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ON THE n−TH LINEAR POLARIZATION CONSTANT

OF Rn.

DAMIÁN PINASCO

To my daughters, Ana and Lara.

Abstract. We prove that given any set of n unit vectors {vi}
n
i=1

⊂ Rn, the
inequality

sup
‖x‖Rn=1

|〈x, v1〉 · · · 〈x, vn〉| ≥ n−n/2

holds for n ≤ 14. Moreover, the equality is attained if and only if {vi}ni=1
is

an orthonormal system.

1. Introduction.

Let P1, . . . , Pn be homogeneous polynomials defined on Rm,Cm or, in general,
in any Banach space. Given a norm ‖ · ‖ defined on the space of polynomials, the
problem of finding a constant M , depending only on the degrees of P1, . . . , Pn, such
that

‖P1‖ · · · ‖Pn‖ ≤ M‖P1 · · ·Pn‖
has been extensively studied by many authors. In this note we are concerned with
a special case: given any set {φi}ni=1 of continuous linear functionals defined on a
Hilbert space H, we study the inequality

(1) ‖φ1‖ · · · ‖φn‖ ≤ M ‖φ1 · · ·φn‖,
where φ1 · · ·φn is the n−homogeneous polynomial defined by the pointwise product

φ1 · · ·φn(x) = φ1(x) · · ·φn(x),

and ‖ · ‖ is the uniform norm over the unit sphere of H.
For a Banach space E with dual space E′ and considering the uniform norm on

the unit sphere of E, C. Beńıtez, Y. Sarantopoulos and A. Tonge (see [6]) defined
the n−th linear polarization constant of E

cn(E) = inf {M > 0 : ‖φ1‖ · · · ‖φn‖ ≤ M ‖φ1 · · ·φn‖, ∀φ1, . . . φn ∈ E′}

=1/ inf

{
sup

‖x‖=1

|φ1(x) · · · φn(x)| : φi ∈ E′, ‖φi‖ = 1 ∀ 1 ≤ i ≤ n

}
.

In [21], R. Ryan and B. Turett, studying the geometry of spaces of polynomials,
showed that for each n there is a constant Kn such that cn(E) ≤ Kn for every
Banach space E. In [6], it was proved that the best constant Kn for complex
Banach spaces is nn and S. G. Révész and Y. Sarantopoulos [20] proved that the
best constant Kn for real Banach spaces is also nn. Note that cn(ℓ

n
1 ) = nn, but in

general, for different Banach spaces it is possible to find smaller values for cn(E).
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In the last two decades there has been many research articles on this topic, for
different techniques and approaches in calculating polarization constants see, for
example, [1], [8], [9], [10], [11], [12], [13], [14], [16], [17], [18] and [20] and the
references therein.

Let E be a Banach space, a plank or strip is the set of points between two parallel
hyperplanes in E. Given a convex body K ⊂ E, and any norm one linear functional
φ ∈ E′, we can measure the distance between two supporting hyperplanes of K,
defined by level sets of φ. This distance is the width of K in the direction induced
by φ. The minimal width of K is the minimal width among all directions induced
by norm one linear functionals. The following question was posed by A. Tarski (see
[22]):

Let K be a convex body covered by n parallel planks, is it true that the sum of

the widths of each plank is not less than the minimal width of K?

A positive answer was given by T. Bang in [5], who presented a strengthened
version of this question considering the sum of the relative widths instead of the
widths of the planks. This is still an open problem in the general case, but for
centrally symmetric bodies a positive answer was given by K. Ball in [4]. It is
worth noting that linear polarization constants are related to plank problems in
Banach spaces, in particular the upper bound cn(E) ≤ nn for any real Banach
space can be deduced from Theorem 2 in [4].

In [20], using the remarkable theorem of A. Dvoretzky (see [7], [15]), it is shown
that Hilbert spaces have the smallest n−th polarization constant among infinite
dimensional Banach spaces. Namely, we have cn(ℓ

n
2 ) ≤ cn(E) for any infinite

dimensional Banach space E. So, knowing the exact value of cn(ℓ
n
2 ) becomes an

interesting and intriguing problem. Working in a Hilbert space H , by Riesz repre-
sentation theorem, inequality (1) may be written in the following way

‖v1‖ · · · ‖vn‖ ≤ M sup
‖x‖H=1

|〈x, v1〉 · · · 〈x, vn〉|.

