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Making the cut: forecasting non impact 

injuries in professional soccer. 
 
 
 
 

ABSTRACT 
 
 
This paper proposes a methodology to predict work in non-traumatic injuries in 
professional soccer players. The task to be solved is  a classification problem of the 
player's status with a window of 72 hours. The data set used corresponds to records of 
complete training by the players of Belgrano de Córdoba professional soccer team of the 
first division of Argentina. The chosen model is GBM with an AUC of 0.7. Interpretation 
exercises based on SHAP are performed on the chosen model to analyze the 
characteristics that determine the model's predictions. In addition, possible extensions are 
proposed such as the use of the results of the model at the time of contractual negotiation 
given the estimated proportion of time that the player will spend outside due to injury and 
the economic cost of those absences given, at least, by the direct salary cost of that player. 
Another approach to the injury forecasting problem based on survival time models is also 
discussed. 
 
 
 
Keywords: non-traumatic injury, professional football, machine learning, survival 
analysis, SHAP. 
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1. Introduction  
 
 
Injury incidence has been a constant concern in modern sport science both in the scientific 
environment and in the applied professional field. Availability of full teams is associated 
with teams success. Negative correlation between injury incidence and likelihood of 
classification to finals has been demonstrated in European professional teams (Ekstrand, 
2013). Also, economical losses associated with time loss of injured players should be 
taken into account. It has been estimated that the mean annual costs of injuries for 
European teams is €500,000 (Hägglund et al., 2013). Therefore, injury prevention is an 
essential topic in professional teams and in international sports federations (McCall, 
Dupont, & Ekstrand, 2016). 
 
Modern football has been characterized for its high intensity and high physical demand, 
more elevated than in past decades (Bush, Barnes, Archer, Hogg, & Bradley, 2015). In a 
typical match the mean distance covered by each player is 11km, distributed in a wide 
range of intensities, where 12% of the distance correspond to short max effort sprints and 
high intensity accelerations and decelerations (Chmura et al., 2018). All this represents 
high demand in musculoskeletal structures. 
 
The work of injury prevention has been mostly relegated to team trainers and medical 
staff using multidimensional approaches based on risk factors and preventive strategies 
(Mylonas, Angelopoulos, Tsepis, Billis, & Fousekis, 2021). One dimension of this 
approach includes managing workloads (WL) (McLaren et al., 2018). External workloads 
make reference to factors such as totals sprints and total covered distance, all of which 
are measured with GPS devices (Oliveira et al., 2021). On the other hand, internal 
workloads (IL) make reference to factors such as heart rate and perceived exertion (sRPE) 
(Fernandes et al., 2021) . Internal and external workloads have shown to be highly 
correlated and the use of IL have been validated as a tool for quantifying intensity of a 
stimulus (Seshadri et al., 2020). 
 
The sRPE can be used to quantify different types of training such as cardiorespiratory or 
resistance training (Impellizzeri, Rampinini, Coutts, Sassi, & Marcora, 2004). This 
feature is particularly useful considering that most schedules of professional players 
include many types of different trainings. In 2001 Foster et. al. (Haddad, Stylianides, 
Djaoui, Dellal, & Chamari, 2017) introduced an extension of the sRPE in order to 
improve the estimation of IL including not only the perceived exertion, but also the 
duration of the stimulus. In this sense, the arbitrary units were created to measure the total 
WL of a session of training. 
 

𝑈𝐴  =  𝑠𝑅𝑃𝐸 𝑥 𝑆𝑡𝑖𝑚𝑢𝑙𝑖𝑠𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 
 
Furthermore, in the same work the author proposes another metric named Monotony in 
order to quantify the variability of the training sessions during a particular week. In later 
work many other metrics derived from the UA were introduced such as acute:chronic 
workload ratio (ACWR) and workload strain index (Maupin, Schram, Canetti, & Orr, 
2020). 

𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑦 =
𝑊𝑒𝑒𝑘𝑙𝑦𝑀𝑒𝑎𝑛𝑈𝐴

𝑊𝑒𝑒𝑘𝑙𝑦𝑆𝐷𝑈𝐴
 

 

https://sciwheel.com/work/citation?ids=11059595&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11059595&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6727048&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12156822&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12156822&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12156830&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12156833&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12156835&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11059652&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12156843&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12156846&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12156849&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12053558&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6127927&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=6127927&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11691503&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11691503&pre=&suf=&sa=0&dbf=0
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Since its introduction the increasing interest in the aforementioned metrics was mainly 
for two reasons: first they represent an easy and low cost heuristic to manage and plan 
intensity of training and secondly they were found to be associated with risk of suffering 
injuries (Maupin et al., 2020). 
 

𝐴𝐶𝑊𝑅 =
𝐷𝑎𝑖𝑙𝑦𝑈𝐴

𝑅𝑜𝑙𝑙𝑚𝑒𝑎𝑛𝑁𝑑𝑎𝑦𝑠

 

 
Currently this last topic has been in the spotlight because of conflicting results. Many 
authors such as (Enright, Green, Hay, & Malone, 2020) have stated that metrics 
quantifying IL like the ACWR have potential as predictors of injuries. On the other hand, 
the author (Impellizzeri et al., 2021) has been the principal retractor of this hypothesis in 
his work this author stated that the effects of the ACWR on the risk of suffering an injury 
are a product of an artifact of the statistical models. Beyond contradictory opinions from 
different authors most of the work done by now where association between IL and injury 
risk was found have been done in a descriptive framework, predictive work has been 
mostly done using external loads data probably because low availability of big enough 
dataset of IL sessions. In the present work we propose to develop a predictive framework 
based in IL using machine learning techniques. 
 

1.2 Motivation 
The present work was carried out as part of the development of a system to facilitate the 

storage, processing and use of data associated with the health, well-being and physical 

performance of professional soccer players. 

The request for this development was carried out by the management and medical team 

of the Belgrano de Córdoba professional soccer team. Until the time of development, the 

only data that was stored was that associated with the training duration and Rating of 

Perceived Exertion of each training. After each training session, each player was entrusted 

with completing a form where said data was recorded. This spreadsheet was then loaded 

into a spreadsheet, which was used to plan the following week's workouts. 

The planning of the training sessions followed a very simple heuristic which is based on 

preventing the average number of arbitrary units of the team from exceeding a certain 

threshold. This threshold is usually defined at the discretion, depending on the objective 

of the medical staff and the physical preparation staff of the club. This method has major 

disadvantages: 

• It only allows decisions to be made based on a temporary threshold reduced to a 

window of one week. Due to the simplicity of the heuristics, the data that is used 

to make decisions about managing the future training load is restricted to 7 days. 

• It does not allow the individual evaluation of the players. This heuristic is based 

on aggregate values at the team level, which makes it impossible to study the 

training load that each player receives and does not allow evaluating the adaptive 

response of each player to the training load. Nor does it allow studying how each 

player is positioned with the rest of the team. 

In addition to these disadvantages, during preliminary meetings the concern of the 

medical and physical training staff about the incidence of injuries suffered by the players 

https://sciwheel.com/work/citation?ids=11691503&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12156860&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10972740&pre=&suf=&sa=0&dbf=0
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was highlighted.  For this reason, the need to evaluate and investigate the possibility of 

developing a model that allows quantifying a player's injury risk based on workload data. 

As a general objective, the model should exploit the historical records of each player, as 

well as the relative position of a player with respect to the rest of the team, to create an 

output that quantifies the risk of injury within a reasonable time threshold, which allows 

carry out an intervention to avoid the possible injury of said player. Due to data limitations 

we decided to use only the historical workload data, and not data associated with physical 

and/or medical evaluations. 

 

2. Methods  
 

2.1 Dataset  
 
The dataset is composed of ten years of sRPE and exposure time records of each training 
and match session of a professional football team from Argentina (Belgrano de Córdoba) 
this accounts for 80000 observations. In addition, epidemiological data of injuries and its 
aetiology of the corresponding ten years is available. Both sRPE and exposure time are 
self-reported, each player is responsible for uploading his score after every training 
session. Then, the medical staff checks the answers in order to find discrepancies, missing 
values or any kind of error that could arise. After the sanity check, data is uploaded to the 
database. 
 

2.2 Features and feature engineering 
 
Using sRPE exposure time and injury records of each player, 32 new features were 
created. Commonly used IL metrics were replicated from the literature including UA, 
monotony and strain. Rolling means with 4 different time windows were calculated for 
each metric (2-, 4-, 7- and 15-days windows). Session sRPE Score was created to compare 
the relative position of each player with the rest of the team in each particular training 
session, also as previously described rolling windows were calculated for this feature. 
 
A player's RPE score for a given date is calculated as the difference between that player's 
RPE and the minimum RPE reported by the entire team divided by the difference between 
the team's maximum RPE for that date, minus the minimum for that same date.  
 
Information of previous injuries was also included as a cumulative sum of previous 
lesions (PI). Descriptive statistics of all features for both groups (train and test) can be 
seen in the appendix section. A brief description of the after mentioned variables can be 
found in Table 1.  
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Table 1. Descriptive variables. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Before creating all the new features from the two original ones, an analysis of correlation 
between them was made. As it would be expected for features created from the same 
source, high correlation was found. For this reason, we explored the use of principal 
component analysis (PCA) for pre-processing of the data before training the models. 
 
PCA is a method used to reduce the number of variables in your data by extracting 
important ones from a large pool (Yata & Aoshima, 2010). It reduces the dimension of 
your data with the aim of retaining as much information as possible. In other words, this 
method combines highly correlated variables together to form a smaller number of an 
artificial set of variables which is called “principal components” that account for most 
variance in the data. For exploratory reasons, we reduce the number of features that 
describe our data through PCA, the result of the first 3 principal components (accounting 
for the 43% of the variance in the data) is shown below. 

 
Figure 1. 3D Representation of PCA decomposition.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://sciwheel.com/work/citation?ids=12156869&pre=&suf=&sa=0&dbf=0
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The observations in violet correspond to the negative class. Yellow rectangles are 
observations that correspond to positive classes. High overlapping between classes 
observed in the figure can be interpreted as the impossibility of linearly separating them 
through linear transformations, probably due to complex non-linear relations between 
features and target classes. 

2.2.1 Missing values and outliers  
Due to the nature of the dataset, prior to its delivery for analysis, missing values and 
outliers were removed by the medical staff of the team. However, the distribution of the 
original variables was checked to guarantee the sanity of the information. 
 

Figure 2. Box Plot of the scaled and centred RPE and exposure time   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As we can see, there appears to be three extreme values in the variable exposure time. 
However as it can be seen below, they don't appear to be outliers, just particularly long 
sessions (time is expressed in minutes). 
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Figure 3. Box Plot of exposure time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.2.2 Exploratory Data Analysis. 
 
An exploratory analysis of the data will be carried out in order to better understand the 
data set. One of the objectives will be to evaluate if there are differences in the 
distributions of the explanatory variables in relation to the target using different time 
windows until the event of interest, which is the injury of a player. 
 
In order to evaluate how the distributions of the variables conditioned by the player's 
condition (injury or non-injury) behave, 3 different cut-off points were used, one at 24 
hours, another at 72 hours and another at 120 hours (that is, if the player suffered an injury 
within the following 24/72/120 hours is assigned a value of 1). For that kernel density 
estimation plots were used. 
 
During the analysis some interesting patterns emerged. In most cases, the distributions 
conditioned by the state of the player showed a large overlap, except for 5 variables whose 
distributions differed considerably when conditioned by the outcome of interest. For 
these, in addition to the kernel density graphs, ECDF graphs were included to appreciate 
in more detail how the distributions diverge when conditioned. Another interesting 
pattern found was that this difference between distributions is only present for the cut-off 
points of 24 and 72 hours, being lost for the cut-off point of 120 hours. The variables in 
which the aforementioned patterns were found are shown in detail below. 
 

2.2.2.1 Monotony 
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Recall that monotony is defined as the mean daily workload divided by the standard 
deviation of the daily workload. In our case, we calculate this variable from the 
exposure time and daily RPE data of the players. We then calculated rolling means of 
this variable using different time periods. During our analysis, we found that the 
distributions that differed the most when conditioned were those with a 7- rolling mean.  
 
Figure 4. KDE for monotony Rolling mean of 7 days. From Left to Right, 24/72/120 hs 

thresholds are shown. 
 
 
 
 
 
 

 

 

 

 
 

 
 
 
In the previous graphs, the aforementioned pattern can be observed, and it can be seen 
how the distributions become more overlapping as we move away from the event of 
interest. 
 
To better appreciate how the distributions differ, ECDF plots were used, which are 
shown below. The 24/72h cut-off points are shown together and the 120h cut-off point 
is shown separately.  
 

Figure 5. ECDF for monotony Rolling mean of 7 days. 
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2.2.2.2 Strain  
 
Recall that the strain is defined as the monotony multiplied by the workload. As in the 
case of monotony, this variable was calculated from the exposure time and RPE data of 
the players, and moving averages with different periods were also calculated, to later be 
incorporated into the models. 
In this case, the distributions of the rolling means of 2, 4 and 7 days showed differences 
when conditioned by the outcome. 
 

Figure 6. KDE for Strain Rolling mean of 4 days. From Left to Right, 24/72/120 hs 
thresholds are shown. 

 

 
 
 

 

 

 

 

 

 
Figure 7. KDE for Strain Rolling mean of 4 days. From Left to Right, 24/72/120 hs 

thresholds are shown. 
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Figure 7. KDE for Strain Rolling mean of 7 days. From Left to Right, 24/72/120 hs 
thresholds are shown. 

 
 
 

 

 

 

 

 
 
As in the case of monotony, we can see that the distribution of the variables differs when 
conditioned and this difference disappears as we move away from the time of injury. 
 
ECDF graphs were incorporated to better appreciate how the distributions of the variables 
differ. The 24/72h cut-off points are shown together and the 120h cut-off point is shown 
separately. 
 

Figure 8. ECDF for Strain Rolling mean of 2 days. 
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Figure 9. ECDF for Strain Rolling mean of 4 days. 
 
 

 

 

 

 

 

 
Figure 10. ECDF for Strain Rolling mean of 7 days. 

 

 
 

 
 
 

 

 

 
 
Observing the ECDF graphs, it can be seen how the conditioned distributions for the 24 
and 72h thresholds differ according to the group to which they belong, while in the case 
of the 120h threshold, an almost perfect overlap between the distributions is shown. 
 

