc (f21(γ(c), x, c))Aγ,ζ(c)) + f21(γ(c), x, c)Aγ,ζ′(c)
∣∣
x=ζ(c)

,

and so, since by Lemma 6.1, f21(y, x, c) = d(y,x,c)
θ1(c)−θ2(c) > 0 for x > y, we obtain

(Aγ,ζ)′(c) =
− d
dc (f20(γ(c),x,c))

f21(γ(c),x,c)

∣∣∣
x=ζ(c)

+
− d
dc (f21(γ(c),x,c))

f21(γ(c),x,c)

∣∣∣
x=ζ(c)

Aγ,ζ(c)

= b0(γ(c), ζ(c), γ′(c), c) + b1(γ(c), ζ(c), γ′(c), c)Aγ,ζ(c),

at the points where ζ is continuous, where b0 and b1 are defined in (6.3). Since ζ is Riemann integrable, it is
differentiable almost everywhere. Note that the function Aγ,ζ defined in (6.5) is the unique solution of this
ODE. Hence, we have the result. �

Given (γ, ζ) ∈ B, we define

W γ,ζ(x, c) :=

{
Hγ,ζ(x, c) if (x, c) ∈ NC(ζ),
Hγ,ζ(x, `(x, c)) if (x, c) ∈ CH(ζ),

(6.8)

where Hγ,ζ is defined in Lemma 6.2 and

`(x, c) := max{h ∈ [c, c] : ζ(d) ≤ x for d ∈ [c, h)} (6.9)

for x ≥ ζ(c) and c ∈ [0, c).
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In the next propositions we will show first that in the case that ζ is a step function, W γ,ζ is the value
function of a two-curve strategy and in the general case W γ,ζ is the limit of value functions of two-curve
strategies.

When ζ is a step function, that is

ζ(c) :=
n−1∑
i=1

ziI[ci,ci+1)(c),

with 0 = c1 < c2 < · · · < cn = c and zi > 0, then the two-curve strategy, starting with an initial surplus x
and initial running maximum dividend rate c, is given by

(1) if 0 ≤ x < ζ(c), that is (x, c) ∈ NC(γ, ζ), follow the refracting strategy which pays ac when the
current surplus is below a refracting threshold γ(c) and pays c when the current surplus is above γ(c) until
either reaching the curve R(ζ) or ruin (whatever comes first),

(2) If x ≥ ζ(c), that is (x, c) ∈ CH(γ, ζ), increase immediately the dividend rate to `(x, c) ∈ {c2, · · · , cn};
note that

`(x, c) = max{ci ≥ c : zk ≤ x for l(c) ≤ k ≤ i− 1}, where l(c) := min{l : cl ≥ c}.

If ζ is a step function, we denote this stationary strategy as π(γ,ζ).

Proposition 6.3. Consider (γ, ζ) ∈ B with ζ being a step function. Let Dx,c ∈ Π
[0,c]
x,c be the admissible

strategy corresponding to the stationary strategy π(γ,ζ) starting in (x, c). Calling j(x, c) := J(x;Dx,c), we
obtain that j is continuous in [0,∞)× [0, c] and j(x, c) = W γ,ζ(x, c).

Proof. Let us prove inductively that j(x, ci) is continuous in x for i = 1, . . . , n. j(·, ci) is differentiable in
[0, zi) because it corresponds to a value function of a refracting dividend strategy at x = γ(ci) with a given
boundary condition at x = zi (see for instance [3, Th.3.1]). In the case i = n, j(x, cn) = v(x, c, γ(c)) which
is continuous in x; in the case i < n, j(x, ci) is continuous in x for x ≤ zi because

j(x, ci) = (f10(x, ci) + f11(x, ci)Ai)Ix<γ(ci) + (f20(γ(ci), x, ci) + f21(γ(ci), x, c)Ai)Ix≥γ(ci)

for some constant Ai, and j(x, ci) = j(x, ci+1) for x ≥ zi. Since j(x, c) = j(x, ci+1) for c ∈ (ci, ci+1), we
conclude that j is continuous in [0,∞)× [0, c] .

Let us show now that j(x, c) satisfies the assumptions of Lemma 6.2 and so j(x, c) = Hγ,ζ(x, c) =
W γ,ζ(x, c) for 0 ≤ x ≤ ζ(c). Indeed, it is straightforward that j(·, c)= Hγ,ζ(·, c) =v(·, c, γ(c)), j(·, c) is
continuously differentiable for any c ∈ [0, c), Lac(j)(x, c) = 0 for 0 ≤ x < γ(c), Lc(j)(x, c) = 0 for γ(c) ≤
x ≤ ζ(c) and j(0, c) = 0. Also ∂cj(ζ(c), c) = 0 at the points of continuity of ζ because j(x, c)= j(x, ci+1) for
x ≥ ζ(c) = zi in the case c ∈ (ci, ci+1).

From definition of π(γ,ζ), it is straightforward that j(x, c) = Hγ,ζ(x, `(x, c)) if x ≥ ζ(c), so we get the
result. �

In the next proposition we show that for any (γ, ζ) ∈ B, the function W γ,ζ is the limit of value functions
of curve strategies where ζk are step functions with ζk → ζ uniformly.

Proposition 6.4. Given (γ, ζ) ∈ B, there exists a sequence of right-continuous step functions ζk : [0, c] →
[0,∞) such that W γ,ζk(x, c) converges uniformly to W γ,ζ(x, c).

Proof. Since ζ is a Riemann integrable càdlàg function, we can approximate it uniformly by right-
continuous step functions. Namely, take a sequence of finite sets Sk = {ck1 , ck2 , · · · , cknk} with 0 = ck1 < ck2 <

· · · < cknk = c, and consider the right-continuous step functions

ζk(c) =

nk−1∑
i=1

ζ(cki )I[cki ,cki+1),

such that δ(Sk) = maxi=1,··· ,nk−1(cki+1 − cki )→ 0. We have that ζk → ζ uniformly, and so both Aγ,ζk(c)→
Aγ,ζ(c) and W γ,ζk(x, c) → W γ,ζ(x, c) uniformly. �
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Remark 6.2. Given a (γ, ζ) ∈ B where ζ is not a step function, we say that W γ,ζ is the value function of the
two-curve stationary strategy π(γ,ζ) which, starting with an initial surplus x and initial running maximum
dividend rate c,

(1) in the case 0 ≤ x < ζ(c), it follows the refracting strategy which pays ac when the current surplus is
below a refracting threshold γ(c) and pays c when the current surplus is above γ(c) until either reaching the
curve R(ζ) or ruin (whatever comes first),

(2) in the case x > ζ(c), increase immediately the divided rate from c to `(x, c),

(3) in the case x = ζ(c), it can be seen as the limit of admissible strategies in π
(γ,ζk)
x,c ∈ Πx,c arising from

Proposition 6.4.

We now look for the maximum of W γ,ζ among (γ, ζ) ∈ B. We will show later that, if there exists a pair
(γ0, ζ0) ∈ B such that

Aγ0,ζ0(0) = max{Aγ,ζ(0) : (γ, ζ) ∈ B}, (6.10)

then W γ0,ζ0(x, c) ≥W γ,ζ(x, c) for all (x, c) ∈ [0,∞)× [0, c] and (γ, ζ) ∈ B.
From Lemma 6.1 and θ2 > 0 > θ1, we obtain that f11 and f21 defined in (6.4) are positive and so

arg max
(γ,ζ)∈B

W γ,ζ(x, c) = arg max
(γ,ζ)∈B

Aγ,ζ(c).

This follows from (6.4) and the next lemma, in which we prove that the function ζ0 which maximizes (6.10)
also maximizes Aγ,ζ(c) for any c ∈ [0, c).

Lemma 6.5. For a given c ∈ [0, c), consider the functions γ : [c, c]→ (0,∞) continuously differentiable, ζ :
[c, c]→ (0,∞) is bounded, Riemann integrable and càdlàg, and let us define the set

Bc = {(γ, ζ) s.t. γ ≤ ζ in [c, c] and lim
c→c−

ζ(c) = ζ(c−)}.

If (γ0, ζ0) ∈ B satisfies (6.10), then for any c ∈ [0, c)

Aγ0,ζ0(c) = max{Aγ,ζ(c) : ζ ∈ Bc}.

Proof. Given (γ, ζ) ∈ B, we can write

Aγ,ζ(c) = Aγ,ζ(c)e−
∫ c
c
b1(γ(s),ζ(s),γ′(s),s)ds −

∫ c

c

e−
∫ t
c
b1(γ(s),ζ(s),γ′(s),s)dsb0(γ(t), ζ(t), γ′(t), t)dt,

Aγ,ζ(0) = −
∫ c

0

e−
∫ t
0
b1(γ(s),ζ(s),γ′(s),s)dsb0(γ(t), ζ(t), γ′(t), t)dt+

(
e−

∫ c
0
b1(γ(s),ζ(s),γ′(s),s)ds

)
Aγ,ζ(c).

Note that
(
γ0|[c,c) , ζ0|[c,c)

)
∈ Bc; take any (γ, ζ) ∈ Bc and any function χ : [0, c] → [0, 1] continuously

differentiable with χ = 0 in [0, c] and define γ1(s) = γ0(s)I{0≤s<c} + γ(s)χ(s)I{c≤s≤c} and ζ1(s) =
ζ0(s)I{0≤s<c} + ζ(s)χ(s)I{c≤s≤c} then (γ1, ζ1)∈ B,

Aγ0,ζ0(0) ≥ Aγ1ζ1(0) = −
∫ c

0

e−
∫ t
0
b1(γ0(s),ζ0(s),s)dsb0(γ0(t), ζ0(t), t)dt+

(
e−

∫ c
0
b1(γ0(s),ζ0(s),s)ds

)
Aγχ,ζχ(c).