Note that we can modify any vector vi to − vi at our convenience, without altering
either sides of the inequality.

Given an orthonormal basis {ei}ni=1 ⊂ Rn, by the Arithmetic-Geometric mean
inequality, for any unit vector x ∈ Rn we have

n∏

i=1

|〈x, ei〉| =
(

n∏

i=1

|〈x, ei〉|2
)1/2

≤
(
1

n

n∑

i=1

|〈x, ei〉|2
)n/2

= n−n/2.

From this bound, it follows that cn(R
n) ≥

√
nn. In [6], C. Beńıtez, Y. Sarantopoulos

and A. Tonge asked if cn(R
n) = nn/2, making the following conjecture.

Conjecture 1. Given n unit vectors {vi}ni=1 ⊂ Rn, then

(2) sup
‖x‖Rn=1

|〈x, v1〉 · · · 〈x, vn〉| ≥ n−n/2,

and equality holds if and only if {vi}ni=1 is an orthonormal system.

For n ≤ 5, the inequality was proved by A. Pappas and S. G. Révész in [18] (see
also [17]). However, the question remained unanswered for n ≥ 6.

A complex analogue of inequality (2) was proved by J. Arias-de-Reyna in [2].
More precisely, the author showed that for any set of unit vectors {zi}ni=1 ⊂ C

n it
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follows that

(3) sup
‖z‖Cn=1

|〈z, z1〉 · · · 〈z, zn〉| ≥ n−n/2.

In [3], K. Ball proved a stronger result, which is known as “the complex plank

problem for Hilbert spaces” and also implies inequality (3). Finally, in [19], the
author showed that a set {zi}ni=1 of unit vectors in a complex Hilbert space H for
which the equality is attained must be an orthonormal system.

Although the exact value of the n−th linear polarization constant of Rn is not
known for all n ∈ N, there are several articles in the literature finding upper bounds
for its value. In fact, the existence of c ∈ R such that cn(R

n) ≤ (cn)n/2 was
studied by many authors: A. E. Litvak, V. D. Milman, and G. Schechtman [11] for
c ≈ 12, 67, J. C. Garćıa-Vázquez and R. Villa [9] with c ≈ 3, 57, S. G. Révész and
Y. Sarantopoulos [20] proved that cn(R

n) ≤ 2n/2−1 nn/2, P. E. Frenkel [8] improved

the previous bound showing that cn(R
n) ≤

(
33/2e−1

)n/2
nn/2, and G. A. Muñoz-

Fernández et al. [16] showed that cn(R
n) ≤ n2n/4nn/2, which is asymptotically

tighter than the previous bounds.
The aim of this work is to extend the validity range of Conjecture 1. In Section

2, given n ∈ N, we study the minima of some constrained problems depending on a
parameter s. Namely, we have sets Σs ⊂ Rn, a function f : Σs → R, and compute
min
a∈Σs

f(a), and then we find the minima of s 7→ min
a∈Σs

f(a). Finally, in Section 3,

we will apply the results from Section 2 to prove, for 6 ≤ n ≤ 14, that the n−th
linear polarization constant of Rn is nn/2. Moreover, we show that we will have an
equality in (2) if and only if {vi}ni=1 is an orthonormal system.

2. Some Useful Inequalities and Constrained Problems.

In this section, for our purposes, we need to present and prove some useful
inequalities. We will consider n ∈ N, n ≥ 2, s ∈ [

√
n, n] and Qs = [s−1, 1]n. Given

the function f : Qs → R, defined by f(a) = a1 · · ·an, we are interested in finding
the constrained minima

min
a∈Qs

f(a), subject to
n∑

i=1

ai = s.

Let us denote by Σs the set Qs ∩ {a ∈ Rn :
∑n

i=1 ai = s} , and define the function
µ : [

√
n, n] → R, by µ(s) = min

a∈Σs

f(a).

It is easy to see, applying Lagrange multipliers, that

max
a∈Σs

f(a) = f
( s

n
,
s

n
, . . . ,

s

n

)
=

( s

n

)n

.

So, we might suspect that µ(s) should be reached on the intersection of the hyper-
plane and a face of the cube. Moreover, it is reasonable to think that the function
f gets smaller as more coordinates of a take the value s−1. Following this idea, let
us define

k0(s) = min
{
k ∈ N : n− k < s− ks−1

}
.