2.2.2.3 RPE score 
 
The RPE score variable is a feature derived in this project of which no reference was 
found in any previous academic work. The main objective of this variable is to 
incorporate information about the relative position of a player with respect to the rest of 
the team for a given date. Like the rest of the variables, rolling means were calculated to 
incorporate historical information on it. The distribution of this variable was the one that 
differed most strongly when it was conditioned by the player's status (injured / not 
injured).  
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Figure 11. KDE for RPE score. From Left to Right, 24/72/120 hs thresholds are shown. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 12. KDE for RPE score Rolling Mean of 2 days . From Left to Right, 24/72/120 

hs thresholds are shown. 
 
 
 

 

 

 

 

 
Figure 13. KDE for RPE score Rolling Mean of 7 days . From Left to Right, 24/72/120 

hs thresholds are shown. 
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When looking at the ECDF it is remarkable how different the distributions are between 
them. As in the previous cases, the 24/72h cut-off points are shown together and the 120h 
cut-off point is shown separately. 
 

Figure 14. ECDF for RPE score. 
 
 

 

 

 

 

 

 
Figure 15. ECDF for RPE score Rolling mean of 2 days. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
During the exploratory analysis, no outliers, null values or atypical data were found, 
which is a good sign, since it indicates that the functions that were built to create the 
variables work correctly and that the previous curation of the database, by the medical 
staff, was correct  
 

2.2.3 Target Imbalance  
 
Generally speaking, it is usual and expected that a database exhibits a different 
distribution between classes, but when we talk about a database being unbalanced, we 
refer to the fact that there is a significant, and often extreme, difference between classes 
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(He & Shen, n.d.). This type of imbalance is often referred to as between-class imbalance. 
Although in our case we refer to an imbalance between two classes, it can easily be 
extended to multiclass classification problems. 
 
This problem of class imbalance usually arises frequently in the field of biomedicine 
(Woods et al., 1994). It is usual for a collection of data, with certain characteristics, to 
have the objective of classifying them into two groups, "healthy" and "pathological". This 
is usually due to the origin of the data, these data normally come from preventive studies, 
which are indicated to individuals whose probability of suffering from a certain pathology 
is low. This happens, for example, in the cases of breast screening, where it is sought to 
detect different types of breast pathologies early. This makes it expected that negative 
cases (healthy individuals) exceed positive cases (pathological individuals).  
Of course, our objective is to train a model that provides a balanced degree of precision 
for both classes, both the majority (negative in this case) and the minority (positive in this 
case). In practice we usually find that the models tend to provide highly unbalanced 
predictions, in favour of the majority class, this is a consequence of the loss functions that 
the models use internally to optimize their parameters. This usually represents a serious 
problem in these cases, since the relative cost of false negatives is usually high, and many 
times much more expensive than obtaining a false positive (Z. H. Zhou & Liu, 2005). 
 
Furthermore, all this suggests that the model performance evaluation practices using 
general metrics such as overall accuracy and error rate do not provide adequate 
information (Gary M. Weiss, 2004), because, in general, a model that has a bias towards 
the majority class (Joshi, Kumar, & Agarwal, 2001), will tend to have high values of 
overall accuracy and low of error rate, even if it is not able to identify observations of the 
minority class. Due to all this, it is advisable in these cases to use metrics that provide 
more information, such as the receiver operating characteristics curve, precision-recall 
curves and cost curves (Japkowicz, 2013). The type of imbalance that we have discussed 
so far is often called intrinsic, since it depends on the nature of the data. There is another 
type of imbalance, called extrinsic, which is usually the product of factors such as lack of 
data collection or lack of a type of class due to externalities associated with data storage 
(Y. Liu, Wang, Ren, Zhou, & Diao, 2019). 
 
As we have discussed so far, class imbalance is usually a frequent pattern found in 
different types of applications in practice, and because of this it has been in the focus of 
interest of multiple researchers (Haixiang et al., 2017). Some studies have shown that for 
some types of class imbalance, the minority concept is accurately learned with little 
disturbances from the imbalance (Batista, Prati, & Monard, 2004). These results are 
particularly interesting, since they suggest that the simple fact of class imbalance is not 
the only reason why the models are an impediment to learning the rules that allow correct 
classifying the observations. From this arises the hypothesis that the ability of the models 
to generate correct predictions depends on the complexity of the data, and the 
relationships that determine an outcome (Japkowicz & Stephen, 2002). In this way, 
understanding the nature of the phenomenon that generated the data would allow us to 
understand why in some cases the performance of the models is severely limited. In our 
case, when studying a phenomenon that arises from the interaction of a complex system 
with the environment, understanding this last premise is essential to be able to correctly 
address the problem and understand possible limitations of the data modelling results 
(Bittencourt et al., 2016).  
 

https://sciwheel.com/work/citation?ids=12156896&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12156901&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12156907&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1785228&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12156913&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12156918&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12156922&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8344141&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1785184&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10885398&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3523698&pre=&suf=&sa=0&dbf=0
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2.2.2.1 Consequences of target imbalance.   
 
Taking into account everything mentioned so far, and not minimizing the fact that the 
simple imbalance is not the only factor that inclines the models towards a particular class, 
it is generally accepted that when standard models are used on unbalanced data, the 
amount of inductive rules that describe the minority class are usually less and more 
diffusely learned, compared to the rules that describe the majority class (Chawla, 2003). 
 
This can be clearly seen in decision tree models. In these, the imbalances exploit the 
inadequacies in the splitting criterion in each node of the decision tree (G M Weiss & 
Provost, 2003). Decision trees use a recursive, top-down greedy search algorithm that 
uses a feature selection scheme to select the best features as the split criterion at each 
node of the tree; a successor (the leaf) is then created for each of the possible values 
corresponding to the split feature. As a result, the training set is successively partitioned 
into smaller subsets that are ultimately used to form disjoint rules related with the class 
concepts. These rules are finally combined so that the final hypothesis minimises the total 
error rate across each class. The problem of this procedure in the presence of imbalanced 
datasets has two parts. First, successive partitioning of the dataspace results in fewer 
observations of the minority class examples, resulting in fewer leaves describing minority 
concepts and with weaker confidence estimates. Second, concepts that have dependencies 
on different features space conjunctions can go unlearned by the spareness introduced 
through partitioning. 
 

2.2.2.2 Solutions for target imbalance  
 
Typically, the use of sampling methods in imbalanced learning applications consist of the 
modification of an imbalanced dataset by some mechanism in order to provide a balanced 
distribution (Laurikkala, 2001). 
 
Random oversampling is a mechanism by which we add a set of observation sampled 
from the minority class (Moreo, Esuli, & Sebastiani, 2016), for a set of randomly selected 
minority examples, we augment the original dataset by replicating the selected examples 
and adding them to the original dataset. In this way, the number of total minority 
examples randomly chosen can be learned and adjusted. This provides a mechanism for 
varying the degree of class distribution balance to any desired level. 
 
While oversampling appends data to the original dataset, random under sampling (X.-Y. 
Liu, Wu, & Zhou, 2009) removes data from the original dataset. In this case we randomly 
select a set of majority class examples and remove these from the original dataset. The 
total number of removed samples has to be chosen as in the previous case we can vary 
the number in order to get a desired balance in our dataset. 
 
Moving forward from resample techniques, synthetic data generation is another way to 
get a desired balance between classes. In particular synthetic minority oversample 
technique (SMOTE) is a powerful method that has shown great deal of success in various 
applications (Raghuwanshi & Shukla, 2020). The algorithm works as follow: for the 
subset of minority class examples, consider the K-nearest neighbours for each example 
included in the subset of the minority class, for some specified integer K; the K-nearest 

https://sciwheel.com/work/citation?ids=12156959&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12156961&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12156961&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12156962&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12156963&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1785217&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1785217&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11060340&pre=&suf=&sa=0&dbf=0
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neighbours are defined as the K elements of the minority subset whose Euclidean distance 
between itself and the examples in consideration exhibit the smallest magnitude along the 
n-dimensions of the feature space. To create a synthetic sample, randomly select one of 
the K-nearest neighbours, then multiply the corresponding feature vector difference with 
a random number between [0,1], and finally add this vector to the chosen neighbours. As 
in the resample techniques, the total number of synthetic examples can be chosen. 
 
 

Figure 16. Graphic representation of SMOTE 
 
 
 
 
 
 
 
 
 
While sampling methods attempt to balance distributions by considering the 
representative proportions of class examples in the distribution, cost-sensitive learning 
methods consider the costs associated with misclassifying examples (Thai-Nghe, 
Gantner, & Schmidt-Thieme, 2010). Instead of creating balanced data distributions 
through different sampling strategies, cost sensitive learning targets the imbalanced 
learning problem by using different cost matrices that describe the costs for 
misclassifying any particular data example. Fundamental to the cost sensitive learning 
methodology is the concept of the cost matrix. The cost matrix can be considered as a 
numerical representation of the penalty of classifying examples from one class to another. 
The objective of cost sensitive learning then is to develop a hypothesis that minimizes the 
overall cost on the training data set. We were not able to test this method because there 
was no clear way to determine the cost matrix. The main issues will be described in 
section 5. 
 
In our case, we are dealing with an extremely imbalanced dataset, only ~ 0.5% of the 
observations correspond to positive class. Oversample and SMOTE were tested in order 
to improve the performance of the models. Oversample showed to be the best approach 
in our case. Model performance using SMOTE in the testing set is shown in the appendix. 
 

2.2.3 Modelling approach  
 
The models were trained using 6 consecutive years (2013, 2014, 2015, 2016, 2017, 2018) 
and were tested in one year (2019). Due to the temporal distance between the end of one 
season and the next, it was not necessary to take precautions in the possible overlap 
between the last year of training (2018) and the year used as test (2019). 
 

Figure 17. Data split for train and test  
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In order to optimize the hyperparameters of the models, a random search and a cross-
validation scheme were used on the training data as indicated in (Bergmeir, Hyndman, & 
Koo, 2018). Then, the best model with its respective hyperparameters was trained on the 
entire training set, and then validated with the test data. In order to assess the uncertainty 
of evaluation metrics, bootstrapping was used. Bootstrapping is a resampling technique 
by which many new data sets are created by resampling the original dataset (Adler & 
Lausen, 2009). Then, every new dataset is pre-processed, divided in train and test, model 
parameters are estimated and then tested using different evaluation metrics, generating a 
distribution of parameter and evaluation metrics. Using the resulting empirical 
distribution of evaluation metrics, we can assess the uncertainty of them. Also, these 
distributions are used to compare different models' performances. An analysis of the 
robustness of the estimation of the hyperparameters is included in section 6.6 of the 
appendix. 
 
The models were built with the objective of predicting injuries with a time window of 72 
hours in the future from the observation under consideration, using the historical data of 
a player's IL at a given moment in time. Only non-contact injuries that generated training 
or match time loss were taken into consideration. The 72-hour threshold was chosen for 
two reasons, the first is that during the period of experimentation and evaluation of better 
models, we evaluated how the predictability of the lesions changed at different time 
thresholds, where it remained constant for the thresholds of 24, 48 and 72 hours 
respectively and then it falls precipitously. The second reason is related to the time it takes 
to take a course of action in the application of the model, the further away the event is 
from occurring, the more time is given to the medical staff to take action with a certain 
player. The results of these experiments can be seen in the appendix. 
 

2.2.4 Models  
 
Multiple models were used to fit the training data and were then tested against the 
validation data. All of them were trained with all the available features. Due to the 
complex nature of the interactions that determine the predisposition to injury, models 
with different flexibility to adjust to the data were evaluated, which included: 
 

o Decision Tree Classifier (DT): tree-based methods partition the feature space into 
a set of rectangles, and then fit a simple model like a constant in each one. Roughly 
speaking, there are two steps to build a DT (Trevor Hastie, Robert Tibshirani, & 
Jerome Friedman, 2016). First, we divide the predictor space into K distinct and 
non-overlapping regions. Second, for every observation that falls into a given 
region, we make the same prediction, which is simply the most commonly 
occurring class for the training observations in that region. The first question that 
arises from this idea, is how do we construct the regions? The answer is quite 
simple, we have to test every single possible partitioning, and keep the one that 
minimises a given loss function. However, this is computationally impossible. For 
this reason, we take a top-down, greedy approach that is known as recursive 
binary splitting. The approach is top-down because it begins at the top of the tree 
(at which point all observations belong to a single region) and then successively 
splits the predictor space; each split is indicated via two new branches further 
down on the tree. It is greedy because at each step of the tree-building process, 
the best split is made at that particular step, rather than looking ahead and picking 

https://sciwheel.com/work/citation?ids=5002025&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5002025&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5511658&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5511658&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12157041&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12157041&pre=&suf=&sa=0&dbf=0


21 
 

a split that will lead to a better tree in some future step. In order to perform 
recursive binary splitting, we first select a predictor and a cut point such that 
splitting the predictor space into the regions leads to the greatest possible 
reduction in the loss function. Next, we repeat the process, looking for the best 
predictor and best cut point in order to split the data further so as to minimize the 
loss within each of the resulting regions. However, this time, instead of splitting 
the entire predictor space, we split one of the two previously identified regions. 
This process continues until a stopping criterion is reached. There are two 
classical loss functions that are used in classification problems. The first one is 
the Gini index, a measure of total variance across the all-response classes, 
commonly referred to as a measure of node purity; a small value indicates that a 
node contains predominantly observations from a single class. And the second 
one is the entropy. When building a classification tree, either the Gini index or the 
entropy are typically used to evaluate the quality of a particular split, since these 
two approaches are very sensitive to node purity. 
 

o Logistic Regression (LR): Is a transformation of a linear regression using a 
sigmoid function. Despite its name, it is a classification model rather than a 
regression model (Trevor Hastie et al., 2016). Logistic regression is a simple and 
more efficient method for binary and linear classification problems. It is a 
classification model, which is very easy to realize and achieves very good 
performance with linearly separable classes. We are going to estimate model 
parameters through a general method called maximum likelihood. The basic 
intuition behind using maximum likelihood to fit a logistic regression model is as 
follows: we seek estimates for the parameters such that the predicted probability 
of injury for each individual, corresponds as closely as possible to the individual’s 
observed injury status. Regularization is a technique used to prevent overfitting 
problems (Ng, 2004). It adds a regularization term to the maximum likelihood 
equation. Regularization encompasses techniques that are used to avoid 
overfitting. In our case due to the high dimensionality of the input and high 
multicollinearity between variables, we use L2 regularization. 
 

o Random Forest (RF): Bootstrap idea was already described previously, we will 
see here that the bootstrap can be used in a completely different context, in order 
to improve statistical learning (Trevor Hastie et al., 2016). Bootstrap aggregation, 
is a general-purpose procedure for reducing the variance of a statistical learning 
method. Recall that given a set of independent n observations, each with variance 
V, the variance of the mean of the observations is given by V / n. In other words, 
averaging a set of observations reduces variance. Hence a natural way to reduce 
the variance and hence increase the prediction accuracy of a statistical learning 
method is to create many training sets through bootstrapping, build a separate 
prediction model using each bootstrapped training set, and average the resulting 
predictions. RF models use this powerful idea, and introduce another tweak in 
order to decorrelate the created trees. We build a number of decision trees on 
bootstrapped training samples, but when building these decision trees, each time 
a split in a tree is considered, a random sample of predictors is chosen as split 
candidates from the full set of p predictors. The split is allowed to use only one of 
those predictors. A fresh sample of predictors is taken at each split. In other words, 
when building a random forest, at each split in the tree, the algorithm is not even 
allowed to consider a majority of the available predictors. 
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o Gradient Boosting Machine (GBM): boosting is a general approach that can be 

applied to many statistical learning methods for regression or classification 
(Garreth Jamws, Daniela Witten, Trevor Hastie, & Robert Tibshirani, 2021). Here 
we restrict our discussion of boosting to the context of decision trees. As in RF, 
in boosting we will build many trees, but in boosting, trees are grown sequentially, 
each tree is grown using information from previously grown trees. Boosting 
involves combining a large number of decision trees, but unlike fitting a single 
large decision tree to the data, which amounts to fitting the data hard and 
potentially overfitting, the boosting approach instead learns slowly. Given the 
current model, we fit a decision tree to the residuals from the model, that is, we 
fit a tree using the current residuals, rather than the outcome. We then add this 
new decision tree into the fitted function in order to update the residuals. Each of 
these trees can be rather small, with just a few terminal nodes. By fitting small 
trees to the residuals, we slowly improve predictions in areas where the model 
does not perform well. The GBM model uses this idea of boosting, but it identifies 
the shortcomings of weak learners by using gradients in the loss function. 