Hence,

Aγ0,ζ0(0) ≥ −
∫ c

0
e−

∫ t
0
b1(γ0(s),ζ0(s),s)dsb0(γ0(t), ζ0(t), t)dt+

(
e−

∫ c
0
b1(γ0(s),ζ0(s),s)ds

)
sup(γ,ζ)∈Bc,χA

γχ,ζχ(c)

= −
∫ c

0
e−

∫ t
0
b1(γ0(s),ζ0(s),s)dsb0(γ0(t), ζ0(t), t)dt+

(
e−

∫ c
0
b1(γ0(s),ζ0(s),s)ds

)
sup(γ,ζ)∈Bc A

γ,ζ(c)

≥ −
∫ c

0
e−

∫ t
0
b1(γ0(s),ζ0(s),s)dsb0(γ0(t), ζ0(t), t)dt+

(
e−

∫ c
0
b1(γ0(s),ζ0(s),s)ds

)
Aγ0ζ0(c)

= Aγ0ζ0(0),

and so we have that sup(γ,ζ)∈Bc A
γ,ζ(c) = Aγ0,ζ0(c). �

Let us now find the implicit equation for the function Aγ0,ζ0 for (γ0, ζ0) satisfying (6.10).
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Proposition 6.6. If the pair (γ0, ζ0) defined in (6.10) exists, then Aγ0,ζ0(c) satisfies

b1z(c)A
γ0,ζ0(c) + b0z(c) = 0 for any c ∈ [0, c), (6.11)

b1w(c)Aγ0,ζ0(c) + b0w(c) = 0 for all c ∈ [0, c] (6.12)

and
b1y(c)Aγ0,ζ0(c) + b0y(c) = 0 for all c ∈ [0, c], (6.13)

where
bi(s) := bi(γ0(s), ζ0(s), γ′0(s), s), biy(s) := ∂ybi(γ0(s), ζ0(s), γ′0(s), s),
biz(s) := ∂zbi(γ0(s), ζ0(s), γ′0(s), s) and biw(s) := ∂wbi(γ0(s), ζ0(s), γ′0(s), s)

for i = 0, 1.
Moreover, γ0(c) = b∗(c) is the optimal threshold defined in (5.7) and

Aγ0,ζ0(c) =
B(c, b∗(c))√

(µ− ac)2 + 2qσ2
. (6.14)

Proof. Consider any function (γ1, ζ1) ∈ B with γ1(c) = ζ1(c) = 0. Then

Aγ0+ηγ1,ζ0+εζ1(0)

= Aγ0,ζ0(c)e−
∫ c
0
b1(γ0(t)+ηγ1(t),ζ0(t)+εζ1(t),γ′0(t)+ηγ′1(t),t)dt

−
∫ c

0
e−

∫ s
0
b1(γ0(u)+ηγ1(u),ζ0(u)+εζ1(u),γ′0(u)+ηγ′1(u),u)dub0(γ0(s) + ηγ1(s), ζ0(s) + εζ1(s), γ′0(s) + ηγ′1(s), s)ds.

Taking the derivative with respect to ε at η = ε = 0, we get

0 = ∂εA
γ0+ηγ1,ζ0+εζ1(0)

∣∣
η=0,ε=0

=
∫ c

0

(
e−

∫ s
0
b1(u)dub0(s)

(∫ s
0
ζ1(u)b1z(u)du

))
ds

−
∫ c

0
(e−

∫ s
0
b1(u)duζ1(s)b0z(s))ds

−Aγ0,ζ0(c)e−
∫ c
0
b1(t)dt

∫ c
0
ζ1(s)b0z(s))ds.

Using integration by parts we obtain∫ c

0

(
e−

∫ s
0
b1(u)dub0(s)

(∫ s

0

ζ1(u)b1z(u)du

))
ds =

∫ c

0

(
ζ1(s)b1z(s)

(∫ c

s

e−
∫ t
0
b1(u)dub0(t)dt

))
ds,

and so

0 =

∫ c

0

ζ1(s)

(
b1z(s)

∫ c

s

e−
∫ t
0
b1(u)dub0(t)dt− e−

∫ s
0
b1(u)dub0z(s)−Aγ0,ζ0(c)e−

∫ c
0
b1(t)dtb0z(s)

)
ds.

Since this holds for any ζ1 with ζ1(c) = 0, we get using (6.5) that for any c ∈ [0, c)

0 = b1z(c)
∫ c
c
e−

∫ t
0
b1(u)dub0(t)dt− e−

∫ c
0
b1(u)dub0z(c)−Aγ0,ζ0(c)e−

∫ c
0
b1(t)dtb0z(c)

= e−
∫ c
0
b1(u)du(−b1z(c)Aγ0,ζ0(c)− b0z(c)),

and so we conclude (6.11).
Taking the derivative with respect to η at η = ε = 0, we get

0 = ∂ηA
γ0+ηγ1,ζ0+εζ1(0)

∣∣
η=0,ε=0

=
∫ c

0

(
e−

∫ s
0
b1(u)dub0(s)

(∫ s
0
γ′1(u)b1w(u)du

))
ds

+
∫ c

0

(
e−

∫ s
0
b1(u)dub0(s)

(∫ s
0
γ1(u)b1y(u)du

))
ds

−
∫ c

0

(
e−

∫ s
0
b1(u)duγ′1(s)b0w(s)

)
ds−

∫ c
0

(
e−

∫ s
0
b1(u)duγ1(s)b0y(s)

)
ds

−Aγ0,ζ0(c)e−
∫ c
0
b1(t)dt

∫ c
0
γ′1(t)b1z(t))dt−Aγ0,ζ0(c)e−

∫ c
0
b1(t)dt

∫ c
0
γ1(t)b1y(t))ds.
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Using integration by parts, we obtain

0 = γ1(0)
(
−b1w(0)

∫ c
0
e−

∫ t
0
b1(u)dub0(t)dt+ b0w(0) + e−

∫ c
0
b1(t)dtAγ0,ζ0(c)b1w(0)

)
+γ1(c)

(
−e−

∫ c
0
b1(t)dtb0w(c)− e−

∫ c
0
b1(t)dtAγ0,ζ0(c)b1w(c)

)
+
∫ c

0
γ1(s)

(
d
dsb1w(s)

(
e−

∫ c
s
b1(t)dtAγ0,ζ0(c)−

∫ c
s
e−

∫ t
s
b1(u)dub0(t)dt

))
ds

+
∫ c

0
γ1(s)

(
b1y(s)

(∫ c
s
e−

∫ t
s
b1(u)dub0(t)dt− e−

∫ c
s
b1(t)dtAγ0,ζ0(c)

))
ds

+
∫ c

0
γ1(s)

(
b1w(s)b0(s) + d

dsb1w(s)− b0w(s)b1(s)− b0y(s)
)
ds.

Using that γ1(c) = 0 and (6.5), we get

0 = γ1(0)
(
b1w(0)Aγ0,ζ0(0) + b0w(0)

)
+
∫ c

0
γ1(s)e−

∫ s
0
b1(u)du

((
d
dsb1w(s)− b1y(s)

)
Aγ0,ζ0(s) + d

dsb0w(s)− b0y(s) + b1w(s)b0(s)− b0w(s)b1(s)
)
ds.

Since this holds for any γ1 with γ1(c) = 0, we obtain(
d

ds
b1w(s)− b1y(s)

)
Aγ0,ζ0(s) +

d

ds
b0w(s)− b0y(s) + b1w(s)b0(s)− b0w(s)b1(s) = 0 for all c ∈ [0, c] (6.15)

and
b1w(0)Aγ0,ζ0(0) + b0w(0) = 0.

By Lemma 6.5, we also obtain, taking the derivative 0 = ∂ηA
γ0+ηγ1,ζ0+εζ1(c)

∣∣
η=0,ε=0

, that (6.12) holds.

Note that with (6.12), we have

0 = d
ds

(
b1w(s)Aγ0,ζ0(s) + b0w(s)

)
= d

dsb1w(s)Aγ0,ζ0(s) + d
dsb0w(s) + b0(s)b1w(s)− b1(s)b0w(s)

and so, from (6.15)

0 = d
dsb1w(s)Aγ0,ζ0(s)− b1y(s)Aγ0,ζ0(s) + d

dsb0w(s)− b0y(s) + b1w(s)b0(s)− b0w(s)b1(s)
=

[
d
dsb1w(s)Aγ0,ζ0(s) + d

dsb0w(s) + b1w(s)b0(s)− b0w(s)b1(s)
]
− b1y(s)Aγ0,ζ0(s)− b0y(s)

= d
ds

(
b1w(s)Aγ0,ζ0(s) + b0w(s)

)
− (b1y(s)Aγ0,ζ0(s) + b0y(s))

= −(b1y(s)Aγ0,ζ0(s) + b0y(s)),

from which we conclude (6.13). �

Proposition 6.7. Consider the functions C0 and Cij for i = 1, 2 and j = 0, 1, 2 defined in Section 11. If
(γ0, ζ0) ∈ B defined in (6.10) satisfies that ζ0 is continuous and

C11(γ0(c), ζ0(c), c) · C22(γ0(c), ζ0(c), c) 6= 0 (6.16)

for c ∈ [0, c], then γ0 and ζ0 are infinitely differentiable and (γ0, ζ0) is a solution of the system of ODE’s
γ′(c) =

C10(γ(c), ζ(c), c)

C11(γ(c), ζ(c), c)

ζ ′(c) =
C20(γ(c), ζ(c), c)C11(γ(c), ζ(c), c)− C21(γ(c), ζ(c), c)C10(γ(c), ζ(c), c)

C11(γ(c), ζ(c), c)C22(γ(c), ζ(c), c)

(6.17)

with boundary conditions
γ0(c) = b∗(c) and C0(b∗(c), ζ0(c), c)) = 0, (6.18)

where b∗(c) is the optimal threshold defined in (5.7).
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Proof. From (6.11) and (6.12), we have

(b1wb0z − b0wb1z)(γ0(c), ζ0(c), γ′0(c), c) = 0 for c ∈ [0, c].

From (6.3) we can write

(b1wb0z − b0wb1z)(y, z, w, c) = (e(z−y)θ1(c)−e(z−y)θ2(c))

q(θ1(c)−θ2(c))2d(y,z,c)

(
b11(y, c)∂z

(
b00(y,z,c)
d(y,z,c)

)
− b01(y, c)∂z

(
b10(y,z,c)
d(y,z,c)

))
= (e(z−y)θ1(c)−e(z−y)θ2(c))

q(θ1(c)−θ2(c))2d(y,z,c)
C0(y, z, c),

which does not depend on w. So we conclude, that

C0(γ0(c), ζ0(c), c) = 0 for c ∈ [0, c]. (6.19)

Moreover, from Proposition 6.6, we get (6.18).
From (6.12) and (6.13), we have

(b1wb0y − b0wb1y)(γ0(c), ζ0(c), γ′0(c), c) = 0 for c ∈ [0, c],

and we can write from (6.3),

(b1wb0y − b0wb1y)(y, z, w, c) =
(e(z−y)θ1(c) − e(z−y)θ2(c))

q (θ1(c)− θ2(c))
2
d(y, z, c)

(wC11(y, z, c)− C10(y, z, c)).

So, since C11(γ0(c), ζ0(c), c) 6= 0, we get the first equation of (6.17).
Taking the derivative of (6.19) with respect to c and using that ζ0 is continuous, γ0 is continuously

differentiable and C22(γ0(c), ζ0(c), c) 6= 0, we obtain that ζ0 is continuously differentiable and

0 = ∂yC0(γ0(c), ζ0(c), c)γ′0(c) + ∂zC0(γ0(c), ζ0(c), c)ζ ′0(c) + ∂cC0(γ0(c), ζ0(c), c)
= C21(γ0(c), ζ0(c), c)γ′0(c) + C22(γ0(c), ζ(c), c)ζ ′0(c)− C20(γ0(c), ζ0(c), c).