It is clear that 1 ≤ k0(s) ≤ n + 1, and if k0(s) < n, this value gives us the first
coordinate k, such that any point a ∈ Qs,

a = (s−1, s−1, . . . , s−1

︸ ︷︷ ︸
k0(s)−times

, ak0(s)+1, . . . , an)



4 D. PINASCO

does not belong to Σs.

Remark 2.1. Note that from the very definition of k0(s), we have

(4) n− k0(s) < s− k0(s)s
−1,

which is equivalent to
s(n− s)

s− 1
< k0(s).

Also, since

(5) s− (k0(s)− 1)s−1 ≤ n+ 1− k0(s),

we obtain

k0(s) ≤
s(n− s)

s− 1
+ 1.

As usual, if ⌊x⌋ = max{m ∈ Z : m ≤ x} denotes the floor function, we can write

k0(s) =

⌊
s(n− s)

s− 1

⌋
+ 1.

Proposition 2.2. Let f : Qs → R be defined by

f(a1, a2, . . . , an) = a1a2 · · · an.
Then,

µ(s) = s1−k0(s)
(
s− (k0(s)− 1)s−1 − n+ k0(s)

)
.

Proof. By continuity of f and compactness of Σs we know that the minimum is
attained at some point a ∈ Σs. Since f is a symmetric function, we may assume
that

s−1 ≤ a1 ≤ a2 ≤ . . . ≤ an ≤ 1.

First, let us show that ak0(s)−1 = s−1. If not, from the definition of k0(s), we

have that n− (k0(s)− 1) ≥ s− (k0(s)− 1)s−1. Then, we obtain

s =

n∑

i=1

ai > (k0(s)− 1)s−1 + (n+ 1− k0(s)) ak0(s)

≥ s− n− 1 + k0(s) + (n+ 1− k0(s)) ak0(s)

= s+ (n+ 1− k0(s))
(
ak0(s) − 1

)
.

This inequality implies that ak0(s) < 1. Now, taking

ε ∈
(
0,min

(
ak0(s)−1 − s−1, 1− ak0(s)

))
,

we slightly perturb the values ak0(s)−1 and ak0(s) by ε:

a1 · · · an ≤ a1 · · ·
(
ak0(s)−1 − ε

) (
ak0(s) + ε

)
· · · an

= a1 · · ·
(
ak0(s)−1ak0(s) + ε

(
ak0(s)−1 − ak0(s)

)
− ε2

)
· · · an

< a1 · · ·an,

which is impossible. Then, ak0(s)−1 = s−1.

Our next step is to find the minimum of g : [s−1, 1]n+1−k0(s) → R, defined by

g(ak0(s), . . . , an) := f(s−1, s−1, . . . , s−1, ak0(s), . . . , an),



ON THE n−TH LINEAR POLARIZATION CONSTANT OF R
n. 5

subject to the equality constraint

n∑

i=k0(s)

ai = s− (k0(s)− 1)s−1 ∈
(
n− k0(s) + s−1, n− k0(s) + 1

)
.

Write s̃ = s− (k0(s)− 1)s−1. Let us prove that the minimum is attained at

(ak0(s), . . . , an) = (s̃− n+ k0(s), 1, . . . , 1) .

Note that if ak0(s) > s̃−n+k0(s), then it must be ak0(s)+1 < 1, and we can proceed
as we did in the beginning: i.e. choosing ε > 0, small enough, we can see that

ak0(s)ak0(s)+1 · · · an ≤
(
ak0(s) − ε

) (
ak0(s)+1 + ε

)
· · ·an

< ak0(s)ak0(s)+1 · · · an,
which leads to a contradiction. Therefore, ak0(s) = s̃ − n + k0(s), and ai = 1 for
k0(s) + 1 ≤ i ≤ n. It follows immediately that

µ(s) = s1−k0(s)
(
s− (k0(s)− 1)s−1 − n+ k0(s)

)
. �

Corollary 2.3. Let f : Qs → R be the function defined by f(a1, a2, . . . , an) =
a1a2 · · ·an. Then,

µ(s) =
s−1 + s− n+

(⌊
s(n−s)
s−1

⌋
+ 1

)
(1− s−1)

s⌊
s(n−s)
s−1 ⌋ .