 
Due to the high correlation between features created in previous steps, two experimental 
settings were created. In the first one the raw features were used as input for the model 
training and testing. In the second approach, the PCA method was applied over predictive 
features. PCA allows a huge amount of information enclosed in initially correlated data 
to be transformed into a set of new orthogonal components, thereby making it possible to 
discover concealed relationships, enhance data visualization, detection of outliers, and 
classification within the newly defined dimensions (Khalid, Khalil, & Nasreen, 2014). In 
some cases, the applications of PCA on a dataset as a pre-processing can improve the 
performance of learning methods (Moghaddasi, Jalab, Md Noor, & Aghabozorgi, 2014). 
However, in our case best performance was achieved without using PCA (all principal 
components were used for this experiment). In this way, five different experiments were 
tested; in the first one, random oversampling without PCA was tested; in the second one 
random oversampling with PCA was tested; in the third one SMOTE without PCA was 
tested; in the fourth SMOTE with PCA was tested; in the fifth one undersampling was 
applied. The first setting was the best one, and its results are shown in detail in section 
four. The other results are shown in the appendix. 
 

2.2.5 Model Evaluation  
 
Traditionally, the most frequently used metrics are accuracy and error rate. Considering 
a basic two class classification problem, then a representation of classification 
performance can be formulated by a confusion matrix. In our case the minority class is 
represented as the positive class. Following this idea, accuracy and error rate are defined 
as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑁
 

 
𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 =  1 −  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

 
Where TP are true positives, TN are true negatives, and N are the total predictions made. 
These metrics provide a simple way of describing a classifier’s performance on a given 
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data set. However, they can be deceiving in certain situations and are highly sensitive to 
changes in data. In the simplest situation, if a given data set includes 5 percent of minority 
class examples and 95 percent of majority examples, a naive approach of classifying 
every example to be a majority class example would provide an accuracy of 95 percent. 
A classifier that has an accuracy of 95 in the entire dataset sounds superb; however, this 
same classifier has a 0 percent accuracy in the minority class. In lieu of accuracy, other 
evaluation metrics are frequently adopted in the research community to provide 
comprehensive assessments of imbalanced learning problems, namely, precision, recall 
and F1 Score, defined as: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

 

𝐹1 = 2 ∗ [
(𝑟𝑒𝑐𝑎𝑙𝑙 ∗   𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

(𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
] 

 
Where FP are false positive predictions and FN are false negative predictions. Intuitively, 
precision is a measure of exactness (of the examples labelled as positive, how many are 
actually labelled correctly), whereas recall is a measure of completeness (how many 
examples of the positive class were labelled correctly). These two metrics, much like 
accuracy and error, share an inverse relationship between each other. However, unlike 
accuracy and error, precision and recall are not both sensitive to changes in data 
distributions. A quick inspection on the precision and recall formulas readily yields that 
precision is sensitive to data distributions, while recall is not. On the other hand, that 
recall is not distribution dependent is almost superfluous because an assertion based 
solely on recall is equivocal, since recall provides no insight to how many examples are 
incorrectly labelled as positive. Similarly, precision cannot assert how many positive 
examples are labelled incorrectly. Specifically, the F1 Score combines precision and 
recall as a measure of the effectiveness of classification in terms of a ratio of the recall 
and precision. As a result, F1 Score provides more insight into the functionality of a 
classifier than the accuracy metric, however remaining sensitive to data distributions. 
 
In order to overcome the sensibility of an imbalanced dataset of the aforementioned 
metrics, we will introduce the receiver operating characteristics (ROC) curves. The ROC 
assessment technique makes use of the proportion of two evaluation metrics, namely, true 
positives rate (TP rate) and false positives rate (FP rate), which are defined as: 

𝑇𝑃𝑟𝑎𝑡𝑒 =
𝑇𝑃

𝑃𝑐
 

 

𝐹𝑃𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝑁𝑐
 

 
Where Pc are observed positive class examples, and Nc are observed negative class 
examples. The ROC graph is formed by plotting TP rate over FP rate, and any point in 
ROC space corresponds to the performance of a single classifier on a given distribution. 
The ROC curve is useful because it provides a visual representation of the relative trade-
offs between the benefits (reflected by true positives) and costs (reflected by false 
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positives) of classification in regards to data distributions. Generally speaking, for the 
case of soft-type classifiers (classifiers that output a continuous numeric value to 
represent the confidence of an instance belonging to the predicted class) a threshold can 
be used to produce a series of points in ROC space. This technique can generate an ROC 
curve. In order to assess different classifiers performance, one generally uses the area 
under the curve (AUC) as an evaluation criterion. For instance, a classifier that has a 
higher AUC is better than a classifier with a lower AUC. Of course, one should also note 
that it is possible for a high AUC classifier to perform worse in a specific region in ROC 
space than a low AUC classifier. 
 

2.3 Interpretable Machine Learning 
 
Interpretability is the degree to which a human can understand the cause of a 
decision. The higher the interpretability of a machine learning model, the easier it is for 
someone to comprehend why certain decisions or predictions have been made (Christoph 
Molnar, 2020). A model is better interpretable than another model if its decisions are 
easier for a human to comprehend than decisions from the other model. We will 
differentiate explicability from interpretability in the sense that explicability will refer as 
the ability to explain a particular prediction. 
 
In our case model interpretability will be quite important. As it will be seen in the next 
sections, we are not only interested in a powerful model to predict injuries, we also want 
to use the output of the model for many other applications (such as renegotiation 
of contracts), and because of this, we need understand the “Why” of the predictions. 
When we are in this kind of setting, social acceptance of the output model and 
transparency are important milestones. When we talk about interpretability, we can use 
different criteria whether interpretability is achieved by restricting the complexity of the 
machine learning model (intrinsic) or by applying methods that analyse the model after 
training (post hoc) (Serg Masís, 2021). Intrinsic interpretability refers to machine learning 
models that are considered interpretable due to their simple structure, such as short 
decision trees or sparse linear models. Post hoc interpretability refers to the application 
of interpretation methods after model training. Then it is also important to differentiate if 
methods used to interpret the model are model specific or model agnostic (Du, Liu, & 
Hu, 2019). Model specific interpretation tools are limited to specific model classes. The 
interpretation of regression weights in a linear model is a model specific interpretation. 
Model agnostic tools can be used on any machine learning model and are applied after 
the model has been trained (post hoc). These agnostic methods usually work by analysing 
feature input and output pairs. By definition, these methods cannot have access to model 
internals such as weights or structural information. 
 
Another issue to address when we talk about interpretability, is whether the interpretation 
method explains an individual prediction or the entire model behaviour. You could 
describe a model as interpretable if you can comprehend the entire model at once 
(Christoph Molnar, 2020). To explain the global model output, you need the trained 
model, knowledge of the algorithm and the data. This level of interpretability is about 
understanding how the model makes decisions, based on a holistic view of its features 
and each of the learned components such as weights, other parameters, and structures 
(Doshi-Velez & Kim, 2017), which features are important and what kind of interactions 
between them take place. Global model interpretability helps to understand the 
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distribution of your target outcome based on the features. However, global model 
interpretability is very difficult to achieve in practice. Any model that exceeds a handful 
of parameters or weights is unlikely to fit into the short-term memory of the average 
human. On the other hand, you can change this approach and make a kind of zoom in on 
a single instance and examine what the model predicts for this input, and explain why 
(Murdoch, Singh, Kumbier, Abbasi-Asl, & Yu, 2019). If you look at an individual 
prediction, the behaviour of the otherwise complex model might behave more pleasantly. 
Locally, the prediction might only depend linearly or monotonically on some features, 
rather than having a complex dependence on them. 
 

2.3.1 Model Agnostic Methods  
 
Separating the explanations from the machine learning model has some advantages. The 
great advantage of model-agnostic interpretation methods over model-specific ones is 
their flexibility (Christoph Molnar, 2020). Machine learning developers are free to use 
any machine learning model they like when the interpretation methods can be applied to 
any model. Anything that builds on an interpretation of a machine learning model, such 
as a graphic or user interface, also becomes independent of the underlying machine 
learning model. Typically, not just one, but many types of machine learning models are 
evaluated to solve a task, and when comparing models in terms of interpretability, it is 
easier to work with model-agnostic explanations, because the same method can be used 
for any type of model. Desirable aspects of a model-agnostic explanation system are 
model flexibility (methods that work with any kind of model), explanation flexibility, 
representation flexibility. 

 

2.3.1.1 Permutation Feature Importance 
 
Permutation Feature Importance measures the increase in model prediction error 
after permuting the feature values, which breaks the relationship between the feature 
and the actual output. 
The concept is relatively simple: the importance of a feature should be measured by 
calculating the increase in the prediction error of the model after exchanging said feature. 
A feature is important in terms that if we mix its values, it increases the error of the  
model, because in this case the model was based on the feature for the prediction. 
A feature is not important if, by mixing its values, the model error remains 
invariant, so in this case the model ignored the feature for the prediction. 
 

2.3.1.2 Shapley Values  
 
By definition, the shapley value is the average marginal contribution of a feature value 
across all possible coalitions. The Shapley value, comes from an idea of coalitional game 
theory, is a method for assigning payouts to players depending on their contribution to 
the total payout (Merrick & Taly, 2020). Players cooperate in a coalition and receive a 
certain profit from this cooperation. The "game" is the prediction task for a single instance 
of the dataset. The "gain" is the actual prediction for this instance minus the average 
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prediction for all instances. The "players" are the feature values of the instance that 
collaborate to receive the gain. 
 
The interpretation of the Shapley value for feature value j is: The value of the j-th feature 
contributed to the prediction of this particular instance compared to the average prediction 
for the dataset (Rodríguez-Pérez & Bajorath, 2020). The difference between the 
prediction and the average prediction is fairly distributed among the feature values of the 
instance, the Efficiency property of Shapley values. This property distinguishes the 
Shapley value from other methods. The Shapley value might be the only method to 
deliver a full explanation. In situations where the law requires explicability, like EU's 
"right to explanations", the Shapley value might be the only legally compliant method, 
because it is based on a solid theory and distributes the effects fairly (Rodríguez-Pérez & 
Bajorath, 2020). 
 
Obviously there exist some disadvantages associated with shapley values. The first one 
is that it requires a lot of computing time. In most real-world problems, only the 
approximate solution is feasible. An exact computation of the Shapley value is 
computationally expensive because there are 2^k possible coalitions of the feature values 
and the "absence" of a feature has to be simulated by drawing random instances, which 
increases the variance for the estimate of the Shapley values estimation. 
Shapley values are also a drawback if we are seeking sparse explanations (explanations 
that contain few features). Explanations created with the Shapley value method always 
use all the features. A solution for this is SHAP, which is based on the Shapley value, but 
can also provide explanations with few features. 
 

2.3.2.1 SHAP 
 
The goal of SHAP is to explain the prediction of an instance x by computing the 
contribution of each feature to the prediction. The SHAP explanation method estimates 
Shapley values from coalitional game theory. The feature values of a data instance act as 
players in a coalition. One innovation that SHAP brings to the table is that the Shapley 
value explanation is represented as an additive feature attribution method, a linear model 
(Christoph Molnar, 2020). SHAP specifies the explanation as: 
 
                                                       𝑔(𝑧′) = 𝜙0 + ∑𝑀

𝑗=1 𝜙𝑗𝑧𝑗
′ 

 
where g is the explanation model, z {0,1} is the coalition vector, M is the maximum 
coalition size and phi is the feature attribution for a feature j, the Shapley values. In the 
coalition vector, an entry of 1 means that the corresponding feature value is "present" and 
0 that it is "absent".  
 
TreeSHAP uses the conditional expectation to estimate effects (Yang, 2021). If we 
conditioned on all features, if S was the set of all features, then the prediction from the 
node in which the instance x falls would be the expected prediction. If we did not 
condition on any feature, if S was empty, we would use the weighted average of 
predictions of all terminal nodes. If S contains some, but not all, features, we ignore 
predictions of unreachable nodes. Unreachable means that the decision path that leads to 
this node contradicts values in. From the remaining terminal nodes, we average the 
predictions weighted by node sizes. The mean of the remaining terminal nodes, weighted 
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by the number of instances per node, is the expected prediction for x given S. You can 
visualize feature attributions such as Shapley values as "forces". Each feature value is a 
force that either increases or decreases the prediction. The prediction starts from the 
baseline. The baseline for Shapley values is the average of all predictions. In the plot, 
each Shapley value is an arrow that pushes to increase (positive value) or decrease 
(negative value) the prediction. These forces balance each other out at the actual 
prediction of the data instance. Shapley values can be combined into global explanations. 
If we run SHAP for every instance, we get a matrix of Shapley values. This matrix has 
one row per data instance and one column per feature. We can interpret the entire model 
by analysing the Shapley values in this matrix. This idea is implemented to capture SHAP 
feature importance. 
 