Using the first equation of (6.17), we get the second equation of (6.17). By a recursive argument, we finally
obtain that γ0 and ζ0 are infinitely differentiable. �

Let us study the uniqueness of the solution of (6.17) with boundary condition (6.18). We know that if
(γ, ζ) ∈ B is a solution, then γ(c) = b∗(c), the optimal threshold defined in (5.7). In order to obtain ζ(c),
we have to find a zero of C0(b∗(c), ·, c) in (b∗(c),∞). Let us assume that there exists a unique zero z∗(c) of
C0(b∗(c), ·, c) in (b∗(c),∞). In the next proposition we show that, under this assumption, the existence of a
solution (γ, ζ) of (6.17) implies uniqueness.

In Section 7, we will show that there is a unique zero z∗(c) of C0(b∗(c), ·, c) in (b∗(c),∞) for c large
enough. Also, we check this assumption in the numerical examples for each set of parameters.

Proposition 6.8. Let us assume that there exists a unique zero z∗(c) of C0(b∗(c), ·, c) in (b∗(c),∞). If
(γ1, ζ1) ∈ B and (γ2, ζ2) ∈ B are two solutions of the system of differential equations (6.17) satisfying the
boundary condition (6.18), then (γ1, ζ1) = (γ2, ζ2).

Proof. Consider

cm = min {c ∈ [0, c] : (γ1(d), ζ1(c)) = (γ2(d), ζ2(d)) for d ∈ [c, c]} .

Let us call

F1(y, z, c) = (C10(y, z, c)C22(y, z, c), C20(y, z, c)C11(y, z, c)− C21(y, z, c)C10(y, z, c)) ,

F2(y, z, c) = C11(y, z, c)C22(y, z, c),

and F (y, z, c) = F1(y.z, c)/F2(y.z, c). Note that F1, F2 and are infinitely differentiable,

(γ′i(c), ζ
′
i(c)) = F (γi(c), ζi(c), c) for c ∈ [0, c]
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and (γi(cm), ζi(cm)) = (γi(cm), ζi(cm)) for i = 1, 2 and F2(γ1(cm), ζ1(cm), cm) = F2(γ2(cm), ζ2(cm), cm) 6= 0.
If cm = 0, we have the result. On the other hand, for cm > 0, using the Picard-Lindelöf theorem we have
that there exists a unique solution of (6.17) with boundary condition ζ(cm) = ζ1(cm) in [max{cm− δ, 0}, cm]
for some δ > 0, which is a contradiction. �

Let us now introduce a lower bound c for the dividend rate (to be specified later), and denote by
(
γ, ζ
)

a solution of (6.17) in [c, c] with boundary conditions (6.18).

Remark 6.3. Since the functions Cij are infinitely differentiable, a recursive argument establishes that γ
and ζ are also infinitely differentiable.

In the next proposition, we state that the value function W γ,ζ satisfies a smooth-pasting property on
the two free-boundary curves. Note that this extends [1, Prop.5.13] from the ratcheting case with one free
boundary to our present drawdown case. For a general account on conditions for smooth-pasting when the
value function is not necessarily smooth, see e.g. Guo and Tomecek [22].

Proposition 6.9. If a pair of infinitely differentiable functions (γ, ζ) ∈ B satisfies

∂xxW
γ,ζ(γ(c)+, c) = ∂xxW

γ,ζ(γ(c)−, c) for c ∈ [c, c]

and
∂cxW

γ,ζ(ζ(c), c) = ∂ccW
γ,ζ(ζ(c), c) = 0 for c ∈ [c, c],

then (γ, ζ) is a solution of both (6.11) and (6.12) in [c, c] with boundary conditions (6.18). Moreover
∂x(W γ,ζ)(γ(c), c) = 1 for c ∈ [c, c]. Conversely, let (γ̄, ζ̄) be a solution of (6.17) in [c, c] with boundary
conditions (6.18), then W γ̄,ζ̄ satisfies the smooth-pasting properties

∂xxW
γ̄,ζ̄(γ(c)+, c) = ∂xxW

γ̄,ζ̄(γ(c)−, c) for c ∈ [c, c]

and
∂cxW

γ̄,ζ̄(ζ̄(c), c) = ∂ccW
γ̄,ζ̄(ζ̄(c), c) = 0 for c ∈ [c, c].

Proof. Take a pair of infinitely differentiable functions (γ, ζ) ∈ B, and let us consider the function
Hγ,ζ(x, c) introduced in Lemma 6.2. Firstly, note that Hγ,ζ satisfies Lac(Hγ,ζ)(x, c) = 0 for 0 ≤ x ≤ γ(c),
Lc(Hγ,ζ)(x, c) = 0 for x ≥ γ(c), Hγ,ζ(0, c) = 0, ∂cH

γ,ζ(x, c)
∣∣
x=ζ(c)

= 0 and Hγ,ζ(x, c) = v (x, c, γ(c)). So

we have, for x > γ(c),

∂cH
γ,ζ(x, c) = f21(γ(c), x, c)

(
−b0(γ(c), x, γ′(c), c)−Aγ,ζ(c)b1(γ(c), x, γ′(c), c)

)
and

∂cxH
γ,ζ(x, c)

∣∣
x=ζ(c)

= f21(γ(c), ζ(c), c)
(
− ∂xb0(γ(c), x, γ′(c), c)|x=ζ(c) −A

γ,ζ(c) ∂xb1(γ(c), x, γ′(c), c)|x=ζ(c)

)
.

Since, by Lemma 6.1, f21(y, x, c) = d(y, x, c)/(θ1(c)−θ2(c)) > 0 for x > y, we obtain that ∂cxH
γ,ζ(x, c)

∣∣
x=ζ(c)

=

0 if and only if (6.11) holds for (γ, ζ) in [c, c]. As W γ,ζ(x, c) = Hγ,ζ(x, c) for x < ζ(c) and W γ,ζ(x, c) =
Hγ,ζ(x,C(x, c)) for x ≥ ζ(c), we get ∂cW

γ,ζ(x, c) = 0 for x ≥ ζ(c) and consequently ∂cxW
γ,ζ(ζ(c), c) = 0.

Moreover, ∂cH
γ,ζ(ζ(c), c) = 0 for c ∈ [c, c], and so

0 = d
dc (∂cH

γ,ζ(ζ(c), c))
= ∂ccH

γ,ζ(ζ(c), c) + ∂cxH
γ,ζ(ζ(c), c)ζ ′(c)

= ∂ccH
γ,ζ(ζ(c), c).

Altogether, since W γ,ζ(x, c) = Hγ,ζ(x,C(x, c)) if x ≥ ζ(c), we get ∂ccW
γ,ζ(x, c) = 0 if x ≥ ζ(c) and so

∂ccW
γ,ζ(ζ(c), c) = 0.

Secondly, by the definitions in Section 11, we have that ∂yf11(y, c) 6= 0 and b11(y, z, c) > 0

− b01(y, c)

qb11(y, c)
=

1− ∂yf10(y, c)

∂yf11(y, c)
.
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So

Aγ,ζ(c) = −∂wb0(γ(c), ζ(c), γ′(c), c)

∂wb1(γ(c), ζ(c), γ′(c), c)
= − b01(γ(c), c)

qb11(γ(c), c)
=

1− ∂yf10(γ(c), c)

∂yf11(γ(c), c)
.

And then

∂x(W γ,ζ)(γ(c), c) = ∂x(W γ,ζ)(γ(c)−, c) = ∂yf10(γ(c), c)) +Aγ,ζ(c)∂yf11(γ(c), c) = 1

if, and only if, (6.12) holds for (γ, ζ) in [c, c]. Note that, since LcW γ,ζ(γ(c)+, c) = LacW γ,ζ(γ(c)−, c) = 0
and ∂x(W γ,ζ)(γ(c), c) = 1, we obtain

0 = LcW γ,ζ(γ(c)+, c)− LacW γ,ζ(γ(c)−, c) =
σ2

2
(∂xxW

γ,ζ(γ(c)+, c)− ∂xxW γ,ζ(γ(c)−, c)).

Therefore, when (γ̄, ζ̄) is a solution of (6.17), it satisfies (6.11) and (6.12), and so

∂xxW
γ̄,ζ̄(γ(c)+, c) = ∂xxW

γ̄,ζ̄(γ(c)−, c) for c ∈ [c, c]

and
∂cxW

γ̄,ζ̄(ζ̄(c), c) = ∂ccW
γ̄,ζ̄(ζ̄(c), c) = 0 for c ∈ [c, c].

�

In the next proposition, we show more regularity for W γ,ζ in the case that ζ is strictly monotone.

Proposition 6.10. If (γ, ζ) is a solution of (6.17) in [c, c] with boundary conditions (6.18) and ζ
′
(c) 6= 0 in

[c, c], then W γ,ζ is (2,1)-differentiable.

Proof. It holds that

f10(x, c)|x=y = f20(y, x, c)|x=y , f11(x, c)|x=y = f21(y, x, c)|x=y ,

∂xf10(x, c)|x=y = ∂xf20(y, x, c)|x=y , ∂xf11(x, c)|x=y = ∂xf21(y, x, c)|x=y ,

∂cf10(x, c)|x=y = ∂cf20(y, x, c)|x=y , ∂cf11(x, c)|x=y = ∂cf21(y, x, c)|x=y ,

∂cxf10(x, c)|x=y = ∂cxf20(y, x, c)|x=y , ∂cxf11(x, c)|x=y = ∂cxf21(y, x, c)|x=y ,

∂yf20(y, x, c)|x=y = ∂yf21(y, x, c)|x=y = 0, ∂cyf20(y, x, c)|x=y = ∂cyf21(y, x, c)|x=y = 0.

By Proposition 6.9, W γ,ζ
xx (x, c) is continuous at x = γ(c) and so W γ,ζ is (2,1)-differentiable for x < ζ(c).

In the case that ζ
′
(c) > 0 in [c, c], the inverse ζ

−1
exists and `(x, c) can be written as

`(x, c) =

{
c if ζ(c) ≤ x,
ζ
−1

(x) if ζ(c) ≤ x < ζ(c).

In order to show that W γ,ζ is (2,1)-differentiable, it is enough to prove that ∂xxW
ζ(x+, c) = ∂xxW

ζ(x−, c)
for ζ(c) ≤ x < ζ(c). We have, by Proposition 6.9,

∂xW
γ,ζ(x+, c) = ∂xH

γ,ζ(x, ζ
−1

(x)) + ∂cH
γ̄,ζ(x, ζ(x))

(
ζ
−1
)′

(x)

= ∂xH
γ,ζ(x, ζ

−1
(x))

= ∂xW
γ,ζ(x−, c).

Consequently,

∂xxW
γ,ζ(x+, c) = ∂xxH

γ,ζ(x, ζ
−1

(x)) + ∂cxH
γ,ζ(x, ζ

−1
(x))

(
ζ
−1
)′

(x)

= ∂xxH
γ,ζ(x, ζ

−1
(x))

= ∂xxW
γ,ζ(x−, c).
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In the case that ζ
′
(c) < 0 in [c, c], `(x, c) = c for x ≥ ζ(c). In order to show that W γ,ζ is (2,1)-

differentiable, it is sufficient to prove that ∂xxW
ζ(x+, c) = ∂xxW

ζ(x−, c) for x = ζ(c). Since `(x, c) = c,

Hγ,ζ(ζ(c), c) = W γ,ζ(ζ(c), c) = vc(ζ(c)).