Proof. The proof is immediate by combining Remark 2.1 and Proposition 2.2. �

Remark 2.4. Examining inequalities (4) and (5), we deduce that

n− k0(s) < s− k0(s)s
−1 ≤ n+ 1− k0(s)− s−1 < n+ 1− k0(s).

Then, we obtain

(6) n− k0(s) =
⌊
s− k0(s)s

−1
⌋
.

Remark 2.5. The function µ is continuous for s ∈ [
√
n, n] , except for those points

{sj}nj=0 where
sj(n−sj)

sj−1 = j. We can compute sj as the positive root of the equation

x2 − (n− j)x− j = 0, namely

sj =
(n− j) +

√
(n− j)2 + 4j

2
.

Also, since s 7→ s(n−s)
s−1 is a decreasing function, we have

√
n = sn < sn−1 < . . . < s1 < s0 = n.

Proposition 2.6. The function µ : [
√
n, n] → R is lower semi-continuous.

Proof. As we noted in Remark 2.5, the function µ is continuous on its domain,
except at the points {sj}nj=0. Then, it remains to show that lim inf

s→sj
µ(s) ≥ µ(sj) for

0 ≤ j ≤ n. However, since s 7→ s(n−s)
s−1 decreases, we know that s 7→

⌊
s(n−s)
s−1

⌋
is

continuous from the left, so it is not necessary to study the case j = 0 and we only
have to check that lim inf

s→s+j

µ(s) ≥ µ(sj) for 1 ≤ j ≤ n.
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First, let us compute µ(sj). We can write, from Corollary 2.3,

µ(sj) =
s−1
j + sj − n+

(⌊
sj(n−sj)

sj−1

⌋
+ 1

)
(1− s−1

j )

s

⌊

sj(n−sj)

sj−1

⌋

j

=
s−1
j + sj − n+ (j + 1) (1− s−1

j )

sjj

=
1 + s2j − (n− j − 1)sj − (j + 1)

sj+1
j

=
s2j − (n− j)sj − j + sj

sj+1
j

=
1

sjj
,

where in the last step we have used that s2j − (n− j)sj − j = 0.

For s > sj , close enough,
⌊
s(n−s)
s−1

⌋
+1 = k0(s) = k0(sj)−1 = j. Then, combining

with (6), we have

lim inf
s→s+j

µ(s) = lim inf
s→s+j

s−1 + s− js−1 −
⌊
s− js−1

⌋

sj−1

≥ lim inf
s→s+j

s−1

sj−1
=

1

sjj
= µ(sj). �

The following lemma is crucial to determine the minimum of the function µ.

Lemma 2.7. Given j, n ∈ N, such that n ≥ 2 and 1 ≤ j ≤ n, then the function

Mj : [sj , sj−1] → R, defined by

Mj(x) = x2−j + (j − n)x1−j + (1− j)x−j

is a quasi-concave function.

Proof. First, note that for j = 1 and j = 2, the function Mj is concave and the
lemma follows. For the remaining cases, when 3 ≤ j ≤ n, we will prove that Mj

satisfies one of the following conditions:

• Mj is an increasing function on [sj , sj−1].
• There exists tj ∈ (sj , sj−1) such that Mj is an increasing function on [sj, tj ]
and it is a decreasing function on [tj , sj−1].

Let us compute

M ′
j(x) = (2− j)x1−j + (j − n)(1− j)x−j − j(1− j)x−j−1

=
(2 − j)x2 + (j − n)(1− j)x− j(1 − j)

xj+1

=
x2 + (1− j)

(
x2 + (j − n)x− j

)

xj+1
.

Then, to determine the behaviour of Mj it will be enough to analyze the sign of
the concave quadratic function

x 7→ x2 + (1 − j)
(
x2 + (j − n)x− j

)
.

By definition, s2j + (j − n)sj − j = 0. We have M ′
j(sj) > 0, then Mj has at most

one critical point in the interval [sj , sj−1] , and the assertion is proved. �
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Finally, we need the following proposition in order to prove the main theorem of
this section.

Proposition 2.8. Given n ∈ N, 2 ≤ n ≤ 14, and 0 ≤ j ≤ n, then sjj ≤
√
nn.

Proof. From Remark 2.5 we know that
√
n = sn < sn−1 < . . . < s1 < s0 = n,

then
(√

n
)n/2

= (sn)
n/2 < (sn−1)

n/2 < . . . < (s1)
n/2 < (s0)

n/2 = nn/2.

