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Abstract

We study the problem of optimal dividend payout from a surplus process gov-
erned by Brownian motion with drift under the additional constraint of ratcheting,
i.e. the dividend rate can never decrease. We solve the resulting two-dimensional
optimal control problem, identifying the value function to be the unique viscosity
solution of the corresponding Hamilton-Jacobi-Bellman equation. For finitely many
admissible dividend rates we prove that threshold strategies are optimal, and for
any finite continuum of admissible dividend rates we establish the ε-optimality of
curve strategies. This work is a counterpart of [2], where the ratcheting problem was
studied for a compound Poisson surplus process with drift. In the present Brownian
setup, calculus of variation techniques allow to obtain a much more explicit analysis
and description of the optimal dividend strategies. We also give some numerical
illustrations of the optimality results.

1 Introduction

The identification of the optimal way to pay out dividends from a surplus process to sharehold-
ers is a classical topic in actuarial science and mathematical finance. There is a natural trade-off
between paying out gains as dividends to shareholders early and at the same time leaving suf-
ficient surplus in order to safeguard future adverse developments and avoid ruin. Depending
on risk preferences, the concrete situation and the simultaneous exposure to other risk factors
such a problem can be formally stated in various different ways in terms of objective functions
and constraints. In this paper we would like to follow the actuarial tradition of considering
the surplus process as the free capital in an insurance portfolio at any point in time, and the
goal is to maximize the expected sum of discounted dividend payments that can be paid until
the surplus process goes below 0 (which is called the time of ruin). In such a formulation, the
problem goes back to de Finetti [15] and Gerber [18], and has since then been studied in many
variants concerning the nature of the underlying surplus process and constraints on the type
of admissible dividend payment strategies, see e.g. Albrecher & Thonhauser [4] and Avanzi [8]
for an overview. From a mathematical perspective, the problem turns out to be quite challeng-
ing, and was cast into the framework of modern stochastic control theory and the concept of
viscosity solutions for corresponding Hamilton-Jacobi-Bellman equations over the last years, cf.
Schmidli [25] and Azcue & Muler [10].

Among the variants of the general problem is to look for the optimal dividend payment
strategy if the rate at which dividends are paid can never be reduced. This ratcheting con-
straint has often been brought up by practitioners and is in part motivated by the psychological
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effect that shareholders are likely to be unhappy about a reduction of dividend payments over
time (see e.g. Avanzi et al. [9] for a discussion). One crucial question in this context is how
much of the expected discounted dividends until ruin is lost if one respects such a ratcheting
constraint, if that ratcheting is done in an optimal way. A first step in that direction was done
in Albrecher et al. [3], where the consequences of ratcheting were studied under the simpli-
fying assumption that a dividend rate can be fixed in the beginning and can be augmented
only once during the lifetime of the process (concretely, when the surplus process hits some
optimally chosen barrier for the first time). The analysis in that paper was both for a Brow-
nian surplus process as well as for a surplus process of compound Poisson type. In our recent
paper [2], we then provided the analysis and solution for the general ratcheting problem for
the latter compound Poisson process, and it turned out that the optimal ratcheting dividend
strategy does not lose much efficiency compared to the unconstrained optimal dividend payout
performance, and also that the one-step ratcheting strategy studied earlier compares remark-
ably well to the overall optimal ratcheting solution. In this paper we would like to address
the general ratcheting problem for the Brownian risk model. Such a model can be seen as a
diffusion approximation of the compound Poisson risk model, but is also interesting in its own
right. In particular, the fact that ruin with zero initial capital is immediate often leads to a
more amenable analysis of stochastic control problems. In addition, the convergence of optimal
strategies from a compound Poisson setting to the one for the diffusion approximation can be
quite delicate, see e.g. Bäuerle [12], see also Cohen and Young [13] for a recent convergence rate
analysis of simple uncontrolled ruin probabilities towards its counterparts for the diffusion limit.

On the mathematical level, the general ratcheting formulation leads to a fully two-dimensional
stochastic control problem with all its related challenges, and it is only recently that in the con-
text of insurance risk theory some first two-dimensional problems became amenable for analysis,
see e.g. Albrecher et al. [1], Gu et al. [22], Grandits [21] and Azcue et al. [11]. In the present
contribution we would like to exploit the more amenable nature of the ratcheting problem in
the diffusion setting that push the analysis considerably further than was possible in [2]. In
particular, we will use calculus of variation techniques to identify quite explicit formulas for the
candidates of optimal strategies and provide various optimality results.

We would like to mention that optimal ratcheting strategies have been investigated in the
framework of lifetime consumption in the mathematical finance literature, see e.g. Dybvig [16],
Elie and Touzi [17], Jeon et al. [23] and more recently Angoshtari et al. [5]. However, the con-
crete model setup and correspondingly also the involved techniques are quite different to the
one of the present paper.

The remainder of the paper is organized as follows. Section 2 introduces the model and the
detailed formulation of the problem. It also provides some first basic results on properties of the
value function under consideration. Section 3 derives the Hamilton-Jacobi-Bellman equations
and characterization theorems for the value function for both a closed interval as well as a finite
discrete set of admissible dividend payment rates. In Section 4 we prove that the optimal value
function of the problem for discrete sets convergences to the one for a continuum of admissible
dividend rates as the mesh size of the finite set tends to zero. In Section 5 we show that for
finitely many admissible dividend rates, there exists an optimal strategy for which the change
and non-change regions have only one connected component (this corresponds to the extension
of one-dimensional threshold strategies to the two-dimensional case). We also provide an im-
plicit equation defining the optimal threshold function for this case. Subsequently, we turn to
the case of a continuum of admissible dividend rates and use calculus of variation techniques to
identify the optimal curve splitting the state space into a change and a non-change region as the
unique solution of an ordinary differential equation. We show that the corresponding dividend
strategy is ε-optimal, in the sense that there exists a known sequence of curves such that the
corresponding value functions converge uniformly to the optimal value function of the problem.
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Section 6 contains a numerical illustration of the optimal strategy and its performance relative
to the one of for the unconstrained dividend problem and the one where the dividend rate can
only be increased once. Section 7 concludes.

Some technical proofs are delegated to an appendix.

2 Model and basic results

Assume that the surplus process of a company is given by a Brownian motion with drift

Xt = x+ µt+ σWt

whereWt is a standard Brownian motion, and µ, σ > 0 are given constants. Let (Ω,F , (Ft)t≥0 ,P)
be the complete probability space generated by the process Xt.