That is, we have,

Hγ,ζ
x (ζ(c), c)ζ

′
(c) +Hγ,ζ

c (ζ(c), c) = (vc)′(ζ(c))ζ
′
(c).

Since Hγ,ζ
c (ζ(c), c) = W γ,ζ

c (ζ(c), c) = 0 and ζ
′
(c) < 0 we get

W γ,ζ
x ((ζ(c))−, c) = Hγ,ζ

x (ζ(c), c) = (vc)′(ζ(c)) = W γ,ζ
x ((ζ(c))+, c),

so that Hγ,ζ
x (ζ(c), c) = (vc)′(ζ(c)). Hence, taking the derivative one more time with respect to c we get

Hγ,ζ
xx (ζ(c), c)ζ

′
(c) +Hγ,ζ

xc (ζ(c), c) = (vc)′′(ζ(c))ζ
′
(c).

By virtue of Proposition 6.9, Hγ,ζ
xc (ζ(c), c) = Hγ,ζ

cx (ζ(c), c) = 0 and ζ
′
(c) < 0, and we obtain

W γ,ζ
xx ((ζ(c))−, c) = Hγ,ζ

xx (ζ(c), c) = (vc)′′(ζ(c)) = W γ,ζ
xx ((ζ(c))+, c).

�

Proposition 6.11. Let (γ, ζ) be a solution of (6.17) in [c, c] with boundary conditions (6.18) such that the

function W γ,ζ is (2,1)-differentiable and satisfies

∂cW
γ,ζ(x, c) ≤ 0 for x ∈ [0, ζ(c))

and
∂xW

γ,ζ(x, c) ≥ 1 for x ∈ [0, γ(c)) and ∂xW
γ,ζ(x, c) ≤ 1 for x ∈ [γ(c), ζ(c)]

for c ∈ [c, c), then W γ,ζ̄ = V .

Proof. Since ζ is continuous in [c, c], there exists M = maxc∈[c,c] ζ(c). By definition, if x ≥ M then

`(x, c) = c and W γ,ζ(x, c) = vc(x), so limx→∞W γ,ζ(x, c) = limx→∞ vc(x) = c/q.
By (5.10), we have that

∂xv
c(x) ≤ 1 for x ≥ ζ(c) and ∂xv

c(b∗(c)) = 1. (6.20)

Since

Lac(W γ,ζ)(x, c)− Lc(W γ,ζ)(x, c) = (c− ac)∂xW γ,ζ(x, c) + (ac− c) = c(1− a)
(
∂xW

γ,ζ̄(x, c)− 1
)
,

we get Lac(W γ,ζ)(x, c) ≤ Lc(W γ,ζ)(x, c) = 0 for x ∈ [γ(c), ζ(c)] and Lc(W γ,ζ)(x, c) ≤ Lac(W γ,ζ)(x, c) = 0
for x ∈ [0, γ(c)].

By Theorem 4.3, it remains to prove that LacW γ,ζ(x, c) ≤ 0 and LcW γ,ζ(x, c) ≤ 0 for x ≥ ζ(c), c ∈ [c, c).
We have that

`(x, c) = max{h ∈ [c, c] : ζ(d) ≤ x for d ∈ [c, h)}

satisfies `(x, c) ≥ c, and also either `(x, c) = c or ζ(`(x, c)) = x. So, we obtain LαW γ,ζ(x, α)
∣∣∣
α=`(x,c)

= 0

and then

LcW γ,ζ(x, c) = L`(x,c)W γ,ζ(x, c) + (`(x, c)− c)(∂xW γ,ζ(x, `(x, c))− 1)

= (`(x, c)− c)(∂xW γ,ζ(x, `(x, c))− 1) ≤ 0,

because we have, from (6.20) and ∂xW
γ,ζ(ζ(c), c) ≤ 1 for c ∈ [c, c], that ∂xW

γ,ζ(x, `(x, c)) ≤ 1. Also,

Lac(W γ,ζ)(x, c)− Lc(W γ,ζ)(x, c) = c(1− a)
(
∂xW

γ,ζ(x, c)− 1
)

= c(1− a)
(
∂xW

γ,ζ(x, `(x, c))− 1
)
≤ 0

for x ≥ ζ(c), c ∈ [c, c). �
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Remark 6.4. We conjecture that there is always a unique zero z∗(c) of C0(b∗(c), ·, c) in (b∗(c),∞) for c >
qσ2/(2µ), that there exists a solution

(
γ, ζ
)
∈ B of the system of differential equations (6.17) satisfying the

boundary condition (6.18), and that the value function W γ,ζ is a viscosity supersolution of the HJB equation

(4.3). In such a case, (γ, ζ) = (γ0, ζ0) and W γ,ζ is the optimal value function V . Moreover, the optimal
strategy is then a two-curve strategy. In Section 8 we will show that that this conjecture in any case holds
in [c, c] for c large enough and some suitable c < c, and in Section 9 we also show numerically that this
conjecture is true for further instances.

7. Asymptotic values as c→∞

The symbolic computations of this section are highly involved, so we use the Wolfram Mathematica software
to obtain Taylor expansions. Note that all results of this section are derived for 0 < a < 1, and the resulting
expressions may not necessarily be applicable for the limit to a = 1, as dominant terms in the asymptotics
may change.

Recall the boundary condition C0(b∗(c), ·, c) = 0 of the differential equation of the last section, cf. (6.18).

Note that for c > qσ2

2µ , we have from Remark 6.1 that b∗(c) is the unique positive b satisfying (5.8). In this

section, we show that there is a unique zero z∗(c) of C0(b∗(c), ·, c) in (b∗(c),∞) for c large enough and that

lim
c→∞

(b∗(c), z∗(c)) =

(
µ

q
,
µ

q

(
1 +

1√
a

))
.

We also show that limc→∞ V ca (x, c) ↘ x for 0 < x < limc→∞ z∗(c) = µ
q (1 + 1√

a
) and limc→∞ V ca (x, c) ↗ x

for x > limc→∞ z∗(c) = µ
q (1 + 1√

a
).

In the rest of the section we denote V ca by V c.

Proposition 7.1. It holds that limc→∞ b∗(c) = µ/q. Moreover precisely, the Taylor expansion of b∗(c) at
c =∞ is given by

b∗(c) =
µ

q
− µ2 + aqσ2

2aq

1

c
+O

(
1

c2

)
. (7.1)

Proof. We have from (5.7) that
∂bB(c, b∗(c)) = 0. (7.2)

But

∂bB(c, b) =
c
√

(µ− ac)2 + 2qσ2

q
(
eθ1(ac)b(θ1(ac)− θ2(c)) + eθ2(ac)b(θ2(c)− θ2(ac))

)2 · E(c, b),

where

E(c, b) = eθ1(ac)b(a− 1)θ2(c)(θ2(c)− θ1(ac))θ1(ac) (7.3)

+ eθ2(ac)b(1− a)θ2(c)(θ2(c)− θ2(ac))θ2(ac)

+ e(θ1(ac)+θ2(ac))ba(θ2(c)− θ2(ac))(θ2(c)− θ1(ac))(θ2(ac)− θ1(ac)).

Let us define F0(c, b) := E(c, b)/eθ1(ac)b. The Taylor expansions of θ1(c) and θ2(c) at c =∞ are given by

θ1(c) =
2

σ2
c− 2µ

σ2
+ q

1

c
+O(

1

c2
) and θ2(c) = −q 1

c
− qµ 1

c2
+O(

1

c3
). (7.4)

Let us prove first that there is not a sequence b∗(cn)→∞ with cn →∞. Using (7.4), we obtain

lim
n→∞

F0(cn, b
∗(cn)) = lim

n→∞

4(a− 1)a2q

σ4
cn(1− e−

qb∗(cn)
acn ).

Firstly, let us assume that b∗(cn) = cn αn with αn → α ∈ (0,∞). Then, since (1− e−
qα
a ) > 0 and a < 1,

0 = lim
n→∞

F0(cn, b
∗(cn)) = −∞,
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which is a contradiction. Secondly, let us assume that b∗(cn) = cn αn with αn →∞. Then, since e−
qb∗(cn)
acn →

0, we have 0 = limn→∞ F0(cn, b
∗(cn)) = −∞ which is also a contradiction. Finally, let us assume that

b∗(cn) = cn αn with αn → 0+.

0 = lim
n→∞

F0(cn, b
∗(cn)) = lim

n→∞

4(a− 1)a2q

σ4
(
1− e−

qαn
a

αn
)b∗(cn) = −∞.

Hence, lim supc→∞ b∗(c) <∞.

Let us define the function H0(u, b) : [0,∞)× (0,∞)→ R as

H0(u, b) :=

{
4(a−1)aq(qb−µ)

σ4 for u = 0
F0( 1

u , b) for u > 0.

H0(u, b) is infinitely continuously differentiable because it is infinitely continuously differentiable for u > 0
and limu→0+ F0( 1

u , b) = 4(a− 1)aq(qb− µ)/σ4 <∞. Moreover, its first-order Taylor expansion is given by

H0(u, b) =
4(a− 1)aq(qb− µ)

σ4
+

(
2(a− 1)q − q2b2 + 2(1− a)µ2 + aq(2bµ+ σ2))

σ4

)
u+O(u2) ,

From (7.2), we obtain H0(u, b∗(1/u)) = 0 for u > 0. Let us show that limu→0+ b∗(1/u) = µ/q. We have
already seen that b∗(1/u) is bounded for u ∈ [0, ε) for some ε > 0. Take any convergent sequence un → 0+

with limn→∞ b∗(1/un) = b0 <∞, then

lim
n→∞

H0(un, b
∗(1/un)) = H0(0, b0) =

4(a− 1)aq(qb0 − µ)

σ4
= 0

and so b0 = µ/q. Using that ∂bH0(0, b) = 4(a−1)aq2

σ4 6= 0, we conclude by the implicit function theorem, that
the function h(u) : [0,∞) → R defined as h(0) = µ

q and h(u) = b∗( 1
u ) for u > 0 is infinitely continuously

differentiable and the result follows. �

Proposition 7.2. There exists a unique zero z∗(c) of C0(b∗(c), ·, c) in (b∗(c),∞) for c large enough with
limc→∞ z∗(c) = µ

q (1 + 1√
a
). More precisely, z∗(c) is infinitely continuously differentiable for c large enough

and its first-order Taylor expansion at c =∞ is given by

z∗(c) =
µ

q

(
1 +

1√
a

)
+

(1− 2
√
a− 3a)µ2 − 3(1 +

√
a3/2)qσ2

3q
√
a3

1

c
+O(

1

c2
). (7.5)

Proof. Considering the function C0(y, z, c) defined in Section 11 and the function E(c, y) defined in (7.3),
we define

C̃0(y, z, c) =
(
ce2(z−y)θ1(c)+yθ1(ac)(θ2(c)− θ1(c))(θ1(ac)− θ2(c))θ′1(c)

)
E(c, y)

−
(
ce2(z−y)θ1(c)+yθ2(ac)(θ2(ac)− θ2(c))(θ2(c)− θ1(c))θ′1(c))

)
E(c, y)

+ C0(y,z,c)
(θ1(c)−θ2(c)) .