The last inequalities show that sjj ≤
√
nn for j ≤ ⌊n/2⌋. Then, we can restrict

ourself to 3 ≤ n ≤ 14, and ⌊n/2⌋+ 1 ≤ j ≤ n− 1. Note that, for such values of j,
√
n < n

n
2(n−1) ≤ n

n
2j ≤ n

n
2(⌊n/2⌋+1) < n.

We will prove that

(7)
(
nn/2j

)2

− (n− j)nn/2j − j ≥ 0,

which is equivalent to sj ≤ nn/2j . Let us write inequality (7) as follows

(8)
(
nn/2j

)2

− nnn/2j ≥ (1− nn/2j)j.

If we call x = nn/2j , then we have j =
ln(

√
nn)

ln(x) , and inequality (8) becomes

(9)
1− x

x2 − nx
− ln(x)

ln
(√

nn
) ≥ 0 for x ∈ Jn =

[
n

n
2(n−1) , n

n
2(⌊n/2⌋+1)

]
.

Note that Jn ⊂ (
√
n, n) and, in order to prove inequality (9), we may define the

function φ : (0, n) → R by

φ(x) =
1− x

x2 − nx
− ln(x)

ln
(√

nn
) ,

and show that φ
(
n

n
2(n−1)

)
≥ 0 and that φ(x) is an increasing function on Jn. For

this purpose we can study

φ′(x) =
x2 − 2x+ n

x2(x− n)2
− 1

x ln
(√

nn
) .

To prove that φ′(x) > 0, we may write

φ′(x) =
1

x ln
(√

nn
)
(
ln
(√

nn
) x2 − 2x+ n

x(x − n)2
− 1

)
,

and prove that

ln
(√

nn
) x2 − 2x+ n

x(x− n)2
> 1 for all x ∈ Jn.

Let us analyze the function ϕ(x) =
x2 − 2x+ n

x(x− n)2
. Its derivative is just

ϕ′(x) =
x3 + (n− 4)x2 + 3nx− n2

x2 (n− x)
3 .
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The sign of ϕ′(x) over the interval Jn depends on the sign of the function

x 7→ x3 + (n− 4)x2 + 3nx− n2.

But this is a monotone increasing function (for 2 ≤ n ≤ 14) because its derivative,
3x2+2(n−4)x+3n, has no real roots and is positive on R. In fact, the discriminant
∆ = 4(n2 − 17n+16) could be factored as ∆ = 4(n− 1)(n− 16), which is negative
for 2 ≤ n ≤ 15. Then, for x ∈ [

√
n, n) we obtain

sign (ϕ′(x)) = sign
(√

n
3
+ (n− 4)n+ 3n

√
n− n2

)

= sign
(
4
(√

n3 − n
))

= 1.

Since ϕ is an increasing function on Jn, we may show that ln
(√

nn
)
ϕ
(
n

n
2(n−1)

)
> 1,

i.e.

ln
(√

nn
)

(
n

n
2(n−1)

)2

− 2
(
n

n
2(n−1)

)
+ n

(
n

n
2(n−1)

)((
n

n
2(n−1)

)
− n

)2 > 1,

to conclude that φ′(x) > 0 on Jn. Once this is done, it remains to check that

φ
(
n

n
2(n−1)

)
> 0 to ensure that the inequality (9) is satisfied. But, as we said, this

is equivalent to show that sn−1
n−1 ≤

√
nn.

The following table contains these values for 3 ≤ n ≤ 16.

n ln(
√
nn)

(

n
n

2(n−1)

)2

−2

(

n
n

2(n−1)

)

+n

(

n
n

2(n−1)

)((

n
n

2(n−1)

)

−n

)2 Sn−1
n−1

√
nn

3 ≈ 5, 065 4 ≈ 5, 196
4 ≈ 2, 666 ≈ 12, 211 16
5 ≈ 2, 008 ≈ 43, 053 ≈ 55, 901
6 ≈ 1, 698 ≈ 169, 442 216
7 ≈ 1, 514 729 ≈ 907, 492
8 ≈ 1, 389 ≈ 3380, 607 4096
9 ≈ 1, 298 ≈ 16725, 933 19683
10 ≈ 1, 227 ≈ 87610, 098 100000
11 ≈ 1, 170 ≈ 482892, 455 ≈ 534145, 739
12 ≈ 1, 123 ≈ 2787117, 027 2985984
13 ≈ 1, 084 16777216 ≈ 17403307, 350
14 ≈ 1, 049 ≈ 104973424, 100 105413504
15 ≈ 1, 019 ≈ 680750436, 468 ≈ 661735513, 918
16 ≈ 0, 992 4564290812, 351 4294967296