The idea behind SHAP feature importance is simple: Features with large absolute Shapley 
values are important (Bowen & Ungar, 2020). Since we want the global importance, we 
sum the absolute Shapley values per feature across the data. Next, we sort the features by 
decreasing importance and plot them. SHAP feature importance is an alternative 
to permutation feature importance. There is a big difference between both importance 
measures: Permutation feature importance is based on the decrease in model 
performance. SHAP is based on magnitude of feature attributions. 
 
The summary plot combines feature importance with feature effects. Each point on the 
summary plot is a Shapley value for a feature and an instance. The position on the y-axis 
is determined by the feature and on the x-axis by the Shapley value. The colour represents 
the value of the feature from low to high. Overlapping points are jittered in the y-axis 
direction, so we get a sense of the distribution of the Shapley values per feature. The 
features are ordered according to their importance. In the summary plot, we see first 
indications of the relationship between the value of a feature and the impact on the 
prediction. 
 

2.3.1.2.1 Key Advantages  
 
Since SHAP computes Shapley values, all the advantages of Shapley values apply: SHAP 
has a solid theoretical foundation in game theory. The prediction is fairly 
distributed among the feature values. We get contrastive explanations that compare the 
prediction with the average prediction. SHAP has a fast implementation for tree-based 
models. The fast computation makes it possible to compute the many Shapley values 
needed for the global model interpretations. The global interpretation methods include 
feature importance, feature dependence, interactions, clustering and summary plots. For 
all this, and because our best performance model was a gradient boosting machine based 
on tree models, SHAP was used to make the interpretation of model results. 
 
3. Results  
 
A total of 57,476 observations were used to train the model and 7,408 were used to test 
it. The total injuries and the time loss expressed in days associated with them is shown in 
Table 1. During all the years that were used to train the models, we can see that 300 non-
contact injuries were witnessed, accounting for 0.52% of the observations of training. 
During the period used to validate the performance of the models, 39 non-contact injuries 

https://sciwheel.com/work/citation?ids=12157630&pre=&suf=&sa=0&dbf=0
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were observed, accounting for 0.53% of the observations in validation. The descriptive 
data of the variables that were created to train the models can be observed in the 
supplementary material. 
 
 

Table 2. Shows total of injured and mean time loss in train and test sets 
 

 
 
 
 
 
 
 
 
 
 
 
 

3.1 Model performance 
 
As can be seen in the literature, the ability to predict an injury, using only variables 
associated with IL, was limited. In our case, the best validation results were found using 
the oversampling of the minority class balancing method. These results can be seen in 
Figure 3. The models that performed the best were the assembly models. In first place 
was GBM with a mean AUC of 0.7, followed by RF with a mean AUC of 0.69, in third 
place by the LR model with a mean AUC of 0.65 and in last position, showing to be 
slightly better than chance, the DT model with a mean AUC of 0.59. 
 

Figure 18. AUC results in Test set for each model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Although the AUC values in the best performing models are above what would be 
expected from a random classifier, the precision and recall values were particularly low. 
In the case of our GBM, using a decision threshold of 50%, a recall of 30% was obtained 
in validation and a precision of 3%. Showing a strong tendency to classify false positives. 
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By modifying the decision threshold, making it lower, it is possible to increase recall at 
the expense of precision. This trade-off will depend on the relative costs of obtaining false 
positives and false negatives. 
 
In order to graphically represent the predictions of the best model (GB), a kernel density 
graph was made with the probabilistic predictions for the test, of the observations whose 
ground truth was positive. 
 
Figure 19. Distribution of predicted probabilities (ground truth equals 1 observations) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results that are observed are logical for a model with the observed AUC values; the 
confidence when predicting that an observation belongs to the positive group given that 
it is positive is low. But this distribution is different with respect to the predictions made 
for the group of observations whose ground truth is negative. This shows that the model, 
although poorly, is capturing information from the data. 
 
Figure 20. Distribution of predicted probabilities (ground truth equals 0 observations) 
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3.2 Interpretability exercises  
 
After having evaluated the performance of our models with the validation set (year 2019), 
we choose the best of the 4 models to try to understand which are the variables that most 
influence the output of the model and how they impact the probability estimation of 
suffering an injury. For this as mentioned above, SHAP-values were used. The SHAP-
values represent the impact of a variable in the decision process of the model. Positive 
SHAP-values represent a higher probability of a positive prediction (i.e get injured). In 
order to visualize these results a SHAP summary plot was created. Dots representing the 
SHAP-vlaues for each feature value of a player in the dataset are plotted horizontally next 
to the feature (Figure 4). 
 

Figure 21. Shap-values Summary Plot.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Using SHAP-values it is also possible to estimate the importance of the variables in the 
results of the model. These are represented in Figure 22. 
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Figure 22. Feature Importance.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this way we can observe that among the variables that best explain the probability of 
suffering an injury are those created from the relative position that a player occupies with 
respect to the rest of the team at a given moment of time, as well as the historical data for 
this variable. Positioning yourself negatively with respect to the team, that is, obtaining 
high sRPE Scores, increases the probability estimated towards the positive class by the 
model. Low accumulated UA values of the last 4 days decrease the probability of being 
assigned to the positive class. High 15-day historical sRPE values decrease the probability 
of being assigned to the positive class. Similarly high historical variability, represented 
as the average standard deviation of the last 15 days (UA_sdr15) tends to decrease the 
probability of being assigned to the positive class by the model. Low recent strain index 
values (str_4) show to have a protective effect in some players. 
 

3.3 Impact of reducing the number of explanatory variables 
 
Because the explanatory variables that were incorporated into the model come from 
only two variables, which are exposure time and sRPE, there is a strong correlation 
between them. This could indicate that there is a certain degree of redundancy in the 
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information they provide to the model about the target variable that is trying to be 
predicted. 
 
To evaluate this redundancy of information, we perform an experiment that is based on 
reducing the number of variables used to train the model and evaluating its 
performance, while comparing it with the performance of the model that was trained 
with all the variables. 
 
In the present experiment, the performance of the model was evaluated being trained 
with 2, 4, 6, 8, 10, 12, 14 and 16 variables. The model used was GBM and the class 
balancing method used was over-sampling. 
 
The steps of the experiment were as follows: 

1. We choose N variables randomly 
2. we optimize the model parameters by random search CV using N variables. 
3. We evaluate the model with the test data and calculate AUC ROC. 
4. we repeat steps 1, 2, 3, 30 times with each subset of N variables.  

 
Results are shown below. 
 

Figure 23. Results are shown for experiments with 2 and 4 variables (left), and 
experiments with 6 and 8 variables (right). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 24. Results are shown for experiments with 10 and 12 variables (left), and 
experiments with 14 and 16 variables (right). 
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As would be expected, the models that were trained with fewer variables performed 
worse than those that were trained with more variables. As we add explanatory 
variables, we can see that the AUC ROC distribution begins to converge to the results 
found when training the model with all the variables. 
 
Some interesting results emerged during the experiment. 
When analysing the results of the models that were trained with two variables, we can 
see cases that stand out from the mean, reaching values higher than AUC ROC >= 0.65. 
By only using two variables, it is easy to inspect which variables are the ones that were 
used to train the model. In all cases, variables associated with the RPE score were 
included, a variable that stood out both in the exploratory analysis and during the 
analysis of the interpretability of the models. 
 
Another interesting feature that emerges when analysing the experiment in dynamics is 
that not only does the mean AUC ROC increase as the number of predictors increases, 
but the variance of these results decreases. 
 
The results of these experiments may be of particular importance for the 
implementation of this model, since they indicate that we could work on the explanatory 
variables to reduce their redundancy, and propose new variables that better capture the 
information contained in the data. 
 

4.Discussion  
 
The models used that exploit the relationship between IL and the risk of suffering an 
injury were shown to have limited predictive capacity. The more complex models (GBM 
and RF) managed to outperform the simpler models (LR and DT), possibly thanks to their 
ability to detect complex interactions between explanatory variables and the target 
variable. The general low precision of the models to distinguish between classes could be 
attributed to the fact that by themselves, the IL measures are unable to perfectly explain 
the risk of injury. This could become apparent when analysing the results of the SHAP-
values. Of the 5 most important variables, 3 were derivations of the sRPE score feature, 
which compares a player with the rest of the team at a given time. That a certain player 
perceives a training as more strenuous than the rest of the team, provides information on 
internal variables of said player, partially explaining his physical capacity to resist and 
adapt to training. This shows that the interpretation of the models used could provide 
clinically relevant information on the interactions that exist between a player's physical 
state and workloads. This could suggest that incorporating variables that provide 
information on the physical capacity of the players could improve the performance of the 
models. 
 
Other authors have suggested that models based on machine learning have different 
sensitivity for the prediction of certain injuries. In our case, not having differentiated 
between different types of non-contact injuries could have been a limitation. This is 
because the pathophysiological underpinnings of different types of lesions differ 
significantly. 
 
As previously mentioned, other authors have suggested that there is no predictive power 
in IL-derived metrics and the risk of injury. These conclusions were the result of 
analysing previous works which used descriptive statistical methods to study the 
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relationship between IL and the incidence of injuries. Our results suggest that IL metrics 
provide partial information on a player's injury risk. 
 

4.1 Relative costs analysis 
 
Although our GBM model was shown to have low precision and recall values, its 
usefulness should be considered taking into account the relative cost of obtaining false 
positives and true positives (Bahnsen et al., 2015). The translation of obtaining a false 
positive is not necessarily synonymous with generating a time loss (in training sessions 
and games) in the player; multiple strategies could be chosen to keep the player active 
and at the same time prevent him from incurring an injury. In turn, a coach's appetite for 
risk is not constant and depends on the time of year in which it is considered. For example, 
during the off season the risk tolerance of a coach could be considered high, since an 
injury to a certain player only implies that he suffers a time loss in training sessions, 
generating economic losses only associated with the absence of said player in the training 
sessions. On the other hand, during the on season, the risk tolerance of a coach decreases 
significantly, since an injury of a key player could indicate a significant loss of 
competitiveness of the team, generating significant economic losses that simply exceed 
the player's salary time loss. in question. 
 
Taking all this into account, one option that could be presented to us is to modify the 
threshold of our model according to the preferences of the coach at a certain moment. In 
this way we would be working on the balance between precision and recall. 
 
To understand how this equilibrium behaves, the performance of the model was evaluated 
using different thresholds, from 0.05 to 0.95. 
 
 

Table 3. Recall and Precision trade off 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://sciwheel.com/work/citation?ids=12158264&pre=&suf=&sa=0&dbf=0
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A natural way to approach this problem would be defining a cost matrix, assigning a cost 
to each type of error (false positives and false negatives) and modifying the decision 
threshold of the model in such a way as to minimize the sum of the costs for each error. 
In order to achieve this, it is necessary to re-train the model and evaluate it with the new 
threshold (Z.-H. Zhou, 2011)(Fernández et al., 2018). Determining the expected losses 
from a player injury is relatively straightforward. A valid way could be to calculate the 
average daily salary of the players and multiply it by the average lost time (expressed in 
days) per injury, thus obtaining the average loss per injury. This could be defined as the 
cost of a false negative. Our problem arises when trying to quantify the costs of false 
positives since they depend on the type of intervention that the club's medical staff 
chooses as appropriate for a player whose estimated probability of suffering an injury for 
the next 72 hours is high. After consulting with multiple experts in the area, all concluded 
that the intervention would not necessarily generate time loss in the player. For example, 
for a certain player whose probability of injury has been estimated high, the intensity and 
load of training could be modified, extra sessions of physical therapy could be indicated, 
a series of physical tests could be indicated to evaluate his condition generally and thus 
avoid injury. All this card of possibilities does not represent a cost for the club since it is 
prepared to offer such services to the players. In this way our cost for a false positive 
could be zero. Of course, it should also be taken into account how effective these 
measures are, but in our case, we do not have data in this regard, so it is not possible to 
estimate such effectiveness. 
 
Assuming that the effectiveness of the measurements is 100% and that the cost of 
performing them is zero (since in our particular case all preventive work is carried out in 
house by the club's medical staff), we determine that our cost for a false positive is zero. 
This is a problem, since it is easy to assess that the threshold that minimizes our costs in 
this case is zero, that is, we classify all players as high risk and indicate the treatment, 
avoiding incurring costs for false negatives. In appendix, 6.5 a mathematical 
formalization of this approach is introduced. 
 

4.2 Contractual negotiations 
 
In the world of professional sports, drafting contracts can be a challenging task. This is 
because many characteristics of the players are often overlooked, and estimating the 
returns generated by incorporating or keeping an individual within a team is often a 
difficult task. In many cases, there have been cases where closures have been incorporated 
that penalize the player's salary if he does not show an expected physical performance 
(Michael A Leeds, Peter von Allmen, & Victor A. Matheson, 2018). In literature, the 
physical performance of an athlete is usually encompassed in what is called general skills 
of the same, and the better these general skills, the greater the value of the athlete. By this 
we mean that if we maintain constant the talent that an athlete may have, that he can, for 

https://sciwheel.com/work/citation?ids=12158305&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12158303&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12158338&pre=&suf=&sa=0&dbf=0
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example, run faster and for longer without fatigue, they make the value that he can bring 
to his team / employer greater. At the same time, it has been shown that the better the 
physical performance of an athlete, the lower the risk of injury, reducing the time loss 
due to injuries (Charest & Grandner, 2020). 
 
The relevant unit for labour supply is usually a season as players are usually hired for the 
length. In the case of salary renegotiations, one could take the historical data of the last 
year of a given player, generate results for each interval of 72 hours, and with these results 
accumulated values could be calculated which could be used to evaluate and compare this 
player's risk of injury to other players. For example, when computing the probability of 
injury in each window of 72 hours and multiplying it by the average time loss of a player, 
we would have an expected value of days which the player would lose due to being 
injured, this translates directly as a loss for the team, since they will be days where the 
player enjoys his salary but does not contribute his services to the team 
 
To generate a probabilistic output, the model uses as input historical data from the training 
records of each player, as well as information on their relative position with the team. In 
this way, for players who stay for more than one season in a certain team, the output of 
the model could work to adjust salaries in the contracts or even by incorporating clauses 
in which an expected performance is stipulated, functioning as an incentive for the 
participation in training and improvement of general skills of the players, thus increasing 
the intrinsic value of the player, subsequently reflected in the profits of the employer. 
 