Since E(c, b∗(c)) = 0, θ2(c)−θ1(c) < 0 and d(y, z, c) > 0, we have that C0(b∗(c), z∗(c), c) = 0 is equivalent to
C̃0(b∗(c), z∗(c), c) = 0. We can write

C̃0(y, z, c) =
16∑
i=1

mi(y, z, c)e
gi(y,z,c), (7.6)

where mi(y, z, c) are of the form

mi(y, z, c) = mi0(y, c) +mi1(y, c)z,

and mi0(y, c), mi1(y, c) are polynomials on θ1(c), θ2(c), θ1(ac), θ2(ac), θ′1(c), θ′2(c), θ′1(ac), θ′2(ac), y, c, a.
The functions gi(y, z, c) in (7.6) are positive linear combinations of (z − y)θ1(c), (z − y)θ2(c), yθ1(ac) and
yθ2(ac), with the concrete form given in Section 11. Define

F1(y, z, c) :=
C̃0(y, z, c)

eg12(y,z,c)
.
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Let us show first that there is not a sequence (zn, cn) with zn > b∗(cn) such that C0(b∗(cn), zn, cn) = 0,
cn → ∞ and zn → ∞. From the definitions of the exponents gi given in Section 11 and the expressions
(7.4), we have that

lim
n→∞

F1(b∗(cn), zn, cn) = lim
n→∞

14∑
i=12

mi(b
∗(cn), zn, cn)egi(b

∗(cn),zn,cn)−g12(b∗(cn),zn,cn),

because the other terms are negligible. We can write

m12,0(y, c) = 64(a−1)a2

σ12 c6 +O(c5), m12,1(y, c) = O(c4),

m13,0(y, c) = 64(a−1)2a2

σ12 c6 +O(c5), m13,1(y, c) = 128(a−1)2a2q
σ12 c5 +O(c4)

m14,0(y, c) = − 64(a−1)a3

σ12 c6 +O(c5), m14,1(y, c) = − 64a2(1−3a+2a2)q
σ12 c5 +O(c4)

and
g13(y, z, c)− g12(y, z, c) = −q(z − y) 1

c + (1 + z)O( 1
c2 ),

g14(y, z, c)− g12(y, z, c) = −
(
qy
a + q(z − y)

)
1
c + (1 + z)O( 1

c2 ).

If zn →∞, cn →∞, with b∗(cn)→ µ
q we deduce that

0 = lim
n→∞

F1(b∗(cn), zn, cn) = lim
n→∞

64(a− 1)a2c6n
σ12

e−q
zn
cn (eq

zn
cn − 1− q zn

cn
).

Firstly, let us assume that zn = cn αn with αn → α ∈ (0,∞). Then, since e−qα(eqα−1− qα) > 0 and a < 1,

0 = lim
n→∞

F1(b∗(cn), zn, cn) = −∞

which is a contradiction. Secondly, let us assume that zn = cn αn with αn →∞. Then, since

e−qαn(eqαn − 1− qαn) = 1− (1 + qαn)e−qαn → 1,

we have
0 = lim

n→∞
F1(b∗(cn), zn, cn) = −∞

which is also a contradiction. Finally, let us assume that zn = cnαn with αn → 0+.

0 = lim
n→∞

F1(b∗(cn), zn, cn) = lim
n→∞

64(a−1)a2

σ12 q2e−qαn( e
qαn−1−qαn

q2α2
n

)z2
nc

4
n = −∞

which is also a contradiction. Hence, there is not such a sequence (zn, cn).
Using the Taylor expansions of θ1(c), θ2(c) and b∗(c) at c = ∞ given in (7.4) and Proposition 7.1, we

find that the function

H1(z, u) =

{
32(a−1)a(a(µ−qz)2−µ2)

σ12 for u = 0
u4F1(b∗( 1

u ), z, 1
u ) for u > 0

is infinitely continuously differentiable, because it is infinitely continuously differentiable for u > 0 and

lim
u→0+

u4F1(b∗(
1

u
), z,

1

u
) =

32(a− 1)a
(
a(µ− qz)2 − µ2

)
σ12

<∞.

Moreover, its first-order Taylor expansion is given by

H1(z, u) =
32(a−1)a(a(µ−qz)2−µ2)

σ12

− 32(a−1)(−4µ3+3aµ(2q2z2−6qzµ+µ2)+a2(qz−µ)(2q2z2−µ2−q(zµ+3σ2))
3σ12 u+O(u2).

Since, the only zero of H1(z, 0) in [µq ,∞) is µ
q (1 + 1√

a
) and

∂zH1(z, 0) = ∂z(
32(a− 1)a

(
a(µ− qz)2 − µ2

)
σ12

) =
64(1− a)a2q(µ− qz)

σ12
6= 0
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for z ≥ µ
q , we conclude by the implicit function theorem, that there exists ε > 0 and a unique infinitely

continuously differentiable function g(u) : [0, ε) → R with g(0) = µ
q (1 + 1√

a
) and H1(g(u), u) = 0 for

u ∈ [0, ε); also g(u) is the unique zero of H1(·, u) in a neighborhood U of (µq (1 + 1√
a
), 0). Moreover, the

first-order Taylor expansion of g at u = 0 is given by

g(u) =
µ

q

(
1 +

1√
a

)
+

(
2− 4

√
aµ2 − 6a

)
µ2 − 3(2 +

√
a3)qσ2

6q
√
a3

u+O(u2). (7.7)

Let us show now that g(u) is the only zero of H1(·, u) in (b∗(1/u),∞) for u small enough. If this were
not the case, there should be a sequence (zn, un)n≥1 with zn > b∗(1/un), zn 6= g(un) such that un ↘ 0
and H1(zn, un) = 0. If there exists a convergent subsequence znk with znk → z0 ∈ [µq ,∞), by continuity

H1(z0, 0) = 0 and so z0 = g(0) = µ
q (1 + 1√

a
) and this is a contradiction because (znk , unk) /∈ U for k large

enough. So zn →∞ and this is also a contradiction. So, from (7.7), we get the result. �

Proposition 7.3. There exists a unique zero x∗(c) of ∂cV
c(x, c) in (0,∞) for c large enough with x∗(c) >

b∗(c) and limc→∞ x∗(c) = µ
q (1+ 1√

a
). More precisely, x∗(c) is infinitely continuously differentiable for c large

enough and its first-order Taylor expansion at c =∞ is given by

x∗(c) =
µ

q

(
1 +

1√
a

)
+

(1− 2
√
a− 3a)µ2 − 3(1 +

√
a3)qσ2

3
√
a3q

1

c
+O(

1

c2
). (7.8)

Moreover, limc→∞ V c(x, c)↘ x for 0 < x < µ
q (1 + 1√

a
) and limc→∞ V c(x, c)↗ x for x > µ

q (1 + 1√
a
).

Proof. From (5.5), we have that

V c(x, c) = v(x, c, b∗(c)) =
(
B(c, b∗(c))W0(x, c) +

ac

q
(1− eθ2(ac)x)

)
Ix<b∗(c) +

( c
q

+D(c, b∗(c))eθ2(c)x
)
Ix≥b∗(c)

and from Proposition 7.1, we know that limc→∞ b∗(c)↗ µ/q.

Take x < µ/q, then x < b∗(c) for c large enough, so we have that

V c(x, c) = B(c, b∗(c))W0(x, c) +
ac

q
(1− eθ2(ac)x)

and so

∂cV
c(x, c) =

F2(x, c)

l0(b∗(c), c)
,

where

l0(b, c) = q
(
(µ− ac)2 + 2qσ2

) (
ebθ1(ac)(θ1(ac)− θ2(c)) + ebθ2(ac)(θ2(c)− θ2(ac))

)2

> 0, (7.9)

and

F2(x, c) :=
11∑
i=1

li(x, b
∗(c), c)ehi(x,b

∗(c),c).

Here li(x, b, c) are polynomials on θ1(c), θ2(c), θ1(ac), θ2(ac), θ′1(c), θ′2(c), θ′1(ac), θ′2(ac), x, b, c, a and
hi(x, b, c), i = 1, ..., 11, are positive linear combinations of bθ1(ac), xθ1(ac), bθ2(ac) and xθ2(ac) stated in
detail in Section 11. Since limc→∞ b∗(c) = µ/q, the Taylor expansion of F2(x, c)/c2 at c =∞ is given by

F2(x, c)

c2
=

2a3xq(xq − 2µ)

σ4
+O

(
1

c

)
.

Since xq − 2µ < 0, we have ∂cV
c(x, c) < 0 for c large enough and so limc→∞ V c(x, c) = x+ for x < µ

q .

Take now x ≥ µ/q > b∗(c), then

V c(x, c) =
( c
q

+D(c, b∗(c)
)
eθ2(c)x
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and so

∂cV
c(x, c) =

F3(x, c)

l0(b∗(c), c)
,

where

F3(x, c) =
8∑
i=1

l̄i(x, b
∗(c), c)eki(x,b

∗(c),c),

l0(b, c) is defined in (7.9), l̄i(x, b, c) are polynomials on θ1(c), θ2(c), θ1(ac), θ2(ac), θ′1(c), θ′2(c), θ′1(ac), θ′2(ac),
x, b, c, a and ki(x, b, c), i = 1, ..., 8, are positive linear combinations of bθ1(ac), bθ2(ac) and (x − b)θ2(c) as
detailed in Section 11. Since limc→∞ b∗(c) = µ/q, the Taylor expansion of F3(x, c)/ c2 at c =∞ is given by

F3(x,c)
c2

=
2a3

σ4

(
aq2x2 − 2aqµx+ µ2(a− 1)

)
+

4a2

3σ4
(−3a(2qx− 3µ)(qx− µ)µ+ 5µ3 + 3qµσ2 − a2(qx− µ)(q2x2 − 5qxµ+ 4µ2 − 3qσ2))

1

c

+O
(

1
c2

)
.

So from F3(x∗(c), c) = 0 we obtain that the Taylor expansion of x∗(c) is given by (7.8).
Moreover, we obtain that for c large enough, ∂cV

c(x, c) < 0 for x ∈ [µq ,
µ
q (1 + 1√

a
)) and ∂cV

c(x, c) > 0

for x > µ
q (1 + 1√

a
). So, we conclude the result. �

Remark 7.1. Note that

z∗(c)− x∗(c) =
σ2

2

1

c
+O(

1

c2
), (7.10)

so z∗(c) > x∗(c) for c large enough, and asymptotic equivalence for these two quantities when c → ∞. At
the same time, the inequality z∗(c) ≥ x∗(c) can easily be seen to hold for any c from the following argument:
We have

V c(x, c)− V c−h(x, c− h) = V c(x, c)− V c(x, c− h) + V c(x, c− h)− V c−h(x, c− h)
≥ V c(x, c)− V c(x, c− h),

since, by Proposition 3.7, V c(x, c) is non-decreasing in c. So, dividing by h and taking the limit as h goes
to zero, we get

∂cV
c(x, c) ≥ V cc (x, c)

∣∣
c=c

.