The second columm shows that, for 3 ≤ n ≤ 15, ln
(√

nn
)
ϕ
(
n

n
2(n−1)

)
is greater

than 1. Comparing the third with the fourth column, we see that sn−1
n−1 is less than

or equal to
√
nn for 3 ≤ n ≤ 14. As both inequalities are fulfilled for 3 ≤ n ≤ 14,

the assertion is proved. �
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Remark 2.9. Note that for n = 15 and n = 16 we have sn−1
n−1 >

√
nn. Moreover,

for n = 16 we can have φ′(x) < 0 at some points.

Remark 2.10. Actually we have proved that sjj <
√
nn, unless j = n.

Theorem 2.11. Given n ∈ N, 2 ≤ n ≤ 14, let f : Qs → R be the function

defined by f(a1, a2, . . . , an) = a1a2 · · ·an. If we consider µ : [
√
n, n] → R, where

µ(s) = min
a∈Σs

f(a), then

µ(s) ≥ 1√
nn

.

Moreover, the minimum is attained only at s =
√
n.

Proof. Let us begin by restricting µ to the open interval Ij = (sj , sj−1), for
1 ≤ j ≤ n. From Corollary 2.3 we can write

µ(s) =
s−1 + s− n+

(⌊
s(n−s)
s−1

⌋
+ 1

)
(1− s−1)

s⌊
s(n−s)
s−1 ⌋ .

Since
⌊
s(n−s)
s−1

⌋
+ 1 = j for any s ∈ Ij , we obtain

(µ|Ij )(s) =
s−1 + s− n+ j(1− s−1)

sj−1
= s2−j + (j − n)s1−j + (1− j)s−j .

Recall that µ is a lower semi-continuous function, and it must attain its minimum
on any compact set. Therefore, there exists some point sj ∈ [sj , sj−1], such that
µ(s) ≥ µ(sj) for all s ∈ [sj , sj−1].

For any s ∈ (sj , sj−1), the evaluation of µ(s) coincides with the evaluation of
the function Mj : [sj , sj−1] → R, considered in Lemma 2.7. Then it follows that sj
does not belong to the open interval (sj , sj−1).

Since

min
s∈[

√
n,n]

µ(s) = min
1≤j≤n

min
s∈[sj ,sj−1]

µ(s),

the minimum of µ(s) : [
√
n, n] → R must be attained at s ∈ {sj}nj=0, and it suffices

to prove

µ(sj) ≥
1√
nn

for 0 ≤ j ≤ n. Then, the proof follows from Proposition 2.8 and Remark 2.10. �

3. The n−th linear polarization constant of Rn.

Let us begin by recalling that in order to show the equality cn(R
n) =

√
nn, it is

enough to prove that for any set of unit vectors {vi}ni=1 ⊂ Rn, there exists a norm
one vector x ∈ Rn such that

(10) |〈x, v1〉 · · · 〈x, vn〉| ≥ n−n/2.

In [18], the authors ensure the existence of a norm one vector x ∈ Rn satisfying
inequality (10) for n = 2, 3, 4 and 5. The proof is based on an appropriate choice
of signs {εi}ni=1 such that maximizes the euclidean norm of

∑n
i=1 εivi. Then, the

desired vector is

x =

∑n
i=1 εivi

‖∑n
i=1 εivi‖

.
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Note that for any choice of signs we have
∥∥∥∥∥

n∑

i=1

εivi

∥∥∥∥∥

2

2

=

n∑

i=1

‖εivi‖22 + 2
∑

1≤i6=j≤n

εiεj〈vi, vj〉.

If we consider the random vector of signs (ε)j = (εj1 , . . . , εjn), all with equal prob-
ability of being chosen, the mean of the squared norm is

1

2n

2n∑

j=1

∥∥∥∥∥

n∑

i=1

εjivi

∥∥∥∥∥

2

2

= n.

For our purposes we may assume that the choice of signs maximizing ‖∑n
i=1 εivi‖

2

2
is just (ε)j = (1, . . . , 1). In the sequel we will consider sets of unit vectors {vi}ni=1

such that the longest sum of them is v =
∑n

i=1 vi. Of course, it satisfies
√
n ≤ ‖v‖ ≤ n.