The company uses part of the surplus to pay dividends to the shareholders with rates in a set
S ⊂ [0, c], where 0 ≤ c ∈ S is the maximum dividend rate possible. Let us denote by Ct the rate
at which the company pays dividends at time t. Given an initial surplus X0 = x and a minimum
dividend rate c ∈ S at t = 0, a dividend ratcheting strategy is given by C = (Ct)t≥0 and it
is admissible if it is non-decreasing, right-continuous, adapted with respect to the filtration
(Ft)t≥0 and it satisfies Ct ∈ S for all t. The controlled surplus process can be written as

XC
t = Xt −

∫ t

0

Csds. (1)

Define ΠS
x,c as the set of all admissible dividend ratcheting strategies with initial surplus x ≥ 0

and minimum initial dividend rate c ∈ S. Given C ∈ ΠS
x,c, the value function of this strategy

is given by

J(x;C) = E
[∫ τ

0

e−qsCsds

]
,

where q > 0 and τ = inf
{
t ≥ 0 : XC

t < 0
}

is the ruin time. Hence, for any initial surplus x ≥ 0
and initial dividend rate c, our aim is to maximize

V S(x, c) = sup
C∈ΠSx,c

J(x;C). (2)

It is immediate to see that V S(0, c) = 0 for all c ∈ S.

Remark 2.1 The dividend optimization problem without the ratcheting constraint, that is
where the dividend strategy C = (Ct)t≥0 is not necessarily non-decreasing, was studied in-
tensively in the literature (see e.g. Gerber and Shiu [19]). Unlike the ratcheting optimization
problem, this non-ratcheting problem is one-dimensional. If VNR(x) denotes its optimal value
function, then clearly V S(x, c) ≤ VNR(x) for all x ≥ 0 and c ∈ S ⊂ [0, c]. The function VNR is in-
creasing, concave, twice continuously differentiable with VNR(0) = 0 and limx→∞ VNR(x) = c/q;
so it is Lipschitz with Lipschitz constant V ′NR(0).

The following Lemma states the dynamic programming principle, its proof is similar to the
one of Lemma 1.2 in Azcue and Muler [10].

Lemma 2.1 Given any stopping time τ̃ , we can write

V S(x, c) = sup
C∈ΠSx,c

E

[∫ τ∧τ̃

0

e−qsCsds+ e−q(τ∧τ̃)V S(XC
τ∧τ̃ , Cτ∧τ̃ )

]
.

We now state a straightforward result regarding the boundedness and monotonicity of the
optimal value function.
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Proposition 2.2 The optimal value function V S(x, c) is bounded by c/q, non-decreasing in x
and non-increasing in c.

Proof. Since the discounted value of paying the maximum rate c up to infinity is c/q, we
conclude the boundedness result.

On the one hand V S(x, c) is non-increasing in c because given c1 < c2 we have ΠS
x,c2 ⊂ ΠS

x,c1
for any x ≥ 0. On the other hand, given x1 < x2 and an admissible ratcheting strategy
C1 ∈ ΠS

x1,c for any c ∈ S, let us define C2 ∈ ΠS
x2,c as C2

t = C1
t until the ruin time of the

controlled process XC1

t with XC1

0 = x1, and pay the maximum rate c afterwards. Thus,
J(x;C1) ≤ J(x;C2) and we have the result. �

The Lipschitz property of the function VNR introduced in Remark 2.1 can now be used to
prove a first result on the regularity of the function V S .

Proposition 2.3 There exists a constant K > 0 such that

0 ≤ V S(x2, c1)− V S(x1, c2) ≤ K [(x2 − x1) + (c2 − c1)]

for all 0 ≤ x1 ≤ x2 and c1, c2 ∈ S with c1 ≤ c2.

The proof is given in the appendix.

3 Hamilton-Jacobi-Bellman equations

In this section we introduce the Hamilton-Jacobi-Bellman (HJB) equation of the ratcheting
problem for S ⊂ [0,∞), when S is either a closed interval or a finite set. We show that the
optimal value function V defined in (2) is the unique viscosity solution of the corresponding
HJB equation with boundary condition c/q when x goes to infinity, where c = maxS.

First, consider the case S = {c}. In this case, the unique admissible strategy consists of
paying a constant dividend rate c up to the ruin time. Correspondingly, the value function
V {c}(x, c) is the unique solution of the second order differential equation

Lc(W ) :=
σ2

2
∂xxW + (µ− c)∂xW − qW + c = 0 (3)

with boundary conditions V {c}(0, c) = 0 and limx→∞ V {c}(x, c) = c/q. The solutions of (3) are
of the form

c

q
+ a1e

θ1(c)x + a2e
θ2(c)x with a1, a2 ∈ R, (4)

where θ1(c) > 0 and θ2(c) < 0 are the roots of the characteristic equation

σ2

2
z2 + (µ− c)z − q = 0

associated to the operator Lc, that is

θ1(c) :=
c− µ+

√
(c− µ)2 + 2qσ2

σ2
, θ2(c) :=

c− µ−
√

(c− µ)2 + 2qσ2

σ2
. (5)

In the following remark, we state some basic properties of θ1 and θ2.

Remark 3.1 We have that

1. θ1(c) = −θ2(c) if c = µ and θ2
1(c) ≥ θ2

2(c) if, and only if, c− µ ≥ 0.

2. θ′1(c) = 1
σ2 (1 + c−µ√

(c−µ)2+2qσ2
) and θ′2(c) = 1

σ2 (1− c−µ√
(c−µ)2+2qσ2

), so θ′1(c), θ′2(c) ∈ (0, 2
σ2 ).
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The solutions of Lc(W ) = 0 with boundary condition W (0) = 0 are of the form

c

q

(
1− eθ2(c)x

)
+ a(eθ1(c)x − eθ2(c)x) with a ∈ R. (6)

And finally, the unique solution of Lc(W ) = 0 with boundary conditions W (0) = 0 and limx→∞
W (x) = c/q corresponds to a = 0, so that

V {c}(x, c) =
c

q

(
1− eθ2(c)x

)
. (7)

We have that V {c}(·, c) is increasing and concave.

Remark 3.2 Given a set S ⊂ [0,∞) with c = maxS <∞, we have that

V S(x, c) ≥ V {c}(x, c) =
c

q

(
1− eθ2(c)x

)
and so, by Remark 2.1, we conclude that limx→∞ V S(x, c) = c/q for any c ∈ S.