5. Conclusions and recommendations for future research 

5.1 The nature of injuries  
 
Previous research has demonstrated that training and competition stress result in 
temporary decrements in physical performance and significant levels of fatigue post-
competition (Cunniffe et al., 2010; McLellan, Lovell, & Gass, 2011). These decrements 
are typically derived from increased muscle damage, impairment of the immune system, 
imbalances in anabolic – catabolic homeostasis, alteration in mood (Cunniffe, Proctor, 
Baker, & Davies, 2009) and reduction in neuromuscular function (NMF) (McLellan, 
Lovell, & Gass, 2010). The resultant fatigue from these variables can take up to 5 days to 
return to baseline values post-competition, with sports that have frequent competition (i.e. 
often weekly in team sports) also inducing accumulative fatigue over time. In addition to 
the significant amounts of fatigue induced by competition, many athletes experience 
fatigue as a result of the work required to develop the wide variety of physical qualities 
that contribute significantly to performance. For example, in both team and individual 
sports, speed, strength, power and endurance are required in addition to technical and 
tactical skills. 
 
An accumulation of fatigue can result in overtraining, which has a significant negative 
impact on performance (Meeusen et al., 2013). For example, the investigation by  
(Johnston, Gabbett, & Jenkins, 2013) regarding the physiological responses to an 
intensified period of rugby league competition over a 5-day period found that cumulative 
fatigue appeared to compromise high-intensity running, maximal accelerations and 
defensive performance in the final game. This means that when athletes do not receive 
adequate time to recover between training and competition, fatigue will accumulate, 

https://sciwheel.com/work/citation?ids=10385811&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7445944,9858604&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=12158372&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12158372&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12158371&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12158371&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12158381&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7464490&pre=&suf=&sa=0&dbf=0
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compromise key aspects of performance and result in an increased risk of injury and 
illness to the athlete. 
 
The majority of training load / fatigue monitoring research has focused on acute responses 
to measure recovery of performance variables and the acceleration of this process through 
the implementation of recovery modalities (Taylor et al., 2015). In contrast, fewer 
attempts have been made to monitor acute and / or cumulative load and fatigue variables 
longitudinally to determine the association with injury / illness. Longitudinal monitoring 
refers to the investigation of how change or accumulation in training load / fatigue is 
associated with injury / illness over time. The use of long-term monitoring allows for the 
measurement of training load and fatigue variables to identify any injury / illness trends 
in order to provide practitioners with objective data for planning training over multiple 
blocks, rather than relying solely on anecdotal evidence, with the aim of reducing 
overtraining and injury / illness (Gabbett, 2010). Any subsequent reduction in injury and 
illness is likely to have a significant impact on team performance due to the large 
percentages of athletes from training squads in team sports injured at any one time 
(Brooks, Fuller, Kemp, & Reddin, 2005), and the association between the number of 
injuries and matches won 
 
In this sense, the one-dimensional probabilistic output of our model could be used as a 
historical monitoring metric since it incorporates not only information about individual 
IL but also captures information that positions each individual with respect to the rest of 
the team. The interactions captured by our model may be useful for evaluating the 
cumulative impact of training and competition on athletes. This could be validated using 
the model trained with the present data, and the validations carried out with future data 
that are incorporated into the database. 
 

5.2 Causal interpretation  
 
In the present work we have made considerable contributions on the path of elucidating 
the relationship between IL and harmful risk. However, as previously mentioned, more 
work must be done to be able to quantify the causal relationship between IL and injurious 
risk. Although there is a theoretical framework that supports this relationship, there is still 
no work that has tried to quantify (if such a relationship existed). In our case, we set 
ourselves the objective of predicting the response of Y (harmful risk) when certain X 
characteristics (IL metrics) were present (Zhao & Hastie, 2019). In a causal paradigm, we 
would like to evaluate how much it affects Y that generates interventions in X. In this 
case, it would be of great importance to determine said effect, mainly because of the 
possibilities it would open for making decisions based on preventing injuries. 
 

5.3 Survival Analysis 
 
Survival analysis is the phrase used to describe data analysis in the form of times from a 
well-defined origin to the occurrence of some particular event or end point. In medical 
research, the origin of time will often correspond to the recruitment of an individual into 
an experimental study, such as a clinical trial to compare two or more treatments. This, 
in turn, may coincide with the diagnosis of a particular condition, the initiation of a 

https://sciwheel.com/work/citation?ids=9858666&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12158391&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12158395&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7167198&pre=&suf=&sa=0&dbf=0
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treatment regimen, or the appearance of an adverse event. If the end point is the death of 
a patient, the resulting data is literally survival times. However, data can be obtained in a 
similar way when the end point is not fatal, such as pain relief or symptom recurrence. In 
this case, the observations are often referred to as time-to-event data. Another 
characteristic of these types of data is censorship. The survival time of an individual is 
said to be censored when the end point of interest for that individual has not been 
observed. This may be because data from a study needs to be analyzed at a time when 
some people are still alive (or the event of interest in question has not happened). 
Alternatively, an individual's survival status may not be known at the time of analysis 
because that individual was lost to follow-up. 
 
A review of this topic was carried out in detail by (Nielsen et al., 2018). In this article, 
the methodological challenges that must be taken into account when using time-to-event 
models in the context of injury risk analysis in sports sciences are raised. Which include 
the difficulty of dealing with injuries that go through multiple states (tendinopathy is 
usually classified in different ways from diagnosis to full recovery), recurrent events (in 
most survival analyses, after the onset of the event individuals withdraw from the study, 
in our case these are sustained over time and many times suffer more than one injury in a 
certain period), the difficulty of defining follow-up and cut-off periods for observational 
studies and the amount of observations necessary to achieve robust analysis. 
 
In our case, in turn, due to the temporal dependence of the explanatory variables, 
precautions had to be taken to adapt the model used. The indications given in chapter 8 
of  (David Collett, 2015) were taken as a reference to solve this. 
 
The creation of the follow up and censorship data was not trivial. In this case, we consider 
that the censorship was reached at the end of the season of the corresponding year, since 
between training seasons the tracking of the players was lost due to the ~ 2 months of 
vacation. 
 
Taking all this into consideration, we propose to use a Cox proportional hazard model to 
evaluate how the risk profile of the players is modified as a function of the internal load 
variables created. The data used for the present analysis corresponds to the train data. We 
use the model interpretation section as a reference to choose the explanatory variables in 
this section. In this way, we chose the RPE score, the 4-week accumulated UA, and the 
4-week moving average of the strain index as descriptive variables. 
 

Table 4. Results of Proportional Cox Model.  
 

 
 
 
 
 
 
 
 
 
 

https://sciwheel.com/work/citation?ids=12158402&pre=&suf=&sa=0&dbf=0
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It can be observed in the results of the model that only the variable RPE score and UA 
cum 4 were significant. In the case of RPE Score, each time a unit increases, the 
instantaneous risk of injury increases 1.36 times; For UA Cum 4, each time you increase 
a unit, your instant risk of injury increases 1.25 times. These results were consistent with 
the findings made in previous studies. 
 
In this regard, future work could be directed to implement models that predict the time 
until a future injury and that fixed time windows are not restricted as was the case in our 
case. 
 
6. Appendix  

6.1 Second Experiment Results  
 
In this case random oversampling was used in order to overcome the imbalance problem 
and in order to reduce high correlation between predictors, PCA was applied. 
 

Figure 25. AUC results over cross validation folds  for the second experiment.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

6.2 Third Experiment Results 
 
In this case SMOTE was used to overcome imbalance problems. No preprocessing was 
applied in this case. 
Results are shown in figure 26. 
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Figure 26. AUC results over cross validation folds for the third  experiment. 
 
 
 
 
 
 
 
 

 

 

 

 

 

6.3 Fourth Experiment Results 
 
In this case SMOTE and PCA were applied. 
 

Figure 27. AUC results over cross validation folds  for the fourth experiment.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

6.4 Fifth Experiment 
As mentioned in previous chapters, random undersampling involves randomly selecting 
examples from the majority class to delete from the training dataset. 
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When using random undersampling, different sampling strategies can be proposed, for 
example, the majority class can be reduced until the number of classes is equal to the 
minority class, or value can be chosen which will be a percentage relative to the 
minority class, specifically the number of examples in the minority class divided by the 
number of examples in the majority class. For example, if we set sampling strategy to 
0.5 in an imbalanced data dataset with 1,000 examples in the majority class and 100 
examples in the minority class, then there would be 200 examples for the majority class 
in the transformed dataset (or 100/200 = 0.5). 
 
In our case, we use the second strategy and try multiple values for it. The best results 
were found for intermediate values. This may be due to extreme class imbalance, that is, 
the final balanced dataset with equality of classes has too few total observations, which 
generates a loss of model performance. 
 
AUC ROC values are reported in the following table: 
 

Table 5. Mean AUC results for the fifth experiment.  
  
 
 

  

 

 

 

 

 

 

6.5 Descriptive Statistics of Features 
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6.6 Cost Sensitive classification 
 
Given a cost matrix c = (c(i,j)(x)) where c(i,j)(x) represents the cost (perhaps negative or 
zero) of classifying x (which is really a member of class j) as being in class i. The first 
reduction one might make is in assuming that these functions c(i,j) are, in fact, constant. 
 
The two-class case of class dependent cost sensitive learning has been adequately solved 
(at least in some sense) by reducing to the two-class cost-insensitive learning case and 
then choosing an optimal decision threshold determined by the cost matrix (assuming 
some very mild reasonableness conditions on the cost matrix). The classical solution, 
which does not reduce to the two-class case involves weighting class I by: 
 

𝑤(𝑖) =
𝑛𝑐(𝑖)

∑𝑘
𝑘=1 𝑛(𝑘)𝑐(𝑘)
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where c(i) is the sum of the ith column of the cost matrix: 

𝑐(𝑖) = ∑

𝑘

𝑗=1

𝑐(𝑗, 𝑖) 

and n(k) is the number of examples in class k, κ is the number of classes, and n is the 
total number of examples in the training set. 
 
Suppose you have a learning task with training data X = {x(1), x(2), . . . , x(n)} → {0,1} that 
you would like to model. Let’s say that there are n(0) negative cases and n(1) positive 
cases. Suppose we choose to rebalance that data (say up or down sampling the negative 
class) so that there are n(1) negative cases and n(1) positive cases. That is, we are 
multiplying the number of negative cases by n(1)/n(0). 
 
Consider now the following theorem of Elkan, to make a target probability threshold p* 
correspond to a given probability threshold p(0), the number of negative examples in the 
training set should be multiplied by: 
 

𝑝∗

1 − 𝑝 ∗

1 − 𝑝(0)

𝑝(0)
 

 
 
Suppose further that we train a model f : X → [0, 1] which models the probability  
P(y = 1|x), and predict using the threshold 0.5. That is: 
 
 
 
 
 
Using the Elkan theorem, we can calculate the decision threshold of the original data 
(before balancing) to which this corresponds. This calculation is below: 

 

𝑛(1)

𝑛(0)
= (

𝑛(1)
𝑛

1 − 𝑛(1)
𝑛

) (
1 − 0.5

0.5
) 

 
So we see that modelling on the balanced data with a threshold of 0.5 corresponds to 
modelling on the raw (or original) data with a threshold of n(1)/n. What is left to 
observe now is that the optimal decision threshold is determined precisely by the 
existence of a cost matrix. 
 
Let c be a real valued matrix: 

𝑐 =  [𝑐(0,0) 𝑐(0,1) 𝑐(1,0) 𝑐(1,1) ] 
 
where c(i,j) is the cost of predicting class i when the truth is class j (e.g. c(0,1) is the 
cost associated to a false negative). 
We will further require that the following two conditions be satisfied (known as the 
“reasonableness” conditions): 

(1)𝑐(0,1) > 𝑐(0,0) 
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(2) 𝑐(1,0) > 𝑐(1,1) 

 
This means that correctly labelling a sample is preferable than incorrectly labelling a 
sample. There is always a cost (perhaps negative or zero) associated to classifying an 
example as class i that is in actuality a member of class j. 
A natural question is then, given a cost matrix c, and a function f : X → [0, 1], which 
models the probability P(y = 1|x), what criteria should be used to determine if we should 
classify x as 0 or 1? The natural criteria is to classify x as a 1 exactly when the expected 
cost of classifying as a 1 is less than classifying it as a 0. (If the two expected values are 
equal, it doesn’t matter what we choose).  
 
More precisely, we should label x as a 1 if and only if: 

 
(1 − 𝑓(𝑥))𝑐(1,0) + 𝑓(𝑥)𝑐(1,1) < (1 − 𝑓(𝑥))𝑐(0,0) + 𝑓(𝑥)𝑐(0,1) 

 
The optimal threshold is then the value p* satisfying: 

 
(1 − 𝑝∗)𝑐(1,0) + 𝑝 ∗ 𝑐(1,1) < (1 − 𝑝∗)𝑐(0,0) + 𝑝∗𝑐(0,1) 

 
 
Then, solving for p*: 

𝑝∗ =
𝑐(1,0) − 𝑐(0,0)

𝑐(1,0) − 𝑐(0,0) + 𝑐(0,1) − 𝑐(1,1)
 

 
 
To determine the value of the false positives, meetings were held with the club's medical 
staff. During these meetings, the trade-off that exists between false positives and false 
negatives was explained to the members of the staff, in order to have an estimate of the 
expected cost of generating an intervention. Because all the preventive work is carried 
out by the club's staff, for example, performing kinesiology evaluations, does not present 
an extra cost, since the club has physical therapists working on a permanent basis. This 
means that a moderate increase in individuals receiving preventive treatment would not 
generate higher costs for the club. This assumption could be violated if the number of 
individuals receiving preventive treatment exceeds the work capacity of the medical staff. 
Although the latter could be the case, the club does not have specific data to determine 
said maximum capacity and thus we cannot, with current data, determine the cost of false 
positives exceeding said capacity threshold. 
 
taking into account the previous discussion, we are violating the assumption of 
reasonableness, since the cost of a false positive (c (1,0)) is not greater than the cost of a 
correct assignment. By replacing our false positive cost in the previous formula, we can 
see that the optimal threshold value that we obtain is zero, that is, our optimum would be 
to classify all observations as positive cases. In this way, we ruled out the possibility of 
using cost-sensitive classification techniques in our study. 
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6.7 Hyperparameter sensibility analysis 
In order to study the robustness with which the hyperparameters were optimized in the 
model with the best performance, an experiment was designed to evaluate how the 
performance of the model is modified by disturbing the optimal values of the 
parameters. 
 