Hence ∂cV
c(z∗(c), c) ≥ V cc (z∗(c), c)

∣∣
c=c

= 0 and then the value x∗(c) where ∂cV
c(·, c) changes from negative

to positive satisfies x∗(c) ≤ z∗(c).

Remark 7.2. One observes from (7.5) that for very small values of a, the coefficient of 1/c in the asymptotic
expansion is positive, so that the limit µ(1+1/

√
a)/q is approached from the right, whereas for larger values

of a that coefficient is negative and the limit is approached from the left as c becomes large, see also the
numerical illustrations in Section 9.
It may also be instructive to derive the higher-order limiting behavior of x∗(c) established in the previous
proposition in a direct way for the deterministic case discussed in Section 2. Concretely, including one more
term in the expansion (2.3) gives

x+
2axqµ− ax2q2 + µ2(1− a)

2aq c
+
µ3 + 3aµ2(µ− xq) + a2(xq − 4µ)(µ− xq)2

6a2q c2
+O

(
1

c3

)
,

and substituting x = µ
q (1 + 1√

a
) + a0

c (for an a0 ∈ R to be identified) into this expression gives

3
√
a3 qµ a0 + µ3(2

√
a+ 3a− 1)

3a2qc3
+O

(
1

c4

)
.

This fraction equals zero for a0 = (1−2
√
a−3a)µ2

3
√
a3q

, so that we obtain

x∗(c) =
µ

q

(
1 +

1√
a

)
+

(1− 2
√
a− 3a)µ2

3
√
a3q c

+O

(
1

c2

)
,
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which exactly corresponds to (7.8) for σ = 0.

The latter formula shows that in the deterministic case indeed the limit µ(1 + 1/
√
a)/q is approached from

the right for a < 1/9 and from the left for a > 1/9 as c→∞.

8. Optimal strategies for c large

In the next proposition, we show that for c large enough, there exists a unique solution of (6.17) with

boundary conditions (6.18) and that ζ
′
< 0 and γ′ > 0 in a neighborhood of c. We emphasize again that for

all results in this section, a is assumed to be strictly smaller than 1.

Proposition 8.1. For c large enough, we can find c ∈ [0, c) such that there exists a unique solution
(γ(c), ζ(c)) of (6.17) with boundary conditions (6.18) in [c, c], and γ is strictly increasing and ζ is strictly
decreasing in [c, c], respectively.

Proof. In order to prove that there exists a unique solution (γ(c), ζ(c)) of (6.17) in [c, c] for some c < c,
it suffices to show that

C11(b∗(c), z∗(c), c) 6= 0 and C22(b∗(c), z∗(c), c) 6= 0

for c large enough. Combining (7.1) and (7.5) with the formulas of C11(y, z, c) and C22(y, z, c) given in
Section 11, we obtain that

C11(b∗(c), z∗(c), c) = −32(1− a)2aq

σ10
c5 +O(c4),

C22(b∗(c), z∗(c), c)e(z∗(c)−b∗(c))θ1(c) =
32(1− a)qµ√

a σ10
c3 +O(c2),

and so
C11(b∗(c), z∗(c), c) < 0 and C22(b∗(c), z∗(c), c) > 0

for c large enough.
In order to prove that γ(c) is increasing and ζ(c) is decreasing in [c, c] for c large enough and some c < c,

we use the differential equations (6.17) at c = c and the Taylor expansion of Cij to show that

γ′(c) =
aqσ2 + µ2

2aq

1

c2
+O( 1

c3
),

ζ ′(c) = −3qσ4

4

1

c4
+O( 1

c5
)

for c large enough, so we have the result. �

In the following theorem, we show that the value function of the two-curve strategy W γ,ζ given by the
solutions of (γ, ζ) of (6.17) with boundary condition (6.18) is the optimal value function in [0,∞)× [c, c] for
c large enough and some c < c. So, the optimal strategy is a two-curve strategy.

Theorem 8.2. In the case c > qσ2/(2µ), there exists a c large enough and some c < c such that W γ,ζ = V
in [0,∞)× [c, c].

Proof. By Propositions 8.1 there exists c large enough and some c < c such that ζ
′
(c) 6= 0 and so, by

Proposition 6.10, W γ,ζ is (2,1)-differentiable in [0,∞)× [c, c]. Using Proposition 6.11, in order to prove the
result, it is sufficient to show that

∂xW
γ,ζ(x, c) ≥ 1 for x ∈ [0, γ(c)) and ∂xW

γ,ζ(x, c) ≤ 1 for x ∈ [γ(c), ζ(c)] (8.1)

and
∂cW

γ,ζ(x, c) ≤ 0 for x ∈ [0, ζ(c))

for c ∈ [c, c).
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We have from Proposition 6.9 that ∂x(W γ,ζ)(γ(c), c) = 1 for c ∈ [c, c], and the Taylor expansion of
∂xxv

c(x) at c =∞ is given by 
− q

ac
+
q(qx− 2µ)

a2c2
+O( 1

c3 ) if x < b∗(c),

−q
c

+
q(qx− 2µ)

c2
+O( 1

c3 ) if x ≥ b∗(c),

which is negative. So, ∂xxv
c(x) < 0 for c large enough. Since ∂xx(W γ,ζ)(x, c) is continuous, there exists a

c < c such that ∂xx(W γ,ζ)(x, c) < 0 in (x, c) for c ∈ [c, c] and x ∈ [0, ζ(c)]. We conclude that (8.1) holds for
c ∈ [c, c] and c large enough.

Let us show that for c large enough and some c < c, it holds that ∂cW
γ,ζ(x, c) ≤ 0 for c ∈ [c, c] and

0 ≤ x ≤ ζ(c). We prove first that ∂cW
γ,ζ(x, c) ≤ 0 for x ∈ [γ(c), ζ(c)]. We have that

∂cW
γ,ζ(x, c) = ∂cH

γ,ζ(x, c) = d
dc (f20(γ(c), x, c)) + d

dc (f21(γ(c), x, c))Aγ,ζ(c)) + f21(γ(c), x, c)(Aγ,ζ)′(c)

= f21(γ(c), x, c)
(
−b0(γ(c), x, γ′(c), c)− b1(γ(c), x, γ′(c), c)Aγ,ζ(c)) + (Aγ,ζ)′(c)

)
,

and by Lemma 6.1, f21(y, x, c) > 0 for x > y, so we should prove that

G(x, c) := −b0(γ(c), x, γ′(c), c)− b1(γ(c), x, γ′(c), c)Aγ,ζ(c)) + (Aγ,ζ)′(c) < 0

for x ∈ [γ(c), ζ(c)]. By Proposition 6.9, 0 = ∂cH
γ,ζ(x, c) = ∂cxH

γ,ζ(x, c) = 0, so we have that G(ζ(c), c) =
∂xG(ζ(c), c) = 0. Then it is sufficient to prove that ∂xxG(x, c) < 0 for x ∈ [γ(c), ζ(c)]. We will first show
that ∂xxG(x, c) < 0 for x ∈ [γ(c), ζ(c)] for c large enough, and then the result follows for c ∈ [c, c] for some
c < c by continuity arguments in a compact set. Using that γ(c) = b∗(c), ζ(c) = z∗(c), (7.1) and (7.5), we
obtain that the Taylor expansion at c =∞ of

h(x, c) :=
∂xxG(x, c)

e−(x−γ(c))θ1(c)−γ(c)θ1(ac)−γ(c)θ2(c)

is given by

h(x, c) =
2(a(qx− µ)2 − µ2)

a2qσ4
+

12qµσ2 − 10µ3 − 4a2(qx− µ)2(qx+ 2µ) + 6a(q2x2µ+ 3µ2)

3a3qσ4

1

c
+O(

1

c2
),

and the Taylor expansion of h(z∗(c), c) at c =∞ is given by

h(z∗(c), c) = − 2µ

a
3
2σ2

1

c
+O(

1

c2
).

Since

∂xh(x, c) =
4(a(c− qx− µ)(qx− µ) + qxµ)

a2σ4

1

c
+O(

1

c2
)

is positive and h(z∗(c), c) < 0 for c large enough, we conclude that ∂xxG(x, c) < 0 for x ∈ [γ(c), ζ(c)]. Let

us show that for c large enough and some c < c, it holds that ∂cW
γ,ζ(x, c) ≤ 0 for x ∈ [0, γ(c)] and c ∈ [c, c].

We can write

∂cW
γ,ζ(x, c) = ∂c(f10(x, c) + f11(x, c)Aγ,ζ(c))

= f11(x, c)
(
∂cf10(x,c)
f11(x,c) + ∂cf11(x,c)

f11(x,c) A
γ,ζ(c) + (Aγ,ζ)′(c)

)
where f11(x, c) > 0, so we should prove that

G1(x, c) :=
∂cf10(x, c)

f11(x, c)
+
∂cf11(x, c)

f11(x, c)
Aγ,ζ(c) + (Aγ,ζ)′(c) < 0

for x ∈ [0, γ(c)]. We have shown that ∂cW
γ,ζ(γ(c), c) < 0, so we have G1(γ(c), c) < 0; then, it suffices to

prove that ∂xG1(x, c) > 0 for x ∈ [0, γ(c)]. We will see first that ∂xG1(x, c) > 0 for x ∈ [0, γ(c)] for c large
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enough, then the result follows for c ∈ [c, c] with some c < c by continuity arguments in a compact set.
Using that γ(c) = b∗(c), (7.1) and (7.5), we obtain that the Taylor expansion at c =∞ of

h1(x, c) := exθ1(ac)∂xG1(x, c)

is given by

h1(x, c) =
x(2µ− qx)

σ2

1

c
+O(

1

c2
),

which is positive for c large enough and x ≤ b∗(c) < µ
q <

2µ
q . �

9. Numerical examples

In this section we will consider some numerical illustrations for the case q = 0.1, µ = 4 and σ = 2.

9.1. Bounded Case

Let us first consider the case with an upper bound c = 3 for the dividend rate. In this case we are able
to derive the optimal value function and the optimal strategies for the problem with drawdown constraints
a = 0.2, a = 0.5 and a = 0.8. Indeed they are of two-curve type as conjectured in Remark 6.4. The obtained
value function and optimal dividend strategies will then also allow us to compare them with the ones for
the (already previously known) extreme cases a = 0 (the classical dividend problem without any constraint)
and a = 1 (the dividend problem with ratcheting constraint).