3.1 Hamilton-Jacobi-Bellman equations for closed intervals

Let us now consider the case S = [c, c] with 0 ≤ c < c. The HJB equation associated to (2) is
given by

max{Lc(u)(x, c), ∂cu(x, c)} = 0 for x ≥ 0 and c ≤ c ≤ c. (8)

We say that a function f : [0,∞) × [c, c) → R is (2,1)-differentiable if f is continuously
differentiable and ∂xf(·, c) is continuously differentiable.

Definition 3.1 (a) A locally Lipschitz function u : [0,∞) × [c, c) → R where 0 ≤ c < c is
a viscosity supersolution of (8) at (x, c) ∈ (0,∞) × [c, c), if any (2,1)-differentiable function
ϕ : [0,∞) × [c, c) → R with ϕ(x, c) = u(x, c) such that u − ϕ reaches the minimum at (x, c)
satisfies

max {Lc(ϕ)(x, c), ∂cϕ(x, y)} ≤ 0.

The function ϕ is called a test function for supersolution at (x, c).
(b) A function u : [0,∞)×[c, c)→ R is a viscosity subsolution of (8) at (x, c) ∈ (0,∞)×[c, c),

if any (2,1)-differentiable function ψ : [0,∞)× [c, c)→ R with ψ(x, c) = u(x, c) such that u−ψ
reaches the maximum at (x, c) satisfies

max {Lc(ψ)(x, c), ∂cψ(x, c)} ≥ 0.

The function ψ is called a test function for subsolution at (x, c).
(c) A function u : [0,∞) × [c, c) → R which is both a supersolution and subsolution at

(x, c) ∈ [0,∞)× [c, c) is called a viscosity solution of (8) at (x, c).

Remark 3.3 Note that, by (2), V [0,c](x, c) = V [c,c](x, c) for all 0 ≤ c ≤ c ≤ c, so in order to
simplify the notation we define V (x, c) := V [c,c](x, c) : [0,∞)× [c, c)→ R.

We first prove that V is a viscosity solution of the corresponding HJB equation.

Proposition 3.1 V is a viscosity solution of (8) in (0,∞)× [c, c).

The proof is given in the appendix.

Note that by definition of ratcheting V (x, c) corresponds to the value function of the strategy
that constantly pays dividends at rate c, with initial surplus x. So, by (7),

V (x, c) = V {c}(x, c). (9)

Let us now state the comparison result for viscosity solutions.

5



Lemma 3.2 Assume that (i) u is a viscosity subsolution and u is a viscosity supersolution of
the HJB equation (8) for all x > 0 and for all c ∈ [c, c) with 0 ≤ c < c, (ii) u and u are
non-decreasing in the variable x and Lipschitz in [0,∞)× [c, c), and (iii) u(0, c) = u(0, c) = 0,
limx→∞ u(x, c) ≤ c/q ≤ limx→∞ u(x, c). Then u ≤ u in [0,∞)× [c, c).

The proof is given in the appendix.

The following characterization theorem is a direct consequence of the previous lemma, Re-
mark 3.2 and Proposition 3.1.

Theorem 3.3 The optimal value function V is the unique function non-decreasing in x that
is a viscosity solution of (8) in (0,∞) × [c, c) with V (0, c) = 0 and limx→∞ V (x, c) = c/q for
c ∈ [c, c).

From Definition 2, Lemma 3.2, and Remark 3.2 together with Proposition 3.1, we also get
the following verification theorem.

Theorem 3.4 Consider S = [c, c] and consider a family of strategies{
Cx,c ∈ ΠS

x,c : (x, c) ∈ [0,∞)× [c, c]
}
.

If the function W (x, c) := J(x;Cx,c) is a viscosity supersolution of the HJB equation (8) in
(0,∞)×[c, c) with W (0, c) = 0 and limx→∞W (x, c) = c/q, then W is the optimal value function
V . Also, if for each k ≥ 1 there exists a family of strategies

{
Ckx,c ∈ ΠS

x,c : (x, c) ∈ [0,∞)× [c, c]
}

such that W (x, c) := limk→∞ J(x;Ckx,c) is a viscosity supersolution of the HJB equation (8) in
(0,∞)×[c, c) with W (0, c) = 0 and limx→∞W (x, c) = c/q, then W is the optimal value function
V .

3.2 Hamilton-Jacobi-Bellman equations for finite sets

Let us now consider the case
S = {c1, c2, ...., cn} ,

where 0 ≤ c1 < c2 < .... < cn = c. Note that V S(x, ci) = V {ci,ci+1,....,cn}(x, ci). We simplify the
notation as follows:

V ci(x) := V S(x, ci). (10)

So we have the inequalities

V ci(x) ≥ V ci+1(x) ≥ ... ≥ V cn(x) = V c(x) ≥ 0,

where V c(x) = V {c}(x, c) as defined in (7).
The Hamilton-Jacobi-Bellman equation associated to (10) is given by

max {Lci(V ci(x)), V ci+1(x)− V ci(x)} = 0 for x ≥ 0 and i = 1, ..., n− 1. (11)

As in the continuous case we have that V ci is the viscosity solution of the corresponding
HJB equation. Let us introduce the definition of a viscosity solution in the one-dimensional
case.

Definition 3.2 (a) A locally Lipschitz function u : [0,∞) → R is a viscosity supersolution
of (11) at x ∈ (0,∞) if any twice continuously differentiable function ϕ : [0,∞) → R with
ϕ(x) = u(x) such that u− ϕ reaches the minimum at x satisfies

max {Lci(ϕ)(x), V ci+1(x)− ϕ(x)} ≤ 0.
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The function ϕ is called a test function for supersolution at x.
(b) A function u : [0,∞) → R is a viscosity subsolution of (11) at x ∈ (0,∞) if any twice

continuously differentiable function ψ : [0,∞) → R with ψ(x) = u(x) such that u − ψ reaches
the maximum at x satisfies

max {Lci(ψ)(x), V ci+1(x)− ψ(x)} ≥ 0.

The function ψ is called a test function for subsolution at x.
(c) A function u : [0,∞)→ R which is both a supersolution and subsolution at x ∈ [0,∞) is

called a viscosity solution of (11) at x.

The following characterization theorem is the analogue of Theorem 3.3 for finite sets; the
proof is similar and simpler than the one in the continuous case.