The data used for this purpose was balanced using oversampling technique. 
The parameters that were evaluated in this experiment were: 

• Max depth: The maximum depth of a tree. 
• Learning rate: This determines the impact of each tree on the final outcome. 

GBM works by starting with an initial estimate which is updated using the 
output of each tree. The learning parameter controls the magnitude of this 
change in the estimates. 

• Min sample Split: Defines the minimum number of samples (or observations) 
which are required in a node to be considered for splitting. 

• Min sample leaf: Defines the minimum samples (or observations) required in a 
terminal node or leaf. 

• Max features: The number of features to consider while searching for a best 
split. These will be randomly selected. 

• N estimators: The number of sequential trees to be modelled 
 
This experiment consisted of the following steps: 

1. For each model parameter, a set of values was defined around the optimal value 
found by random search CV.  

2. All the hyperparameters were positioned at the optimal value, except one.  
3. The model is trained with each of the values chosen around the optimal 

parameter.  
4. Performance was tested on the test data set. 
5. Steps 2, 3, 4 were repeated until all the hyperparameters of the model had been 

iterated. 
 
The results for each parameter can be seen in the following figures.  
 

Figure 28. Results for perturbations in learning rate (left) and N estimators (right) 
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 Figure 29. Results for perturbations in max depth (left) and min sample Split (right) 
 
 
 

 
 
 
 
 
 
 
 

Figure 30. Results for perturbations in min sample leaf (left) and max features (right) 
 
 
 
 
 
 
 
 
 
 
 
Although the variation rate of the AUC ROC does not exceed ≈ 6% within the space of 
parameters tested for all hyperparameters evaluated. Some volatility of the performance 
after changing hyper parameter values can be noticed. In many cases we can see that the 
performance of the model changes abruptly with small changes. This is the case, for 
example, of the max depth hyperparameter, where we can see that the optimal 
performance is reached at the value of 3 and quickly drops when reaching the value of 
5. 
 
To deal with this problem, other hyperparameter optimization methods could be 
evaluated or a larger space of hyperparameters could be evaluated and the process 
iterated until we find a combination which guarantees greater stability.  

6.8 Choice of predictability threshold 
One of the objectives of this study was to determine how many days in advance it would 
be possible to predict an injury of a player. The choice of this time threshold is influenced 
by two factors, the first is that the further the studied event is from the moment of 
prediction, the more difficult it becomes to predict it with certainty, and the second, the 
time threshold must be sufficiently long enough to allow the medical staff to make 
decisions regarding the player at risk. 
Taking all this into account, we decided to test the performance of the models at different 
thresholds up to the time of injury. The predictive performance was evaluated at 24, 48, 
72, 96 and 120-hours intervals. The class balancing methods and pre-processing methods 
were implemented as explained in the previous sections. Combinations of PCA and 
SMOTE, PCA and oversampling, SMOTE and oversampling were tested with each of 
the models. 
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During this experiment, a very important pattern emerged. The performance of the models 
(measured in AUC ROC) is relatively constant when using thresholds of up to 72h, after 
this cut-off point, the performance of all the models falls sharply, until it is slightly better 
than chance at 120h. 
In figure 31, the aforementioned pattern can be seen. 
 

Figure 31. AUC ROC results for predictability threshold 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
After discussing this fact with the club's technical staff, the decision was made to 
implement the model predicting injuries with a time threshold of 72 hours until the time 
of injury. 

 

6.9 Code  
 
In the following link you may find all the necessary code to reproduce our results. 
https://drive.google.com/drive/folders/13KIP7IoET6K-

lyXFwWMd3aCdKlUypa3t?usp=sharing  

 

7. References  
 

Adler, W., & Lausen, B. (2009). Bootstrap estimated true and false positive rates and 

ROC curve. Computational statistics & data analysis, 53(3), 718–729. 

Bahnsen, C., Alejandro, Aouada, Djamila, Ottersten, & Bjorn. (2015). Ensemble of 

Example-Dependent Cost-Sensitive Decision Trees. arXiv e-prints. 

https://drive.google.com/drive/folders/13KIP7IoET6K-lyXFwWMd3aCdKlUypa3t?usp=sharing
https://drive.google.com/drive/folders/13KIP7IoET6K-lyXFwWMd3aCdKlUypa3t?usp=sharing
https://sciwheel.com/work/bibliography/12158264
https://sciwheel.com/work/bibliography/12158264
https://sciwheel.com/work/bibliography/12158264
https://sciwheel.com/work/bibliography/12158264


48 
 

Batista, G. E. A. P. A., Prati, R. C., & Monard, M. C. (2004). A study of the behavior of 

several methods for balancing machine learning training data. ACM SIGKDD 

Explorations Newsletter, 6(1), 20. 

Bergmeir, C., Hyndman, R. J., & Koo, B. (2018). A note on the validity of cross-

validation for evaluating autoregressive time series prediction. Computational 

statistics & data analysis, 120, 70–83. 

Bittencourt, N. F. N., Meeuwisse, W. H., Mendonça, L. D., Nettel-Aguirre, A., Ocarino, 

J. M., & Fonseca, S. T. (2016). Complex systems approach for sports injuries: 

moving from risk factor identification to injury pattern recognition-narrative review 

and new concept. British Journal of Sports Medicine, 50(21), 1309–1314. 

Bowen, D., & Ungar, L. (2020). Generalized SHAP: Generating multiple types of 

explanations in machine learning. arXiv. 

Brooks, J. H. M., Fuller, C. W., Kemp, S. P. T., & Reddin, D. B. (2005). Epidemiology 

of injuries in English professional rugby union: part 1 match injuries. British Journal 

of Sports Medicine, 39(10), 757–766. 

Bush, M., Barnes, C., Archer, D. T., Hogg, B., & Bradley, P. S. (2015). Evolution of 

match performance parameters for various playing positions in the English Premier 

League. Human Movement Science, 39, 1–11. 

Charest, J., & Grandner, M. A. (2020). Sleep and athletic performance: impacts on 

physical performance, mental performance, injury risk and recovery, and mental 

health. Sleep medicine clinics, 15(1), 41–57. 

https://sciwheel.com/work/bibliography/1785184
https://sciwheel.com/work/bibliography/1785184
https://sciwheel.com/work/bibliography/1785184
https://sciwheel.com/work/bibliography/1785184
https://sciwheel.com/work/bibliography/1785184
https://sciwheel.com/work/bibliography/1785184
https://sciwheel.com/work/bibliography/1785184
https://sciwheel.com/work/bibliography/5002025
https://sciwheel.com/work/bibliography/5002025
https://sciwheel.com/work/bibliography/5002025
https://sciwheel.com/work/bibliography/5002025
https://sciwheel.com/work/bibliography/5002025
https://sciwheel.com/work/bibliography/5002025
https://sciwheel.com/work/bibliography/5002025
https://sciwheel.com/work/bibliography/3523698
https://sciwheel.com/work/bibliography/3523698
https://sciwheel.com/work/bibliography/3523698
https://sciwheel.com/work/bibliography/3523698
https://sciwheel.com/work/bibliography/3523698
https://sciwheel.com/work/bibliography/3523698
https://sciwheel.com/work/bibliography/3523698
https://sciwheel.com/work/bibliography/3523698
https://sciwheel.com/work/bibliography/12157630
https://sciwheel.com/work/bibliography/12157630
https://sciwheel.com/work/bibliography/12157630
https://sciwheel.com/work/bibliography/12157630
https://sciwheel.com/work/bibliography/12158395
https://sciwheel.com/work/bibliography/12158395
https://sciwheel.com/work/bibliography/12158395
https://sciwheel.com/work/bibliography/12158395
https://sciwheel.com/work/bibliography/12158395
https://sciwheel.com/work/bibliography/12158395
https://sciwheel.com/work/bibliography/12158395
https://sciwheel.com/work/bibliography/12156830
https://sciwheel.com/work/bibliography/12156830
https://sciwheel.com/work/bibliography/12156830
https://sciwheel.com/work/bibliography/12156830
https://sciwheel.com/work/bibliography/12156830
https://sciwheel.com/work/bibliography/12156830
https://sciwheel.com/work/bibliography/12156830
https://sciwheel.com/work/bibliography/10385811
https://sciwheel.com/work/bibliography/10385811
https://sciwheel.com/work/bibliography/10385811
https://sciwheel.com/work/bibliography/10385811
https://sciwheel.com/work/bibliography/10385811
https://sciwheel.com/work/bibliography/10385811
https://sciwheel.com/work/bibliography/10385811


49 
 

Chawla, N. V. (2003). C4. 5 and imbalanced data sets: investigating the effect of 

sampling method, probabilistic estimate, and decision tree structure. Proceedings of 

the ICML. 

Chmura, P., Konefał, M., Chmura, J., Kowalczuk, E., Zając, T., Rokita, A., & 

Andrzejewski, M. (2018). Match outcome and running performance in different 

intensity ranges among elite soccer players. Biology of sport / Institute of Sport, 

35(2), 197–203. 

Christoph Molnar. (2020). Interpretable Machine Learning. (---, Ed.). 

Cunniffe, B., Hore, A. J., Whitcombe, D. M., Jones, K. P., Baker, J. S., & Davies, B. 

(2010). Time course of changes in immuneoendocrine markers following an 

international rugby game. European Journal of Applied Physiology, 108(1), 113–122. 

Cunniffe, B., Proctor, W., Baker, J. S., & Davies, B. (2009). An evaluation of the 

physiological demands of elite rugby union using global positioning system tracking 

software. Journal of Strength and Conditioning Research, 23(4), 1195–1203. 

David Collett. (2015). Modeling survival data in medical research. (---, Ed.). 

Doshi-Velez, F., & Kim, B. (2017). Towards A Rigorous Science of Interpretable 

Machine Learning. arXiv. 

Du, M., Liu, N., & Hu, X. (2019). Techniques for interpretable machine learning. 

Communications of the ACM, 63(1), 68–77. 

Ekstrand, J. (2013). Keeping your top players on the pitch: the key to football medicine 

at a professional level. British Journal of Sports Medicine, 47(12), 723–724. 

https://sciwheel.com/work/bibliography/12156959
https://sciwheel.com/work/bibliography/12156959
https://sciwheel.com/work/bibliography/12156959
https://sciwheel.com/work/bibliography/12156959
https://sciwheel.com/work/bibliography/12156959
https://sciwheel.com/work/bibliography/12156833
https://sciwheel.com/work/bibliography/12156833
https://sciwheel.com/work/bibliography/12156833
https://sciwheel.com/work/bibliography/12156833
https://sciwheel.com/work/bibliography/12156833
https://sciwheel.com/work/bibliography/12156833
https://sciwheel.com/work/bibliography/12156833
https://sciwheel.com/work/bibliography/12156833
https://sciwheel.com/work/bibliography/12157060
https://sciwheel.com/work/bibliography/12157060
https://sciwheel.com/work/bibliography/12157060
https://sciwheel.com/work/bibliography/7445944
https://sciwheel.com/work/bibliography/7445944
https://sciwheel.com/work/bibliography/7445944
https://sciwheel.com/work/bibliography/7445944
https://sciwheel.com/work/bibliography/7445944
https://sciwheel.com/work/bibliography/7445944
https://sciwheel.com/work/bibliography/7445944
https://sciwheel.com/work/bibliography/12158372
https://sciwheel.com/work/bibliography/12158372
https://sciwheel.com/work/bibliography/12158372
https://sciwheel.com/work/bibliography/12158372
https://sciwheel.com/work/bibliography/12158372
https://sciwheel.com/work/bibliography/12158372
https://sciwheel.com/work/bibliography/12158372
https://sciwheel.com/work/bibliography/12158412
https://sciwheel.com/work/bibliography/12158412
https://sciwheel.com/work/bibliography/12158412
https://sciwheel.com/work/bibliography/12157072
https://sciwheel.com/work/bibliography/12157072
https://sciwheel.com/work/bibliography/12157072
https://sciwheel.com/work/bibliography/12157072
https://sciwheel.com/work/bibliography/8115302
https://sciwheel.com/work/bibliography/8115302
https://sciwheel.com/work/bibliography/8115302
https://sciwheel.com/work/bibliography/8115302
https://sciwheel.com/work/bibliography/8115302
https://sciwheel.com/work/bibliography/8115302
https://sciwheel.com/work/bibliography/11059595
https://sciwheel.com/work/bibliography/11059595
https://sciwheel.com/work/bibliography/11059595
https://sciwheel.com/work/bibliography/11059595
https://sciwheel.com/work/bibliography/11059595
https://sciwheel.com/work/bibliography/11059595


50 
 

Enright, K., Green, M., Hay, G., & Malone, J. J. (2020). Workload and injury in 

professional soccer players: role of injury tissue type and injury severity. 

International journal of sports medicine, 41(2), 89–97. 

Fernandes, R., Brito, J. P., Vieira, L. H. P., Martins, A. D., Clemente, F. M., Nobari, H., 

Reis, V. M., et al. (2021). In-Season Internal Load and Wellness Variations in 

Professional Women Soccer Players: Comparisons between Playing Positions and 

Status. International Journal of Environmental Research and Public Health, 18(23). 

Fernández, A., García, S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F. (2018). 

Cost-Sensitive Learning. Learning from Imbalanced Data Sets (pp. 63–78). Cham: 

Springer International Publishing. 

Gabbett, T. J. (2010). The Development and Application of an Injury Prediction Model 

for Noncontact, Soft-Tissue Injuries in Elite Collision Sport Athletes. Journal of 

Strength and Conditioning Research, 24(10), 2593–2603. 

Garreth Jamws, Daniela Witten, Trevor Hastie, & Robert Tibshirani. (2021). An 

Introduction to Statistical Learning: with Applications in R . (---, Ed.). 

Haddad, M., Stylianides, G., Djaoui, L., Dellal, A., & Chamari, K. (2017). Session-RPE 

Method for Training Load Monitoring: Validity, Ecological Usefulness, and 

Influencing Factors. Frontiers in Neuroscience, 11, 612. 