For this vector v, we have 〈v, v〉 ≥ 〈v − 2vi, v − 2vi〉 for all 1 ≤ i ≤ n. Then,

‖v‖2 ≥ ‖v‖2 − 4〈vi, v〉+ 4.

It follows that 〈vi, v〉 ≥ 1 for 1 ≤ i ≤ n (see [18] for further details).

Although the following result is known for 2 ≤ n ≤ 5 (see [18]), we include these
cases in the statement of our main theorem.

Theorem 3.1. Given 2 ≤ n ≤ 14, then cn(R
n) =

√
nn.

Proof. Take any set of unit vectors {vi}ni=1 ⊂ R
n, such that v =

∑n
i=1 vi is the

longest sum of them. Let us show that
n∏

i=1

〈
vi,

v

‖v‖

〉
≥ 1√

nn
.

Write 〈vi, v〉 = ai‖v‖ ≥ 1, for some ai ∈ R. Then ai ≥ ‖v‖−1 and, from Cauchy-
Schwarz inequality, ai ≤ ‖vi‖ = 1. Also,

n∑

i=1

ai =

n∑

i=1

〈
vi,

v

‖v‖

〉
=

〈
v,

v

‖v‖

〉
= ‖v‖ ∈

[√
n, n

]
.

Now, applying Theorem 2.11 for s = ‖v‖, we obtain
n∏

i=1

〈
vi,

v

‖v‖

〉
= f(a1, . . . , an) ≥ µ(‖v‖) ≥ 1√

nn
. �

Lemma 3.2. Let {vi}ni=1 ⊂ Rn be unit vectors such that for any choice of signs εi,

we have ‖∑n
i=1 εivi‖

2
= n, then {vi}ni=1 is an orthonormal system.

Proof. Let us call I = {1, 2, . . . , n}. For j ∈ I, let Ij be the set I− {j}. Since
∥∥∥∥∥∥

∑

i∈Ij

εivi + vj

∥∥∥∥∥∥

2

=

∥∥∥∥∥∥

∑

i∈Ij

εivi − vj

∥∥∥∥∥∥

2

it follows that 〈
∑

i∈Ij

εivi, vj

〉
= 0
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for any choice of signs {εi}i∈Ij ⊂ {−1, 1}n−1. Finally, since

span




∑

i∈Ij

εivi : εi ∈ {−1, 1}



 = span {vi : i ∈ Ij} ,

we deduce that 〈vi, vj〉 = 0 for i ∈ Ij . Now, since we can freely choose j ∈ I, the
lemma is proved. �

Theorem 3.3. For 2 ≤ n ≤ 14, if {vi}ni=1 ⊂ R are unit vectors such that

sup
‖x‖=1

|〈x, v1〉 · · · 〈x, vn〉| = n−n/2,

then {vi}ni=1 is an orthonormal system.

Proof. Recall, from Remark 2.10, that the value
√
nn is attained only if s =

√
n.

Now, the longest sum v = v1 + . . .+ vn must have norm
√
n. But then, any vector

v(ε)j =
∑n

i=1 εjivi has norm
√
n. Hence, the assertion follows from the previous

lemma. �

Final Remark. From [18] we knew that the longest sum of a set of vectors was
a good candidate to check if inequality (2) holds. In this work we extended from
n = 5 to n = 14 the validity range of Conjecture 1, by applying the results from
Section 2. For n = 34, M. Matolcsi and G. A. Muñoz (see [14]) gave an example
where the longest sum v of some set of unit vectors {vi}34i=1 does not satisfy the
inequality

∏
|〈vi, v〉| ≥ 34−17. However, the inequality holds in some alternative

vector. From their example it is possible to construct many others for any n > 34.
Given s ∈ [

√
n, n] , if we denote by F(s) the set of all n−tuples of unit vectors

{vi}ni=1, such that its longest sum v has ‖v‖ = s, then the map

Λ : F(s) −→ Σs

defined by

Λ(v1, v2, . . . , vn) =
1

s
(〈v1, v〉, . . . , 〈vn, v〉)

is not necessarily surjective. Then it is possible that the longest sum v still works
as a good tester for Inequality (2) for some other values of 14 < n < 34.
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