Theorem 3.5 The optimal value function V ci(x) for 1 ≤ i < n is the unique viscosity solution
of the associated HJB equation (11) with boundary condition V ci(0) = 0 and limx→∞ V ci(x) =
c/q.

We also have the alternative characterization theorem.

Theorem 3.6 The optimal value function V ci(x) for 1 ≤ i < n is the smallest viscosity super-
solution of the the associated HJB equation (11) with boundary condition 0 at x = 0 and limit
greater than or equal to c/q as x goes to infinity.

Remark 3.4 The function V cn has the closed formula given by (7) for c = cn. By the previous
theorem, once V ci+1 is known, the optimal value function V ci can be obtained recursively as
the solution of the obstacle problem of finding the smallest viscosity supersolution of the
equation Lci = 0 above the obstacle V ci+1 .

4 Convergence of the optimal value functions from the
discrete to the continuous case

In this section we prove that the optimal value functions of finite ratcheting strategies approx-
imate the optimal value function of the continuous case as the mesh size of the finite sets goes
to zero.

Consider for n ≥ 0, a sequence of sets Sn (with kn elements) of the form

Sn =
{
cn1 = c < cn2 < · · · < cnkn = c

}
.

satisfying S0 = {c, c}, Sn ⊂ Sn+1 and mesh-size δ(Sn) := maxk=2,kn

(
cnk − cnk−1

)
↘ 0 as n goes

to infinity.
Let us extend the definition of V S

n

to the function V n : [c,∞)× [0, c]→ R, as

V n(x, c) = V S
n

(x, c̃n), (12)

where
c̃n = min{cni ∈ Sn : cni ≥ c}. (13)

We will prove that limn→∞ V n(x, c) = V [c,c](x, c) for any (x, c) ∈ [0,∞) × [c, c] and we will
study the uniform convergence of this limit.

Since V n ≤ V n+1 ≤ V [c,c], there exists the limit function

V (x, c) := lim
n→∞

V n(x, c). (14)

Later on, we will show that V = V [c,c]. Note that V (x, c) is non-increasing in c with V (x, c) =
V (x, c), and non-decreasing in x with limx→∞ V (x, c) = c/q. With the same proof the one for
Proposition 6.1 of [2], we have the following proposition:

7



Proposition 4.1 The sequence V n converges uniformly to V .

With this, we can obtain the main result of this section.

Theorem 4.2 The function V defined in (14) is the optimal value function V [c,c].

Proof. Note that V (x, c) is a limit of value functions of admissible strategies, so in order to
satisfy the assumptions of Theorem 3.4, it remains to see that V is a viscosity supersolution
of (8) at any point (x0, c0) with x0 > 0. ∂cV (x0, c0) ≤ 0 in the viscosity sense because V is
non-increasing in c; so it is sufficient to show that Lc0(V )(x0, c0) ≤ 0 in the viscosity sense.
Let ϕ be a test function for viscosity supersolution of (8) at (x0, c0), i.e. a (2,1)-differentiable
function ϕ with

V (x, c) ≥ ϕ(x, c) and V (x0, c0) = ϕ(x0, c0). (15)

In order to prove that Lc(ϕ)(x0, c0) ≤ 0, consider now, for γ > 0 small enough,

ϕγ(x, c) = ϕ(x, c)− γ(x− x0)4.

Given n ≥ 1, let us consider c̃n0 as defined in (13),

aγn := min{V n(x, c̃n0 )− ϕγ(x, c̃n0 ) : x ∈ [0, x0 + 1]},

xγn := arg min{V n(x, c̃n0 )− ϕγ(x, c̃n0 ) : x ∈ [0, x0 + 1]},

and
bγn := max{V (x, c̃n0 )− V n(x, c̃n0 ) : x ∈ [0, x0 + 1]}.

Since c̃n0 ↘ c0 and, from Proposition 4.1, limn→∞ aγn = 0 and limn→∞ bγn = 0, we also have that
limn→∞ xγn = x0 because

0 = V n(xγn, c̃
n
0 )− (ϕγ(xγn, c̃

n
0 ) + aγn)

=
(
V n(xγn, c̃

n
0 )− V (xγn, c̃

n
0 )
)

+
(
V (xγn, c̃

n
0 )− ϕγ(xγn, c̃

n
0 )
)
− aγn

≥ −bγn + 0− aγn + γ(xγn − x0)4

and then

(xγn − x0)4 ≤ aγn + bγn
γ

→ 0 as n→∞.

Note that ϕn(·) = ϕγ(·, c̃n0 ) + aγn is a test function for viscosity supersolution of V n(·, c̃n0 ) in
Equation (11) at the point xγn because

ϕγ(xγn, c̃
n
0 ) + aγn = V n(xγn, c̃

n
0 ) and ϕγ(x, c̃n0 ) + aγn ≤ V n(x, c̃n0 ) for x ∈ [0, x0 + 1].

And so
Lc̃

n
0 (ϕγ)(xγn, c̃

n
0 ) = Lc̃

n
0 (ϕn)(xγn) + qaγn ≤ qaγn.

Since (xγn, cn) → (x0, c0), ϕn(·) = ϕγ(·, c̃n0 ) + aγn → ϕγ(·, c0) as n → ∞ and ϕγ is (2,1)-
differentiable, one gets

Lc0(ϕγ)(x0, c0) = lim
n→∞

Lc̃
n
0 (ϕn)(xγn) ≤ 0.

Finally, as
∂xϕγ(x0, c0) = ∂xϕ(x0, c0) and ∂xxϕγ(x0, c0) = ∂xxϕ(x0, c0)

and ϕγ ↗ ϕ as γ ↘ 0, we obtain that Lc0(ϕ)(x0, c0) ≤ 0 and the result follows. �
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5 The optimal strategies

We show first that, regardless whether S is finite or an interval with maxS = c, the optimal
strategy for sufficiently small c is to immediately start paying dividends at the maximum rate
c.

Proposition 5.1 If c ≤ qσ2/(2µ), then V (x, c) = V {c}(x, c) for any (x, c) ∈ [0,∞)× S.