In order to obtain the optimal value functions V ca for each set of parameters, we proceed as follows:

1. We check that there exists a unique zero z∗(c) of C0(b∗(c), ·, c) in (b∗(c),∞).

2. We obtain the curves γ and ζ solving numerically, by the Euler method, the system of ordinary
differential equations (6.17) with boundary condition (6.18).

3. We check numerically that the pair (γ, ζ) satisfies condition (6.16) for c ∈ [0, c]. So, by Proposition
6.8, we are approximating the unique solution (γ, ζ). We also verify that ζ is non-decreasing.

4. We check that the function W γ,ζ defined in (6.8) satisfies the conditions of Theorem 4.3. Hence W γ,ζ

is the optimal value function V ca and the optimal strategy is indeed a two-curve strategy given by
(γ, ζ) ∈ B.

Figure 9.1 depicts the graphs of V ca (x, 0) with c = 3 for a = 0 (no restrictions, gray solid), a = 0.5
(dashed) and a = 1 (ratcheting, black solid) as a function of x. One can nicely see how the drawdown case
is - in terms of performance - a compromise between the unconstrained case and the stronger constraint of
ratcheting.

Figure 9.1: V 3
0 (x, 0) (gray solid), V 3

0.5(x, 0) (dashed) and V 3
1 (x, 0) (black solid) as a function of x.

In order to see the impact of the drawdown restriction more clearly, in Figure 9.2 we plot the difference
between V c0 (x) (the unconstrained value function) and V ca (x, 0) as a function of x for increasingly restrictive
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Figure 9.2: V 3
0 (x)− V 3

a (x, 0) for a = 0.2 (dotted), a = 0.5 (dashed), a = 0.8 (dot-dashed) and a = 1 (solid).

(a) a = 0.2 (b) a = 0.5 (c) a = 0.8

Figure 9.3: Optimal drawdown curves (γ(c), c) (dotted) and (ζ(c), c) (dashed) for a = 0.2, 0.5, 0.8, together with the

optimal threshold of the unconstrained problem (a = 0, solid gray) and the optimal ratcheting curve
(
ξ(c), c

)
(a = 1,

solid black).

drawdown levels a = 0.2 (dotted), a = 0.5 (dashed), a = 0.8 (dot-dashed) and finally a = 1 (ratcheting,
solid). One observes that in particular for smaller values of x, the relaxation of ratcheting towards the
drawdown constraint improves the performance of the resulting strategy quite a bit, although the relative
gap between the performance of the ratcheting and the unconstrained case is anyway not so big (cf. Figure
9.1). The latter speaks in favor of the consideration of such strategies, as ratcheting and drawdown may be
important for shareholders from a psychological point of view, and the efficiency loss when introducing these
constraints is quite minor. In particular, if for a given initial surplus level x one has a target efficiency loss
one is willing to accept, results like Figure 9.2 can help to identify the corresponding drawdown coefficient
a that can still guarantee such a performance.

In terms of the nature of the optimal strategy (which indeed turns out to be of two-curve type), Figures
9.3a, 9.3b and 9.3c show the optimal drawdown curves (γ(c), c) (dotted) and (ζ(c), c) (dashed) for a = 0.2,
a = 0.5 and a = 0.8, respectively. In all the plots we also depict the optimal threshold of the unconstrained
dividend problem a = 0 (solid gray) and the optimal ratcheting curve

(
ξ(c), c

)
for a = 1 (solid black). To

that end, recall from Asmussen and Taksar [7] that the optimal threshold for a = 0 is given by

1

θ1(0)− θ2(0)
log

(
θ2(0) (θ2(0)− θ2(c))

θ1(0) (θ1(0)− θ2(c))

)
,

whereas the optimal strategy in the ratcheting case is given by a one-curve strategy which is obtained nu-
merically according to the results in [1]. One can nicely see how the two curves (γ(c), c) and (ζ(c), c) move
towards the right as a increases, interpolating between the unconstrained and the ratcheting case. Note that
the resulting two-curve shapes are somewhat reminiscent of some figures obtained in Guo and Tomecek [22]
for other types of singular control problems, where also a smooth-fit principle was established.
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Figure 9.4: The curves γc(c) (left) and ζ
c
(c) (right) for a = 0.5: c = 2 (solid gray), c = 3 (dotted), c = 4 = µ (dashed)

and c = 5 (solid black).

Figure 9.5: V 2
0.5(x, 0) (solid gray), V 3

0.5(x, 0) (dotted), V 4
0.5(x, 0) (dashed) and V 5

0.5(x, 0) (black solid) as a function of x.

Also notice that the location of these curves can vary considerably as the maximally allowed dividend rate

c changes. Figure 9.4 depicts γc(c) and ζ
c
(c) for a = 0.5 for c growing from 2 to 5. In particular, when c

is larger, the necessary surplus level x to switch to higher dividend rates is larger as well. Figure 9.5 shows
the corresponding value functions for these increasing values of c (a = 0.5). Recall that while the drawdown
constraint is not a major efficiency loss when compared to the unconstrained case for the same c (cf. Figure
9.1 for the case c = 3), the size of c itself naturally has a considerable impact on the size of the value function.

9.2. Boundary Conditions

Let us now investigate the situation when the maximally allowed dividend rate c becomes large. In addition
to a = 0.5 and a = 0.8, we now also consider a smaller drawdown level a = 0.07 (in order to illustrate
the different monotonicity for small values of a, cf. Remark 7.2). One finds numerically that there exists
a unique zero z∗(c) of C0(b∗(c), ·, c) in (b∗(c),∞) for any c ≥ 0. We also have found that there exists a
unique zero x∗(c) in (0,∞) of ∂cV

c(·, c) for c ≥ 5.17 for a = 0.07; for c ≥ 3.45 for a = 0.5 and for c ≥ 2.52
for a = 0.8. Recall that we have proved in Propositions 7.1, 7.2 and 7.3 that limc→∞ b∗(c) = µ/q and
limc→∞ z∗(c) = limc→∞ x∗(c) = µ(1 + 1/

√
a)/q.

Figure 9.6 shows the curves of the boundary conditions (b∗(c), c), (z∗(c), c) and (x∗(c), c) for a = 0.07,
a = 0.5 and a = 0.8 respectively. In the case a = 0.07 one sees how the limit µ(1+1/

√
a)/q = 191.2 (vertical

dotted line) is indeed approached from the right as c → ∞, whereas for a = 0.5 and a = 0.8 the respective
limits 96.57 and 84.72 (vertical dotted line) are approached from the left, cf. Remark 7.2. It is important to
keep in mind that these plots only depict the boundary value for each choice of c, and are not to be confused
with the optimal drawdown curves in Figure 9.3. Note that x∗(c) and z∗(c) are – already for moderate
values of c – almost identical, with z∗(c) > x∗(c), see Figure 9.7 for a graph of the difference z∗(c)− x∗(c)
for a = 0.07, a = 0.5 and a = 0.8 respectively. From the latter, one nicely sees z∗(c) > x∗(c) (cf. Remark
7.1) as well as the asymptotic equivalence (7.10) of the two quantities.

In Figure 9.3 we saw that the curve ζ
c
(c) is to the left of the ratcheting curve ξ

c
(c). At the same time
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(a) a = 0.07 (b) a = 0.5 (c) a = 0.8

Figure 9.6: The boundary condition values b∗(c) (grey), z∗(c) (solid) and x∗(c) (dashed) as a function of c for different

values of a.

(a) a = 0.07 (b) a = 0.5 (c) a = 0.8

Figure 9.7: The difference z∗(c)− x∗(c) as a function of c for different values of a.

for large values of c, we know that ζ
c
(c) must be to the right of ξ

c
(c), as

lim
c−→∞

ξ
c
(c) =

2µ

q
<
µ

q

(
1 +

1√
a

)
= lim
c−→∞

z∗(c).

It is therefore of interest to see when this crossing for the limiting value takes place. Figure 9.8 depicts z∗(c)

(solid) and ξ
c
(c) (dotted) for a = 0.07, a = 0.5 and a = 0.8 respectively. We see that indeed for c small,

z∗(c) < ξ
c
(c) and for c large, z∗(c) > ξ

c
(c). Moreover, we obtain numerically that the intersection point of

the curves of z∗(c) and ξ
c
(c) occurs at c = 39.70 for a = 0.07, at c = 9.74 for a = 0.5, and at c = 8.37 for

a = 0.8 for the given set of parameters. That is, on from these values of c, the possibility of the drawdown
increases the value of surplus on from which one starts to pay the maximal dividend rate, when compared
to pure ratcheting, and it is intuitive that the difference is less pronounced as a increases.

(a) a = 0.07 (b) a = 0.5 (c) a = 0.8

Figure 9.8: The boundary values z∗(c) (solid) and the optimal ratcheting boundary value ξ
c
(c) (dotted) as c grows, for

different values of a.
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10. Conclusions

In this paper we addressed the problem of optimal dividends under a drawdown constraint. We showed
that the value function can be expressed as the unique viscosity solution of a respective two-dimensional
Hamilton-Jacobi-Bellman equation and derived conditions under which the optimal strategy is of a two-curve
form. We conjecture that these conditions are in fact always fulfilled and – using a smooth-fit principle –
could prove it for large values of current and maximal dividend rate c and c, respectively. For concrete
numerical examples, we also proved the optimality of two-curve strategies numerically for small values of c
and c, and showed how to identify the resulting optimal curves, which turns out to be a very challenging and
technical task, involving the numerical solution of a highly involved system of ordinary differential equations
and its boundary conditions. We illustrate how this can be concretely implemented for a moderate size of
c ; for high values of c this is difficult numerically because the formulas involve algebraic sums with terms
with exponentials with very large exponents and the computations require very high numerical precision.
We furthermore showed that, when c tends to infinity, the curves converge to a finite limit, the size of which
follows a surprisingly simple and intriguing formula in terms of the square-root of the drawdown percentage
a, and irrespective of the size of the volatility parameter σ. The latter fact also allowed to get some intuition
on the nature of this limit from the deterministic limit case σ = 0.
Altogether, this paper for the first time explicitly addressed a drawdown constraint for a control problem in
this context, and it turned out that the resulting strategies smoothly interpolate between the unconstrained
problem and the situation with ratcheting constraints, allowing to get some quantitative insight in the
efficiency gain when relaxing the ratcheting. It will be interesting to see whether other dividend – and more
generally control – problems can be extended in a similar way. In particular, extending the results of the
paper from the Brownian risk model to a compound Poisson surplus process may be an interesting endeavour,
which would lead to a relaxation of the ratcheting problem studied in [2]. Another future direction of research
may be to extend the approach of this paper to incorporate constraints on the dividend rate in terms of an
average of its previous values, for instance along the lines of Angoshtari et al. [6].