Hägglund, M., Waldén, M., Magnusson, H., Kristenson, K., Bengtsson, H., & Ekstrand, 

J. (2013). Injuries affect team performance negatively in professional football: an 11-

year follow-up of the UEFA Champions League injury study. British Journal of 

Sports Medicine, 47(12), 738–742. 

https://sciwheel.com/work/bibliography/12156860
https://sciwheel.com/work/bibliography/12156860
https://sciwheel.com/work/bibliography/12156860
https://sciwheel.com/work/bibliography/12156860
https://sciwheel.com/work/bibliography/12156860
https://sciwheel.com/work/bibliography/12156860
https://sciwheel.com/work/bibliography/12156846
https://sciwheel.com/work/bibliography/12156846
https://sciwheel.com/work/bibliography/12156846
https://sciwheel.com/work/bibliography/12156846
https://sciwheel.com/work/bibliography/12156846
https://sciwheel.com/work/bibliography/12156846
https://sciwheel.com/work/bibliography/12156846
https://sciwheel.com/work/bibliography/12156846
https://sciwheel.com/work/bibliography/12158303
https://sciwheel.com/work/bibliography/12158303
https://sciwheel.com/work/bibliography/12158303
https://sciwheel.com/work/bibliography/12158303
https://sciwheel.com/work/bibliography/12158303
https://sciwheel.com/work/bibliography/12158391
https://sciwheel.com/work/bibliography/12158391
https://sciwheel.com/work/bibliography/12158391
https://sciwheel.com/work/bibliography/12158391
https://sciwheel.com/work/bibliography/12158391
https://sciwheel.com/work/bibliography/12158391
https://sciwheel.com/work/bibliography/12158391
https://sciwheel.com/work/bibliography/12157049
https://sciwheel.com/work/bibliography/12157049
https://sciwheel.com/work/bibliography/12157049
https://sciwheel.com/work/bibliography/12157049
https://sciwheel.com/work/bibliography/6127927
https://sciwheel.com/work/bibliography/6127927
https://sciwheel.com/work/bibliography/6127927
https://sciwheel.com/work/bibliography/6127927
https://sciwheel.com/work/bibliography/6127927
https://sciwheel.com/work/bibliography/6127927
https://sciwheel.com/work/bibliography/6127927
https://sciwheel.com/work/bibliography/6727048
https://sciwheel.com/work/bibliography/6727048
https://sciwheel.com/work/bibliography/6727048
https://sciwheel.com/work/bibliography/6727048
https://sciwheel.com/work/bibliography/6727048
https://sciwheel.com/work/bibliography/6727048
https://sciwheel.com/work/bibliography/6727048
https://sciwheel.com/work/bibliography/6727048


51 
 

Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., & Bing, G. (2017). 

Learning from class-imbalanced data: Review of methods and applications. Expert 

systems with applications, 73, 220–239. 

He, H., & Shen, X. (n.d.). A Ranked Subspace Learning Method for Gene 

Expression    Data Classification. 

Impellizzeri, F. M., Rampinini, E., Coutts, A. J., Sassi, A., & Marcora, S. M. (2004). 

Use of RPE-based training load in soccer. Medicine and Science in Sports and 

Exercise, 36(6), 1042–1047. 

Impellizzeri, F. M., Woodcock, S., Coutts, A. J., Fanchini, M., McCall, A., & Vigotsky, 

A. D. (2021). What role do chronic workloads play in the acute to chronic workload 

ratio? time to dismiss ACWR and its underlying theory. Sports medicine (Auckland, 

N.Z.), 51(3), 581–592. 

Japkowicz, N., & Stephen, S. (2002). The class imbalance problem: A systematic 

study1. Intelligent Data Analysis, 6(5), 429–449. 

Japkowicz, N. (2013). Assessment metrics for imbalanced learning. In H. He & Y. Ma 

(Eds.), Imbalanced learning: foundations, algorithms, and applications (pp. 187–

206). Hoboken, NJ, USA: John Wiley & Sons, Inc. 

Johnston, R. D., Gabbett, T. J., & Jenkins, D. G. (2013). Influence of an intensified 

competition on fatigue and match performance in junior rugby league players. 

Journal of science and medicine in sport / Sports Medicine Australia, 16(5), 460–

465. 

https://sciwheel.com/work/bibliography/8344141
https://sciwheel.com/work/bibliography/8344141
https://sciwheel.com/work/bibliography/8344141
https://sciwheel.com/work/bibliography/8344141
https://sciwheel.com/work/bibliography/8344141
https://sciwheel.com/work/bibliography/8344141
https://sciwheel.com/work/bibliography/8344141
https://sciwheel.com/work/bibliography/12156896
https://sciwheel.com/work/bibliography/12156896
https://sciwheel.com/work/bibliography/12053558
https://sciwheel.com/work/bibliography/12053558
https://sciwheel.com/work/bibliography/12053558
https://sciwheel.com/work/bibliography/12053558
https://sciwheel.com/work/bibliography/12053558
https://sciwheel.com/work/bibliography/12053558
https://sciwheel.com/work/bibliography/12053558
https://sciwheel.com/work/bibliography/10972740
https://sciwheel.com/work/bibliography/10972740
https://sciwheel.com/work/bibliography/10972740
https://sciwheel.com/work/bibliography/10972740
https://sciwheel.com/work/bibliography/10972740
https://sciwheel.com/work/bibliography/10972740
https://sciwheel.com/work/bibliography/10972740
https://sciwheel.com/work/bibliography/10972740
https://sciwheel.com/work/bibliography/10885398
https://sciwheel.com/work/bibliography/10885398
https://sciwheel.com/work/bibliography/10885398
https://sciwheel.com/work/bibliography/10885398
https://sciwheel.com/work/bibliography/10885398
https://sciwheel.com/work/bibliography/10885398
https://sciwheel.com/work/bibliography/12156918
https://sciwheel.com/work/bibliography/12156918
https://sciwheel.com/work/bibliography/12156918
https://sciwheel.com/work/bibliography/12156918
https://sciwheel.com/work/bibliography/12156918
https://sciwheel.com/work/bibliography/7464490
https://sciwheel.com/work/bibliography/7464490
https://sciwheel.com/work/bibliography/7464490
https://sciwheel.com/work/bibliography/7464490
https://sciwheel.com/work/bibliography/7464490
https://sciwheel.com/work/bibliography/7464490
https://sciwheel.com/work/bibliography/7464490


52 
 

Joshi, M. V., Kumar, V., & Agarwal, R. C. (2001). Evaluating boosting algorithms to 

classify rare classes: comparison and improvements. Proceedings 2001 IEEE 

International Conference on Data Mining (pp. 257–264). Presented at the 2001 IEEE 

International Conference on Data Mining, IEEE Comput. Soc. 

Khalid, S., Khalil, T., & Nasreen, S. (2014). A survey of feature selection and feature 

extraction techniques in machine learning. 2014 Science and Information Conference 

(pp. 372–378). Presented at the 2014 Science and Information Conference (SAI), 

IEEE. 

Laurikkala, J. (2001). Improving identification of difficult small classes by balancing 

class distribution. In S. Quaglini, P. Barahona, & S. Andreassen (Eds.), Artificial 

intelligence in medicine, Lecture notes in computer science (Vol. 2101, pp. 63–66). 

Berlin, Heidelberg: Springer Berlin Heidelberg. 

Liu, X.-Y., Wu, J., & Zhou, Z.-H. (2009). Exploratory undersampling for class-

imbalance learning. IEEE transactions on systems, man, and cybernetics. Part B, 

Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society, 

39(2), 539–550. 

Liu, Y., Wang, Y., Ren, X., Zhou, H., & Diao, X. (2019). A classification method based 

on feature selection for imbalanced data. IEEE access : practical innovations, open 

solutions, 7, 81794–81807. 

Maupin, D., Schram, B., Canetti, E., & Orr, R. (2020). The relationship between acute: 

chronic workload ratios and injury risk in sports: A systematic review. Open access 

journal of sports medicine, 11, 51–75. 

https://sciwheel.com/work/bibliography/12156913
https://sciwheel.com/work/bibliography/12156913
https://sciwheel.com/work/bibliography/12156913
https://sciwheel.com/work/bibliography/12156913
https://sciwheel.com/work/bibliography/12156913
https://sciwheel.com/work/bibliography/12156913
https://sciwheel.com/work/bibliography/12157020
https://sciwheel.com/work/bibliography/12157020
https://sciwheel.com/work/bibliography/12157020
https://sciwheel.com/work/bibliography/12157020
https://sciwheel.com/work/bibliography/12157020
https://sciwheel.com/work/bibliography/12157020
https://sciwheel.com/work/bibliography/12156962
https://sciwheel.com/work/bibliography/12156962
https://sciwheel.com/work/bibliography/12156962
https://sciwheel.com/work/bibliography/12156962
https://sciwheel.com/work/bibliography/12156962
https://sciwheel.com/work/bibliography/12156962
https://sciwheel.com/work/bibliography/1785217
https://sciwheel.com/work/bibliography/1785217
https://sciwheel.com/work/bibliography/1785217
https://sciwheel.com/work/bibliography/1785217
https://sciwheel.com/work/bibliography/1785217
https://sciwheel.com/work/bibliography/1785217
https://sciwheel.com/work/bibliography/1785217
https://sciwheel.com/work/bibliography/1785217
https://sciwheel.com/work/bibliography/12156922
https://sciwheel.com/work/bibliography/12156922
https://sciwheel.com/work/bibliography/12156922
https://sciwheel.com/work/bibliography/12156922
https://sciwheel.com/work/bibliography/12156922
https://sciwheel.com/work/bibliography/12156922
https://sciwheel.com/work/bibliography/12156922
https://sciwheel.com/work/bibliography/11691503
https://sciwheel.com/work/bibliography/11691503
https://sciwheel.com/work/bibliography/11691503
https://sciwheel.com/work/bibliography/11691503
https://sciwheel.com/work/bibliography/11691503
https://sciwheel.com/work/bibliography/11691503
https://sciwheel.com/work/bibliography/11691503


53 
 

McCall, A., Dupont, G., & Ekstrand, J. (2016). Injury prevention strategies, coach 

compliance and player adherence of 33 of the UEFA Elite Club Injury Study teams: a 

survey of teams’ head medical officers. British Journal of Sports Medicine, 50(12), 

725–730. 

McLaren, S. J., Macpherson, T. W., Coutts, A. J., Hurst, C., Spears, I. R., & Weston, M. 

(2018). The Relationships Between Internal and External Measures of Training Load 

and Intensity in Team Sports: A Meta-Analysis. Sports medicine (Auckland, N.Z.), 

48(3), 641–658. 

McLellan, C. P., Lovell, D. I., & Gass, G. C. (2010). Creatine kinase and endocrine 

responses of elite players pre, during, and post rugby league match play. Journal of 

Strength and Conditioning Research, 24(11), 2908–2919. 

McLellan, C. P., Lovell, D. I., & Gass, G. C. (2011). Markers of postmatch fatigue in 

professional Rugby League players. Journal of Strength and Conditioning Research, 

25(4), 1030–1039. 

Meeusen, R., Duclos, M., Foster, C., Fry, A., Gleeson, M., Nieman, D., Raglin, J., et al. 

(2013). Prevention, diagnosis and treatment of the overtraining syndrome: Joint 

consensus statement of the European College of Sport Science (ECSS) and the 

American College of Sports Medicine (ACSM). European journal of sport science, 

13(1), 1–24. 

Merrick, L., & Taly, A. (2020). The explanation game: explaining machine learning 

models using shapley values. In A. Holzinger, P. Kieseberg, A. M. Tjoa, & E. Weippl 

(Eds.), Machine Learning and Knowledge Extraction: 4th IFIP TC 5, TC 12, WG 8.4, 

WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2020, Dublin, 

https://sciwheel.com/work/bibliography/12156822
https://sciwheel.com/work/bibliography/12156822
https://sciwheel.com/work/bibliography/12156822
https://sciwheel.com/work/bibliography/12156822
https://sciwheel.com/work/bibliography/12156822
https://sciwheel.com/work/bibliography/12156822
https://sciwheel.com/work/bibliography/12156822
https://sciwheel.com/work/bibliography/12156822
https://sciwheel.com/work/bibliography/11059652
https://sciwheel.com/work/bibliography/11059652
https://sciwheel.com/work/bibliography/11059652
https://sciwheel.com/work/bibliography/11059652
https://sciwheel.com/work/bibliography/11059652
https://sciwheel.com/work/bibliography/11059652
https://sciwheel.com/work/bibliography/11059652
https://sciwheel.com/work/bibliography/11059652
https://sciwheel.com/work/bibliography/12158371
https://sciwheel.com/work/bibliography/12158371
https://sciwheel.com/work/bibliography/12158371
https://sciwheel.com/work/bibliography/12158371
https://sciwheel.com/work/bibliography/12158371
https://sciwheel.com/work/bibliography/12158371
https://sciwheel.com/work/bibliography/12158371
https://sciwheel.com/work/bibliography/9858604
https://sciwheel.com/work/bibliography/9858604
https://sciwheel.com/work/bibliography/9858604
https://sciwheel.com/work/bibliography/9858604
https://sciwheel.com/work/bibliography/9858604
https://sciwheel.com/work/bibliography/9858604
https://sciwheel.com/work/bibliography/9858604
https://sciwheel.com/work/bibliography/12158381
https://sciwheel.com/work/bibliography/12158381
https://sciwheel.com/work/bibliography/12158381
https://sciwheel.com/work/bibliography/12158381
https://sciwheel.com/work/bibliography/12158381
https://sciwheel.com/work/bibliography/12158381
https://sciwheel.com/work/bibliography/12158381
https://sciwheel.com/work/bibliography/12158381
https://sciwheel.com/work/bibliography/12158381
https://sciwheel.com/work/bibliography/10072064
https://sciwheel.com/work/bibliography/10072064
https://sciwheel.com/work/bibliography/10072064
https://sciwheel.com/work/bibliography/10072064
https://sciwheel.com/work/bibliography/10072064


54 
 

Ireland, August 25–28, 2020, Proceedings, Lecture notes in computer science (Vol. 

12279, pp. 17–38). Cham: Springer International Publishing. 

Michael A Leeds, Peter von Allmen, & Victor A. Matheson. (2018). The Economics of 

Sports. (----, Ed.). 

Moghaddasi, Z., Jalab, H. A., Md Noor, R., & Aghabozorgi, S. (2014). Improving 

RLRN image splicing detection with the Use of PCA and kernel PCA. 

Thescientificworldjournal, 2014, 606570. 