Proof. If we call W (x, c) := V {c}(x, c), then we know that Lc(W )(x, c) = 0. Since W (0, c) =
0, limx→∞W (x, c) = c/q and ∂cW (x, c) = 0, then by Theorem 3.3 and Theorem 3.5 it is enough
to prove that Lc(W )(x, c) ≤ 0 for c ∈ S. But, by (7) and (5)

Lc(W )(x, c) = Lc(W )(x, c) + (c− c)(∂xW (x, c)− 1)
= (c− c)(− c

q θ2(c)eθ2(c)x − 1)

≤ (c− c)(− c
q θ2(c)− 1)

≤ 0

for c ≤ c ≤ qσ2

2µ . �

Remark 5.1 The proof of the previous proposition also shows that if there exists a d ∈ S \{c}
and ε > 0 such that V (x, d) = V {c}(x, c) for x ∈ [0, ε], then c ≤ qσ2

2µ and so V (x, c) = V {c}(x, c)

for any (x, c) ∈ [0,∞)× S.

Let us first address the case of S = {c1, c2, ...., cn} with 0 ≤ c1 < c2 < .... < cn = c. We
introduce the concept of strategies with a threshold structure for each level ci ∈ S and prove
that there exists an optimal dividend payment strategy and has this form. Later we extend the
concept of strategies with this type of structure to the case S = [c, c] by means of a curve in
the state space [0,∞)× [c, c] and look for the curve which maximizes the expected discounted
cumulative dividends.

5.1 Optimal strategies for finite sets

Take S = {c1, c2, ...., cn} with 0 ≤ c1 < c2 < .... < cn = c. Since for i ≤ n − 1, the optimal
value function V ci is a viscosity solution of (11), there are values of x where V ci(x) = V ci+1(x)
and values of x where Lci(V ci)(x) = 0. We look for the simplest dividend payment strategies,
those whose value functions are solutions of Lci = 0 for x ∈ [0, z(ci)) and V ci = V ci+1 for
x ∈ [z(ci),∞) with some z(ci) ≥ 0. We will show in this subsection that the optimal value

function comes from such types of strategies. More precisely, take S̃ = S \ {cn} and a function

z : S̃ → [0,∞); we define a threshold strategy by backward recursion, it is a stationary strategy
(which depends on both the current surplus x and the implemented dividend rate ci ∈ S)

πz = (Cx,ci)(x,ci)∈[0,∞)×S where Cx,ci ∈ ΠS
x,ci (16)

as follows:

• If i = n, pay dividends with rate cn = c up to the time of ruin, that is (Cx,cn)t = c.

• If 1 ≤ i < n and x ≥ z(ci) follow Cx,ci+1
∈ ΠS

x,ci+1
.

• If 1 ≤ i < n and x < z(ci) pay dividends with rate ci as long as the surplus is less than
z(ci) up to the ruin time; if the current surplus reaches z(ci) before the time of ruin, follow
Cx,ci+1

∈ ΠS
x,ci+1

. More precisely

(Cx,ci)t = ciIt≤τ∧τ̂ + (CXτ̂ ,ci+1)t Iτ̂≤t<τ ,

where τ̂ is the first time at which the surplus reaches z(ci).
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Let us call the value z(ci) the threshold at dividend rate level ci and z : S̃ → [0,∞) the
threshold function. The value function of the stationary strategy πz is defined as

W z(x, ci) := J(x;Cx,ci). (17)

Note that W z(x, ci) only depends on z(ck) for i ≤ k < n, W z(0, ci) = 0 and W z(x, ci) = V cn(x)
for x ≥ max{z(ck) : i < k < n}.

Proposition 5.2 We have the following recursive formula for W z:

W z(x, cn) =
cn
q

(
1− eθ2(cn)x

)
,

W z(x, ci) =

{
W z(x, ci+1) if x ≥ z(ci)
ci
q

(
1− eθ2(ci)x

)
+ az(ci)(e

θ1(ci)x − eθ2(ci)x) if x < z(ci)

for i < n, where

az(ci) :=
W z(z(ci), ci+1)− ci

q

(
1− eθ2(ci)z(ci)

)
eθ1(ci)z(ci) − eθ2(ci)z(ci)

.

Proof. We have that Lci(W z)(x, ci) = 0 for x ∈ (0, z(ci)) because the stationary strategy πz

pays ci when the current surplus is in (0, z(ci)). Also W z(0, ci) = 0 because ruin is immediate
at x = 0, and by definition W z(z(ci), ci) = W z(z(ci), ci+1). From (6), we get the result. �

Let us now look for the maximum of the value functions W z(x, ci) among all the possible

threshold functions z : S̃ → [0,∞), and denote by z∗ the optimal threshold function. From
Proposition 5.1, z∗ = 0 for c = cn ≤ qσ2/(2µ), so that from now on we only consider the case
cn > qσ2/(2µ).

Since the function W z(x, cn) is known, there are two ways to solve this optimization problem
(using a backward recursion). We will study the problem using both of them.

1. The first approach consists of seeing the optimization problem as a sequence of n − 1
one-dimensional optimization problems, that is obtaining the maximum az(ci) for i =
n−1, . . . , 1. If W z∗(x, ck) and z∗(ck) are known for k = i+1, . . . , n, then from Proposition
5.2 we can obtain

z∗(ci) = min

(
arg max

y∈[0,∞)

W z∗(y, ci+1)− ci
q

(
1− eθ2(ci)y

)
eθ1(ci)y − eθ2(ci)y

)
. (18)

Note that

lim
y→∞

W z∗(y, ci+1)− ci
q

(
1− eθ2(ci)y

)
eθ1(ci)y − eθ2(ci)y

= 0

because limy→∞W z∗(y, ci+1) = cn
q , so z∗(ci) exists.

2. As a second approach, one can view the optimization problem as a backward recursion
of obstacle problems (see Remark 3.4 ). If W z∗(x, ck) and z∗(ck) are known for k =
i+1, . . . , n, we look for the smallest solution U∗ of the equation Lci(U) = 0 in [0,∞) with
boundary condition U(0) = 0 above W z∗(·, ci+1). Then

z∗(ci) = min{y > 0 : U∗(y) = W z∗(y, ci+1)}. (19)

By (6), the solutions U of the equation Lci(U) = 0 in [0,∞) with boundary condition
U(0) = 0 are of the form

Ua(x) =
ci
q

(
1− eθ2(ci)x

)
+ a(eθ1(ci)x − eθ2(ci)x).