11. Appendix: Some Formulas

In the following, we state some definitions and formulas referred to earlier in the paper in a compact way.

d(y, z, c) = eyθ2(ac)+(z−y)θ1(c)θ2(c)− e(z−y)θ1(c)+yθ1(ac)θ2(c) + e(z−y)θ2(c)+yθ2(ac)θ2(ac)

− eyθ2(ac)+(z−y)θ1(c)θ2(ac) + e(z−y)θ2(c)
(
−eyθ2(ac) + eyθ1(ac)

)
θ1(c)

+ eyθ1(ac)
(
−e(z−y)θ2(c) + e(z−y)θ1(c)

)
θ1(ac),

b00(y, z, c) = ae(z−y)θ2(c)+yθ2(ac)θ2(ac) (θ2(c)− θ1(c))− e(z−y)θ1(c)θ2(c) (θ1(c)− θ2(c))

− ae(z−y)θ1(c)
(
−1 + eyθ2(ac)

)
θ2(c) (θ1(c)− θ2(c))

+ aeyθ2(ac)+(z−y)θ1(c)θ2(ac) (θ1(c)− θ2(c)) + e(z−y)θ2(c)θ1(c) (θ1(c)− θ2(c))

+ ae(z−y)θ2(c)
(
−1 + eyθ2(ac)

)
θ1(c) (θ1(c)− θ2(c))

− (θ1(c)− θ2(c)) 2 − e(z−y)θ1(c)
(
c+ ac

(
−1 + eyθ2(ac)

))
(θ1(c)− θ2(c)) θ′2(c)

+ e(z−y)θ2(c)(z − y) (θ1(c)− θ2(c))
(
−aceyθ2(ac)θ2(ac) + c

(
1 + a

(
−1 + eyθ2(ac)

))
θ1(c)

)
θ′2(c)

+ a2ce(z−y)θ2(c)+yθ2(ac) (θ2(c)− θ1(c)) θ′2(ac) + a2ce(z−y)θ2(c)+yθ2(ac)yθ2(ac) (θ2(c)− θ1(c)) θ′2(ac)

+ a2ceyθ2(ac)+(z−y)θ1(c) (θ1(c)− θ2(c)) θ′2(ac)− a2ceyθ2(ac)+(z−y)θ1(c)yθ2(c) (θ1(c)− θ2(c)) θ′2(ac)

+ a2ceyθ2(ac)+(z−y)θ1(c)yθ2(ac) (θ1(c)− θ2(c)) θ′2(ac) + a2ce(z−y)θ2(c)+yθ2(ac)yθ1(c) (θ1(c)− θ2(c)) θ′2(ac)

+ e(z−y)θ2(c)
(
c+ ac

(
−1 + eyθ2(ac)

))
(θ1(c)− θ2(c)) θ′1(c)

+ ce(z−y)θ1(c)(y − z)
(
θ2(c) + a

(
−1 + eyθ2(ac)

)
θ2(c)− aeyθ2(ac)θ2(ac)

)
(θ1(c)− θ2(c)) θ′1(c)
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+ e(z−y)θ1(c)
(
c
(

1 + a
(
−1 + eyθ2(ac)

))
θ2(c)− aceyθ2(ac)θ2(ac)

)
(−θ′2(c) + θ′1(c))

+ ce(z−y)θ2(c)
(
aeyθ2(ac)θ2(ac) +

(
−1 + a− aeyθ2(ac)

)
θ1(c)

)
(−θ′2(c) + θ′1(c)) ,

b01(y, z, c) = c (θ1(c)− θ2(c))(
aeyθ2(ac)θ2(ac) (−θ2(c) + θ2(ac)) +

(
θ2(c) + a

(
−1 + eyθ2(ac)

)
θ2(c)− aeyθ2(ac)θ2(ac)

)
θ1(c)

)
,

b10(y, z, c) = e(−y+z)θ2(c]
(
eyθ1(ac) − eyθ2(ac)

)
(−θ1(c) + θ2(c)) θ′1(c)

− e(−y+z)θ1(c)(y − z) (θ1(c)− θ2(c))
(
−eyθ1(ac)θ1(ac) +

(
eyθ1(ac) − eyθ2(ac)

)
θ2(c) + eyθ2(ac)θ2(ac)

)
θ′1(c)

− ae(−y+z)θ1(c)+yθ1(ac) (θ1(c)− θ2(c)) θ′1(ac) + aeyθ1(ac)+(−y+z)θ2(c) (θ1(c)− θ2(c)) θ′1(ac)

− ae(−y+z)θ1(c)+yθ1(ac)yθ1(ac) (θ1(c)− θ2(c)) θ′1(ac)

+ aeyθ1(ac)+(−y+z)θ2(c)yθ1(ac) (θ1(c)− θ2(c)) θ′1(ac)

− e(−y+z)θ2(c)
((
−eyθ1(ac) + eyθ2(ac)

)
θ1(c) + eyθ1(ac)θ1(ac)− eyθ2(ac)θ2(ac)

)
(θ′1(c)− θ′2(c))

+ e(−y+z)θ1(c)
(
eyθ1(ac)θ1(ac) +

(
−eyθ1(ac) + eyθ2(ac)

)
θ2(c)− eyθ2(ac)θ2(ac)

)
(θ′1(c)− θ′2(c))

+ e(−y+z)θ1(c)
(
eyθ1(ac) − eyθ2(ac)

)
(θ1(c)− θ2(c)) θ′2(c)

+ e(−y+z)θ2(c)(−y + z) (θ1(c)− θ2(c))
((
−eyθ1(ac) + eyθ2(ac)

)
θ1(c) + eyθ1(ac)θ1(ac)− eyθ2(ac)θ2(ac)

)
θ′2(c)

+ ae(−y+z)θ1(c)+yθ2(ac) (θ1(c)− θ2(c)) θ′2(ac)

+ ae(−y+z)θ2(c)+yθ2(ac) (−θ1(c) + θ2(c)) θ′2(ac) + ae(−y+z)θ1(c)+yθ2(ac)y (θ1(c)− θ2(c)) θ2(ac)θ′2(ac)

+ ae(−y+z)θ2(c)+yθ2(ac)y (−θ1(c) + θ2(c)) θ2(ac)θ′2(ac)

− ae(−y+z)θ2(c)yθ1(c) (θ1(c)− θ2(c))
(
eyθ1(ac)θ′1(ac)− eyθ2(ac)θ′2(ac)

)
+ ae(−y+z)θ1(c)y (θ1(c)− θ2(c)) θ2(c)

(
eyθ1(ac)θ′1(ac)− eyθ2(ac)θ′2(ac)

)
and

b11(y, z, c) = −(θ1(c)− θ2(c))(
eyθ1(ac)(θ1(ac)− θ1(c))(θ1(ac)− θ2(c)) + eyθ2(ac)(θ2(c)− θ2(ac))(θ2(ac)− θ1(c))

)
f10(x, c) =

ca

q
(1− eθ2(ac)x),

f11(x, c) = eθ1(ac)x − eθ2(ac)x,

f20(y, x, c) =
c

q(θ2(c)− θ1(c))

(θ2(c) + (a− 1)eθ1(c)(x−y)θ2(c) + aeyθ2(ac)(−eθ2(c)(x−y)θ2(ac) + eθ1(c)(x−y)(θ2(ac)− θ2(c)))

+ θ1(c)(−1 + eθ2(c)(x−y)(1 + a(eyθ2(ac) − 1)))),
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f21(y, x, c) =
1

θ1(c)− θ2(c)

(eyθ2(ac)(eθ1(c)(x−y)(θ2(c)− θ2(ac))+eθ2(c)(x−y)(θ2(ac)− θ1(c)))

+ eyθ1(ac)(eθ2(c)(x−y)(θ1(c)− θ1(ac))+eθ1(c)(x−y)(θ1(ac)− θ2(c)))

=
d(y, x, c)

θ1(c)− θ2(c)

C0(y, z, c) = b11(y, c)∂z

(
b00(y, z, c)

d(y, z, c)

)
− b01(y, c)∂z

(
b10(y, z, c)

d(y, z, c)

)

C11(y, z, c) = b11(y, c)∂y

(
(e(z−y)θ1(c) − e(z−y)θ2(c))b01(y, c)

d(y, z, c)

)
− b01(y, c)∂y

(
(e(z−y)θ1(c) − e(z−y)θ2(c))b11(y, c)

d(y, z, c)

)

C10(y, z, c) = b01(y, c)∂y

(
b10(y, z, c)

d(y, z, c)

)
− b11(y, c)∂y

(
b00(y, z, c)

d(y, z, c)

)
C21(y, z, c) = ∂yC0(y, z, c) = ∂y

(
b11(y, c)∂z

(
b00(y, z, c)

d(y, z, c)

)
− b01(y, c)∂z

(
b10(y, z, c)

d(y, z, c)

))
C22(y, z, c) = ∂zC0(y, z, c) = ∂z

(
b11(y, c)∂z

(
b00(y, z, c)

d(y, z, c)

)
− b01(y, c)∂z

(
b10(y, z, c)

d(y, z, c)

))

C20(y, z, c) = −∂cC0(y, z, c) = −∂c
(
b11(y, c)∂z

(
b00(y, z, c)

d(y, z, c)

)
− b01(y, c)∂z

(
b10(y, z, c)

d(y, z, c)

))


g
1
(y, z, c)

g2(y, z, c)
g3(y, z, c)
g4(y, z, c)
g5(y, z, c)
g6(y, z, c)
g
7
(y, z, c)

g
8
(y, z, c)

g
9
(y, z, c)

g10(y, z, c)
g11(y, z, c)
g
12

(y, z, c)
g
13

(y, z, c)
g
14

(y, z, c)
g
15

(y, z, c)
g16(y, z, c)



=



0 1 0 2
0 2 0 2
1 0 0 2
1 1 0 2
0 2 1 2
1 0 1 1
1 1 1 1
1 1 1 2
0 1 2 0
0 2 2 0
0 2 2 1
1 0 2 0
1 1 2 0
1 1 2 1
0 2 1 1
0 1 1 1



·


(z − y)θ1(c)
(z − y)θ2(c)
yθ1(ac)
yθ2(ac)





h1(x, b, c)
h2(x, b, c)
h3(x, b, c)
h4(x, b, c)
h

5
(x, b, c)

h
6
(x, b, c)

h7(x, b, c)
h8(x, b, c)
h

9
(x, b, c)

h
10

(x, b, c)
h

11
(x, b, c)


=



2 0 0 0
1 1 0 0
0 0 2 0
0 0 1 1
1 0 1 0
0 1 1 0
1 1 1 0
0 1 2 0
1 0 0 1
2 0 0 1
1 0 1 1


·


bθ1(ac)
xθ1(ac)
bθ2(ac))
xθ2(ac)


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

k
1
(x, b, c)

k2(x, b, c)
k3(x, b, c)
k4(x, b, c)
k

5
(x, b, c)

k
6
(x, b, c)

k
7
(x, b, c)

k
8
(x, b, c)


=



2 0 0
2 0 1
0 2 0
1 1 0
1 1 1
2 1 1
0 2 1
1 2 1


·

 bθ1(ac)
bθ2(ac)

(x− b)θ2(c))

 .
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