Moreo, A., Esuli, A., & Sebastiani, F. (2016). Distributional random oversampling for 

imbalanced text classification. Proceedings of the 39th International ACM SIGIR 

conference on Research and Development in Information Retrieval - SIGIR ’16 (pp. 

805–808). Presented at the the 39th International ACM SIGIR conference, New 

York, New York, USA: ACM Press. 

Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Definitions, 

methods, and applications in interpretable machine learning. Proceedings of the 

National Academy of Sciences of the United States of America, 116(44), 22071–

22080. 

Mylonas, K., Angelopoulos, P., Tsepis, E., Billis, E., & Fousekis, K. (2021). Soft-

Tissue Techniques in Sports Injuries Prevention and Rehabilitation. In R. Taiar (Ed.), 

Contemporary advances in sports science. IntechOpen. 

Ng, A. Y. (2004). Feature selection,L 1 vs.L 2 regularization, and rotational invariance. 

Twenty-first international conference on Machine learning  - ICML ’04 (p. 78). 

https://sciwheel.com/work/bibliography/10072064
https://sciwheel.com/work/bibliography/10072064
https://sciwheel.com/work/bibliography/10072064
https://sciwheel.com/work/bibliography/12158338
https://sciwheel.com/work/bibliography/12158338
https://sciwheel.com/work/bibliography/12158338
https://sciwheel.com/work/bibliography/12158338
https://sciwheel.com/work/bibliography/12157022
https://sciwheel.com/work/bibliography/12157022
https://sciwheel.com/work/bibliography/12157022
https://sciwheel.com/work/bibliography/12157022
https://sciwheel.com/work/bibliography/12157022
https://sciwheel.com/work/bibliography/12157022
https://sciwheel.com/work/bibliography/12156963
https://sciwheel.com/work/bibliography/12156963
https://sciwheel.com/work/bibliography/12156963
https://sciwheel.com/work/bibliography/12156963
https://sciwheel.com/work/bibliography/12156963
https://sciwheel.com/work/bibliography/12156963
https://sciwheel.com/work/bibliography/12156963
https://sciwheel.com/work/bibliography/7643293
https://sciwheel.com/work/bibliography/7643293
https://sciwheel.com/work/bibliography/7643293
https://sciwheel.com/work/bibliography/7643293
https://sciwheel.com/work/bibliography/7643293
https://sciwheel.com/work/bibliography/7643293
https://sciwheel.com/work/bibliography/7643293
https://sciwheel.com/work/bibliography/7643293
https://sciwheel.com/work/bibliography/12156835
https://sciwheel.com/work/bibliography/12156835
https://sciwheel.com/work/bibliography/12156835
https://sciwheel.com/work/bibliography/12156835
https://sciwheel.com/work/bibliography/3410013
https://sciwheel.com/work/bibliography/3410013
https://sciwheel.com/work/bibliography/3410013
https://sciwheel.com/work/bibliography/3410013
https://sciwheel.com/work/bibliography/3410013
https://sciwheel.com/work/bibliography/3410013
https://sciwheel.com/work/bibliography/3410013
https://sciwheel.com/work/bibliography/3410013
https://sciwheel.com/work/bibliography/3410013
https://sciwheel.com/work/bibliography/3410013
https://sciwheel.com/work/bibliography/3410013
https://sciwheel.com/work/bibliography/3410013


55 
 

Presented at the Twenty-first international conference, New York, New York, USA: 

ACM Press. 

Nielsen, R. O., Bertelsen, M. L., Ramskov, D., Møller, M., Hulme, A., Theisen, D., 

Finch, C. F., et al. (2018). Time-to-event analysis for sports injury research part 2: 

time-varying outcomes. British Journal of Sports Medicine, 53(1), 70–78. 

Oliveira, R., Brito, J. P., Moreno-Villanueva, A., Nalha, M., Rico-González, M., & 

Clemente, F. M. (2021). Reference values for external and internal training intensity 

monitoring in young male soccer players: A systematic review. Healthcare (Basel), 

9(11). 

Raghuwanshi, B. S., & Shukla, S. (2020). SMOTE based class-specific extreme 

learning machine for imbalanced learning. Knowledge-Based Systems, 187, 104814. 

Rodríguez-Pérez, R., & Bajorath, J. (2020). Interpretation of Compound Activity 

Predictions from Complex Machine Learning Models Using Local Approximations 

and Shapley Values. Journal of Medicinal Chemistry, 63(16), 8761–8777. 

Serg Masís. (2021). Interpretable Machine Learning with Python. (---, Ed.). 

Seshadri, D. R., Thom, M. L., Harlow, E. R., Gabbett, T. J., Geletka, B. J., Hsu, J. J., 

Drummond, C. K., et al. (2020). Wearable technology and analytics as a 

complementary toolkit to optimize workload and to reduce injury burden. Frontiers 

in Sports and Active Living, 2, 630576. 

Taylor, T., West, D. J., Howatson, G., Jones, C., Bracken, R. M., Love, T. D., Cook, C. 

J., et al. (2015). The impact of neuromuscular electrical stimulation on recovery after 

intensive, muscle damaging, maximal speed training in professional team sports 

https://sciwheel.com/work/bibliography/3410013
https://sciwheel.com/work/bibliography/3410013
https://sciwheel.com/work/bibliography/12158402
https://sciwheel.com/work/bibliography/12158402
https://sciwheel.com/work/bibliography/12158402
https://sciwheel.com/work/bibliography/12158402
https://sciwheel.com/work/bibliography/12158402
https://sciwheel.com/work/bibliography/12158402
https://sciwheel.com/work/bibliography/12158402
https://sciwheel.com/work/bibliography/12156843
https://sciwheel.com/work/bibliography/12156843
https://sciwheel.com/work/bibliography/12156843
https://sciwheel.com/work/bibliography/12156843
https://sciwheel.com/work/bibliography/12156843
https://sciwheel.com/work/bibliography/12156843
https://sciwheel.com/work/bibliography/12156843
https://sciwheel.com/work/bibliography/12156843
https://sciwheel.com/work/bibliography/11060340
https://sciwheel.com/work/bibliography/11060340
https://sciwheel.com/work/bibliography/11060340
https://sciwheel.com/work/bibliography/11060340
https://sciwheel.com/work/bibliography/11060340
https://sciwheel.com/work/bibliography/11060340
https://sciwheel.com/work/bibliography/12157078
https://sciwheel.com/work/bibliography/12157078
https://sciwheel.com/work/bibliography/12157078
https://sciwheel.com/work/bibliography/12157078
https://sciwheel.com/work/bibliography/12157078
https://sciwheel.com/work/bibliography/12157078
https://sciwheel.com/work/bibliography/12157078
https://sciwheel.com/work/bibliography/12157066
https://sciwheel.com/work/bibliography/12157066
https://sciwheel.com/work/bibliography/12157066
https://sciwheel.com/work/bibliography/12156849
https://sciwheel.com/work/bibliography/12156849
https://sciwheel.com/work/bibliography/12156849
https://sciwheel.com/work/bibliography/12156849
https://sciwheel.com/work/bibliography/12156849
https://sciwheel.com/work/bibliography/12156849
https://sciwheel.com/work/bibliography/12156849
https://sciwheel.com/work/bibliography/12156849
https://sciwheel.com/work/bibliography/9858666
https://sciwheel.com/work/bibliography/9858666
https://sciwheel.com/work/bibliography/9858666


56 
 

players. Journal of science and medicine in sport / Sports Medicine Australia, 18(3), 

328–332. 

Thai-Nghe, N., Gantner, Z., & Schmidt-Thieme, L. (2010). Cost-sensitive learning 

methods for imbalanced data. The 2010 International Joint Conference on Neural 

Networks (IJCNN) (pp. 1–8). Presented at the 2010 International Joint Conference on 

Neural Networks (IJCNN), IEEE. 

Trevor Hastie, Robert Tibshirani, & Jerome Friedman. (2016). The Elements of 

Statistical Learning: Data Mining, Inference, and Prediction, Second Edition. (---, 

Ed.). 

Weiss, Gary M. (2004). Mining with rarity. ACM SIGKDD Explorations Newsletter, 

6(1), 7. 

Weiss, G M, & Provost, F. (2003). Learning when training data are costly: the effect of 

class distribution on tree induction. Journal of Artificial Intelligence Research, 19, 

315–354. 

Woods, K. S., Solka, J. L., Priebe, C. E., Kegelmeyer, W. P., Doss, C. C., & Bowyer, K. 

W. (1994). Comparative evaluation of pattern recognition techniques for detection of 

microcalcifications in mammography. State of the art in digital mammographic 

image analysis, Series in machine perception and artificial intelligence (Vol. 9, pp. 

213–231). WORLD SCIENTIFIC. 

Yang, J. (2021). Fast TreeSHAP: Accelerating SHAP Value Computation for Trees. 

arXiv. 

https://sciwheel.com/work/bibliography/9858666
https://sciwheel.com/work/bibliography/9858666
https://sciwheel.com/work/bibliography/9858666
https://sciwheel.com/work/bibliography/9858666
https://sciwheel.com/work/bibliography/9858666
https://sciwheel.com/work/bibliography/9858666
https://sciwheel.com/work/bibliography/11006051
https://sciwheel.com/work/bibliography/11006051
https://sciwheel.com/work/bibliography/11006051
https://sciwheel.com/work/bibliography/11006051
https://sciwheel.com/work/bibliography/11006051
https://sciwheel.com/work/bibliography/11006051
https://sciwheel.com/work/bibliography/12157041
https://sciwheel.com/work/bibliography/12157041
https://sciwheel.com/work/bibliography/12157041
https://sciwheel.com/work/bibliography/12157041
https://sciwheel.com/work/bibliography/12157041
https://sciwheel.com/work/bibliography/1785228
https://sciwheel.com/work/bibliography/1785228
https://sciwheel.com/work/bibliography/1785228
https://sciwheel.com/work/bibliography/1785228
https://sciwheel.com/work/bibliography/1785228
https://sciwheel.com/work/bibliography/1785228
https://sciwheel.com/work/bibliography/12156961
https://sciwheel.com/work/bibliography/12156961
https://sciwheel.com/work/bibliography/12156961
https://sciwheel.com/work/bibliography/12156961
https://sciwheel.com/work/bibliography/12156961
https://sciwheel.com/work/bibliography/12156961
https://sciwheel.com/work/bibliography/12156961
https://sciwheel.com/work/bibliography/12156901
https://sciwheel.com/work/bibliography/12156901
https://sciwheel.com/work/bibliography/12156901
https://sciwheel.com/work/bibliography/12156901
https://sciwheel.com/work/bibliography/12156901
https://sciwheel.com/work/bibliography/12156901
https://sciwheel.com/work/bibliography/12156901
https://sciwheel.com/work/bibliography/12157550
https://sciwheel.com/work/bibliography/12157550
https://sciwheel.com/work/bibliography/12157550
https://sciwheel.com/work/bibliography/12157550


57 
 

Yata, K., & Aoshima, M. (2010). Effective PCA for high-dimension, low-sample-size 

data with singular value decomposition of cross data matrix. Journal of multivariate 

analysis, 101(9), 2060–2077. 

Zhao, Q., & Hastie, T. (2019). Causal interpretations of black-box models. Journal of 

business & economic statistics : a publication of the American Statistical Association, 

2019. 

Zhou, Z.-H. (2011). Cost-Sensitive Learning. In V. Torra, Y. Narakawa, J. Yin, & J. 

Long (Eds.), Modeling decision for artificial intelligence, Lecture notes in computer 

science (Vol. 6820, pp. 17–18). Berlin, Heidelberg: Springer Berlin Heidelberg. 

Zhou, Z. H., & Liu, X. Y. (2005). Training cost-sensitive neural networks with methods 

addressing the class imbalance problem. IEEE Transactions on knowledge and data 

….  

https://sciwheel.com/work/bibliography/12156869
https://sciwheel.com/work/bibliography/12156869
https://sciwheel.com/work/bibliography/12156869
https://sciwheel.com/work/bibliography/12156869
https://sciwheel.com/work/bibliography/12156869
https://sciwheel.com/work/bibliography/12156869
https://sciwheel.com/work/bibliography/12156869
https://sciwheel.com/work/bibliography/7167198
https://sciwheel.com/work/bibliography/7167198
https://sciwheel.com/work/bibliography/7167198
https://sciwheel.com/work/bibliography/7167198
https://sciwheel.com/work/bibliography/7167198
https://sciwheel.com/work/bibliography/7167198
https://sciwheel.com/work/bibliography/7167198
https://sciwheel.com/work/bibliography/12158305
https://sciwheel.com/work/bibliography/12158305
https://sciwheel.com/work/bibliography/12158305
https://sciwheel.com/work/bibliography/12158305
https://sciwheel.com/work/bibliography/12158305
https://sciwheel.com/work/bibliography/12156907
https://sciwheel.com/work/bibliography/12156907
https://sciwheel.com/work/bibliography/12156907
https://sciwheel.com/work/bibliography/12156907
https://sciwheel.com/work/bibliography/12156907

	Student: Agustin Cicognini
	Advisor: Pablo Roccatagliata
	1. Introduction
	1.2 Motivation

	2. Methods
	2.1 Dataset
	2.2 Features and feature engineering
	2.2.1 Missing values and outliers
	2.2.2 Exploratory Data Analysis.
	2.2.2.1 Monotony
	2.2.2.2 Strain
	2.2.2.3 RPE score

	2.2.3 Target Imbalance
	2.2.2.1 Consequences of target imbalance.
	2.2.2.2 Solutions for target imbalance
	2.2.3 Modelling approach
	2.2.4 Models
	2.2.5 Model Evaluation
	2.3 Interpretable Machine Learning
	2.3.1 Model Agnostic Methods
	2.3.1.1 Permutation Feature Importance
	2.3.1.2 Shapley Values
	2.3.2.1 SHAP
	2.3.1.2.1 Key Advantages

	3. Results
	3.1 Model performance
	3.2 Interpretability exercises
	3.3 Impact of reducing the number of explanatory variables

	4.Discussion
	4.1 Relative costs analysis
	4.2 Contractual negotiations

	5. Conclusions and recommendations for future research
	5.1 The nature of injuries
	5.2 Causal interpretation
	5.3 Survival Analysis

	6. Appendix
	6.1 Second Experiment Results
	6.2 Third Experiment Results
	6.3 Fourth Experiment Results
	6.4 Fifth Experiment
	6.5 Descriptive Statistics of Features
	6.6 Cost Sensitive classification
	6.7 Hyperparameter sensibility analysis
	6.8 Choice of predictability threshold
	6.9 Code

	7. References