10



Hence Ua(x) is increasing in a and lima→∞ Ua(x) = ∞ for x > 0, and so there exists an
a∗i > 0 such that

U∗ = Ua∗i = min{Ua : Ua(x) ≥W z∗(x, ci+1) for all x ≥ 0},

because limx→∞ U0(x) = ci
q <

cn
q = limx→∞W z∗(x, ci+1).

Remark 5.2 In the second approach, we can see z∗(ci) as the smallest x > 0 such that Ua∗ and
W z∗(·, ci+1) coincide; more precisely Ua∗(z

∗(ci)) = W z∗(z∗(ci), ci+1), Ua∗(x) ≥W z∗(x, ci+1) for
x > 0 and Ua∗(x) > W z∗(x, ci+1) for x ∈ (0, z∗(ci)). Note that U ′a∗(z

∗(ci)) = ∂xW
z∗(z∗(ci), ci+1)

and Ua∗(·)−W z∗(·, ci+1) is locally convex at z∗(ci). By the recursive construction, this implies
that W z∗(x, ci) is infinitely continuously differentiable at all x ∈ [0,∞)\{z∗(ck) : k = i, ..., n−1}
and continuously differentiable at the points z∗(ck) for k = i, ..., n− 1.

Lemma 5.3 U0(x) is an increasing concave function. If a > 0, Ua(x) is increasing, and is
concave in (−∞, y0) and convex in (y0,∞) with

y0 :=
log
((

c
q + a

)
θ2(c)2

)
− log(aθ1(c)2)

θ1(c)− θ2(c)
.

In the case c ≤ µ, we have that y0 > 0; in the case c > µ, we have that y0 ≤ 0 if and only if

0 < a <
c

q

θ2(c)2

(θ1(c)2 − θ2(c)2)
.

Proof. We have that

∂xUa(x) = −
(
c

q
+ a

)
θ2(c)eθ2(c)x + aθ1(c)eθ1(c)x > 0,

and

∂xxUa(x) = −
(
c

q
+ a

)
θ2(c)2eθ2(c)x + aθ1(c)2eθ1(c)x ≥ 0

if and only if x ≥ y0. The result follows from Definition 5. �

In the next theorem, we show that there exists an optimal strategy and it is of threshold
type.

Theorem 5.4 If z∗ is the optimal threshold function, then W z∗(x, ci) is the optimal function
V ci(x) defined in (2) for i = 1, ..., n.

Proof. By definition W z∗(·, cn) = V cn . Assuming that W z∗(·, ci+1) = V ci+1 for i = n −
1, ..., 1, by Theorem 3.5, it is enough to prove that W z∗(·, ci) is a viscosity solution of (11).
Since by construction V ci+1 −W z∗(·, ci) ≤ 0, it remains to be seen that Lci(W z∗)(x, ci) ≤ 0 for
x ≥ z∗(ci). By Remark 5.2, W z∗(·, ci) is continuously differentiable and it is piecewise infinitely
differentiable in open intervals in which it solves Lcj (W z∗)(x, ci) = 0 for some j ≥ i. By the
definition of a viscosity solution, it is enough to prove the result in these open intervals. For x
in these open intervals,

Lci(W z∗)(x, ci) = Lcj (W z∗)(x, ci) + (ci − cj)(1− ∂xW z∗(x, ci)) ≤ 0

if and only if ∂xW
z∗(x, ci) ≤ 1. There exists δ > 0 and some j > i such that Lcj (W z∗)(x, ci) = 0

in (z∗(ci), z
∗(ci) + δ) and then

Lcj (W z∗)(z∗(ci)
+, ci) = 0, Lci(W z∗)(z∗(ci)

−, ci) = 0,
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so
0 = Lci(W z∗)(z∗(ci)

−, ci)− Lcj (W z∗)(z∗(ci)
+, ci)

= σ2

2 (∂xxW
z∗(z∗(ci)

−, ci)− ∂xxW z∗(z∗(ci)
+−, ci))

+(ci − cj)(1− ∂xW z∗(z∗(ci), ci)).

By Remark 5.2, ∂xxW
z∗(z∗(ci)

−, ci)−∂xxW z∗(z∗(ci)
+−, ci) ≥ 0 and ci−cj < 0, so we conclude

that ∂xW
z∗(z∗(ci), ci)) ≤ 1.

If i = n − 1, W z∗(·, cn−1) = W z∗(·, cn) for x ≥ z∗(cn−1), by Remark 5.3, W z∗(·, cn) is
concave and so W z∗(x, cn) ≤W z∗(z∗(cn−1), cn) ≤ 1 and we have the result.

We need to prove that ∂xW
z∗(x, ci) = ∂xW

z∗(x, ci+1) ≤ 1 for x ≥ z∗(ci). By induction
hypothesis, we know that ∂xW

z∗(x, ci+1) = ∂xV
ci+1 ≤ 1 for x ≥ z∗(ci+1). In the case that

z∗(ci) ≥ z∗(ci+1), it is straightforward; in the case that z∗(ci) < z∗(ci+1), it is enough to
prove it in the interval (z∗(ci), z

∗(ci+1)). But ∂xW
z∗(z∗(ci), ci) ≤ 1, ∂xW

z∗(z∗(ci+1), ci) =
∂xW

z∗(z∗(ci+1), ci+1) ≤ 1, and by Lemma 5.3 ∂xW
z∗(x, ci) is either increasing, or decreasing,

or decreasing and then increasing in the interval (z∗(ci), z
∗(ci+1)), so that we have the result. �

Taking the derivative in (18) with respect to y, we get implicit equations for the optimal
threshold strategy.

Proposition 5.5 z∗(ci) satisfies the implicit equation

0 = ci
q θ2(ci)e

θ2(ci)y(eθ1(ci)y − eθ2(ci)y)− ci
q

(
1− eθ2(ci)y

) (
θ1(ci)e

θ1(ci)y − θ2(ci)e
θ2(ci)y

)
+∂xW

z∗(y, ci+1)
(
eθ1(ci)y − eθ2(ci)y

)
−W z∗(y, ci+1)

(
θ1(ci)e

θ1(ci)y − θ2(ci)e
θ2(ci)y

)
for i = n− 1, . . . , 1.

Remark 5.3 Given z : S̃ → [0,∞), we have defined in (16) a threshold strategy πz =
(Cx,ci)(x,ci)∈[0,∞)×S , where Cx,ci ∈ ΠS

x,ci for i = 1, . . . , n. We can extend this threshold strategy
to

π̃z = (Cx,c)(x,c)∈[0,∞)×[c1,cn] where Cx,c ∈ ΠS
x,c (20)

as follows:

• If c ∈ (ci, ci+1) and x < z(ci), pay dividends with rate c while the current surplus is less
than z(ci) up to the time of ruin. If the current surplus reaches z(ci) before the time of
ruin, follow Cz(ci),ci+1

∈ ΠS
x,ci+1

.

• If c ∈ (ci, ci+1) and x ≥ z(ci) for 1 ≤ i < n, follow Cx,ci+1
∈ ΠS

x,ci+1
.

The value function of the stationary strategy π̃z is defined as

J π̃
z

(x, c) := J(x;Cx,c) : [0,∞)× [c1, cn]→ R. (21)

5.2 Curve strategies and the optimal curve strategy

As it is typical for these type of problems, the way in which the optimal value function V (x, c)
solves the HJB equation (8) suggests that the state space [0,∞)× [c, c] is partitioned into two
regions: a non-change dividend region NC∗ in which the dividends are paid at constant rate
and a change dividend region CH∗ in which the rate of dividends increases. Roughly speaking,
the region NC∗ consists of the points in the state space where Lc(V ) = 0 and ∂cV < 0 and
CH∗ consists of the points where ∂cV = 0. We introduce a family of stationary strategies (or
limit of stationary strategies) where the change and non-change dividend payment regions are
connected and split by a free boundary curve. This family of strategies is the analogue to the
threshold strategies for finite S introduced in Section 5.1.

Let us consider the set

B = {ζ s.t. ζ : [c, c)→ [0,∞) is Riemann integrable and càdlàg with lim
c→c−

ζ(c) <∞}. (22)
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In the first part of this subsection, we define the ζ-value function W ζ associated to a curve

R(ζ) = {(ζ(c), c) : c ∈ [c, c)} ⊂ [0,∞)× [c, c)

for ζ ∈ B, and we will see that, in some sense, W ζ(x, c) is a (limit) value function of the strategy
which pays dividends at constant rate in the case that x < ζ(c) and otherwise increases the rate
of dividends. So the curve R(ζ) splits the state space [0,∞)× [c, c] into two connected regions:
NC(ζ) ={(x, c) ∈ [0,∞) × [c, c] : x < ζ(c)} where dividends are paid with constant rate, and
CH(ζ) ={(x, c) ∈ [0,∞) × [c, c] : x ≥ ζ(c)} where the dividend rate increases. In the second
part of the subsection we then will look for the ζ0 ∈ B that maximizes the ζ-value function W ζ ,
using calculus of variations.

Let us consider the following auxiliary functions b0, b1 : (0,∞)× [c, c]→ R

b0(x, c) :=
− 1
q (1−eθ2(c)x)+ c

q θ
′
2(c)eθ2(c)xx

eθ1(c)x−eθ2(c)x ,

b1(x, c) :=
(−θ′1(c)eθ1(c)x+θ′2(c)eθ2(c)x)x

eθ1(c)x−eθ2(c)x .
(23)

Both b0(x, c) and b1(x, c) are not defined in x = 0, so we extend the definition as

b0(0, c) = lim
x→0+

b0(x, c) :=
cθ′2(c)− θ2(c)

q (θ1(c)− θ2(c))

and

b1(0, c) = lim
x→0+

b1(x, c) :=
θ′2(c)− θ′1(c)

θ1(c)− θ2(c)
.

In order to define the ζ-value function in the non-change region NC(ζ), we will define and
study in the next technical lemma the functions Hζ and Aζ for any ζ ∈ B.

Lemma 5.6 Given ζ ∈ B, the unique continuous function Hζ : {(x, c) ∈ [0,∞) × [c, c] : x ≤
ζ(c)} → [0,∞) which satisfies for any c ∈ [c, c) that

Lc(Hζ)(x, c) = 0 for 0 ≤ x ≤ ζ(c)

with boundary conditions Hζ(0, c) = 0, Hζ(x, c) = V {c}(x, c) and ∂cH
ζ(ζ(c), c) = 0 at the

points of continuity of ζ is given by

Hζ(x, c) =
c

q

(
1− eθ2(c)x

)
+Aζ(c)(eθ1(c)x − eθ2(c)x), (24)

where

Aζ(c) = −
∫ c

c

e−
∫ t
c
b1(ζ(s),s)dsb0(ζ(t), t)dt. (25)

Moreover, Aζ satisfies Aζ(c) = 0, is differentiable and satisfies(
Aζ
)′

(c) = b0(ζ(c), c) + b1(ζ(c), c)Aζ(c), (26)

at the points where ζ is continuous.

Proof. Since Lc(Hζ(x, c)) = 0 and Hζ(0, c) = 0, we can write by (6)

Hζ(x, c) =
c

q

(
1− eθ2(c)x

)
+Aζ(c)(eθ1(c)x − eθ2(c)x),

where Aζ(c) should be defined in such a way that Aζ(c) = 0 (because Hζ(x, c) = V {c}(x, c))
and

0 = ∂cH
ζ(ζ(c), c) = 1

q

(
1− eθ2(c)ζ(c)

)
− c

q θ
′
2(c)eθ2(c)ζ(c)ζ(c) +Aζ(c)′(eθ1(c)ζ(c) − eθ2(c)ζ(c))

+Aζ(c)(θ′1(c)eθ1(c)ζ(c) − θ′2(c)eθ2(c)ζ(c))ζ(c)
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at the points of continuity of ζ. Hence,(
Aζ
)′

(c) =
− 1
q (1−eθ2(c)x)+ c

q θ
′
2(c)eθ2(c)xx

eθ1(c)x−eθ2(c)x +Aζ(c)
(−θ′1(c)eθ1(c)x+θ′2(c)eθ2(c)x)x

eθ1(c)x−eθ2(c)x (∗)
= b0(ζ(c), c) + b1(ζ(c), c)Aζ(c).

Solving this ODE with boundary condition Aζ(c) = 0, we get the result. �

Given ζ ∈ B, we define the ζ-value function

W ζ(x, c) :=

{
Hζ(x, c) if (x, c) ∈ NC(ζ),
Hζ(x,C(x, c)) if (x, c) ∈ CH(ζ),

(27)

where Hζ is defined in Lemma 5.6 and

C(x, c) := max{h ∈ [c, c] : ζ(d) ≤ x for d ∈ [c, h)} (28)

in the case that x ≥ ζ(c) and c ∈ [c, c).

In the next propositions we will show that the ζ-value function W ζ is the value function
of an extended threshold strategy in the case that ζ is a step function, and the limit of value
functions of extended threshold strategies in the case that ζ ∈ B.

Proposition 5.7 Given z : S̃ → [0,∞) and the corresponding extended threshold strategy π̃z

defined in Remark 5.3, let us consider the associated step function ζ ∈ B defined as

ζ(c) :=

n−1∑
i=1

z(ci)I[ci,ci+1).

Then the stationary value function of the extended threshold strategy π̃z is given by

J π̃
z

(x, c) = W ζ(x, c).

Proof. The stationary value function is continuous and satisfies Lc(W ζ)(x, c) = 0 for

0 ≤ x ≤ ζ(c), W ζ(0, c) = 0, W ζ(x, c) = V {c}(x, c) and ∂cW
ζ(ζ(c), c) = 0 for c /∈ S̃. Also

the right-hand derivatives ∂cW
ζ(ζ(ci), c

+
i ) = 0 for i = 1, ..., n− 1. So, by Lemma 5.6, we obtain

that W ζ(x, c) = Hζ(x, c) if x < ζ(c). If x ≥ ζ(c), the result follows from the definition of π̃z. �

In the previous proposition we showed that in the case where ζ is the associated step func-
tion of z, the stationary strategy π̃z consists of increasing immediately the divided rate from c
to C(x, c) for (x, c) ∈ CH(ζ), paying dividends at rate c until either reaching the curve R(ζ) or
ruin (whatever comes first) for (x, c) ∈ C(ζ), and paying dividends at rate c until the time of
ruin for c = c.

In the next proposition we show that for any ζ ∈ B, the ζ-value function W ζ is the limit of
value functions of extended threshold strategies.

Proposition 5.8 Given ζ ∈ B, there exists a sequence of right-continuous step functions ζn :
[c, c)→ [0,∞) such that W ζn(x, c) converges uniformly to W ζ(x, c).

Proof. Since ζ is a Riemann integrable càdlàg function, we can approximate it uniformly by
right-continuous step functions. Namely, take a sequence of finite sets Sk = {ck1 , ck2 , · · · , cknk}
with c = ck1 < ck2 < · · · < cknk = c, and consider the right-continuous step functions

ζk(c) =

nk−1∑
i=1

ζ(cki )I[cki ,cki+1),
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such that δ(Sk) = maxi=1,··· ,nk−1(cki+1− cki )→ 0. We have that ζk → ζ uniformly, and so both
Aζk(c)→ Aζ(c) and W ζk(x, c) → W ζ(x, c) uniformly. �

We now look for the maximum of W ζ among ζ ∈ B. We will show that if there exists a
function ζ0 ∈ B such that

Aζ0(c) = max{Aζ(c) : ζ ∈ B}, (29)

then W ζ0(x, c) ≥ W ζ(x, c) for all (x, c) ∈ [0,∞) × [c, c) and ζ ∈ B. This follows from (24) and
the next lemma, in which we prove that the function ζ0 which maximizes (29) also maximizes
Aζ(c) for any c ∈ [c, c).

Lemma 5.9 For a given c ∈ [c, c), define

Bc = { ζ st. ζ : [c, c)→ [0,∞) is Riemann integrable and càdlàg with lim
d→c−

ζ(d) <∞}.

If ζ0 ∈ B satisfies (29), then for any c ∈ [c, c)

Aζ0(c) = max{Aζ(c) : ζ ∈ Bc}.

Proof. Given ζ ∈ B, we can write

Aζ(c) =

(
−
∫ c

c

e−
∫ t
c
b1(ζ(s),s)dsb0(ζ(t), t)dt

)
+
(
e−

∫ c
c
b1(ζ(s),s)ds

)
Aζ(c).

So

Aζ0(c) =

(
−
∫ c

c

e−
∫ t
c
b1(ζ0(s),s)dsb0(ζ0(t), t)dt

)
+
(
e−

∫ c
c
b1(ζ0(s),s)ds

)
max
ζ∈Bc

Aζ(c).

�

Assuming that ζ0 exists, we will use calculus of variations to obtain an implicit equation for
Aζ0 . First we prove the following technical lemma.

Lemma 5.10 For any c ∈ [c, c], we have

∂xb1(x, c) < 0 for x > 0 and ∂xb1(0+, c) < 0.

Proof.

∂xb1(x, c) =
θ′1(c)e2θ1(c)x(−1 + e−(θ1(c)−θ2(c))x(1 + (θ1(c)− θ2(c))x))

(eθ1(c)x − eθ2(c)x)2

+
θ′2(c)e2θ2(c)x(−1 + e(θ1(c)−θ2(c))x(1− (θ1(c)− θ2(c))x))

(eθ1(c)x − eθ2(c)x)2

< 0

and, by Remark 3.1,

lim
x→0

∂xb1(x, c) = −θ
′
1(c) + θ′2(c)

2
< 0.

�

Let us now find the implicit equation for Aζ0 .

Proposition 5.11 If the function ζ0 defined in (29) exists, then Aζ0(c) satisfies

Aζ0(c) = −∂xb0(ζ0(c), c)

∂xb1(ζ0(c), c)

for all c ∈ [c, c). Moreover, Aζ0(c) = 0 and Aζ0(c) > 0 for c ∈ [c, c).
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Proof. Consider any function ζ1 ∈ B with ζ1(c) = 0 then

Aζ0+εζ1(c) = −
∫ c
c
e−

∫ c
c
b1(ζ0(s)+εζ1(s),s)dsb0(ζ0(c) + εζ1(c), c) dc.

Taking the derivative with respect to ε and taking ε = 0, we get

0 = ∂ε
(
Aζ0+εζ1

)
(c)
∣∣
ε=0

=
∫ c
c

(
(
∫ c
c
∂xb1(ζ0(s), s)ζ1(s)ds)e−

∫ c
c
b1(ζ0(s),s)dsb0(ζ0(c), c)

)
dc

−
∫ c
c

(
e−

∫ c
c
b1(ζ0(s),s)ds∂xb0(ζ0(c), c)ζ1(c)

)
dc.

=
∫ c
c

(
∂xb1(ζ0(c), c)ζ1(c)

(∫ c
c
e−

∫ u
c
b1(ζ0(s),s)dsb0(ζ0(u), u)du

))
dc

−
∫ c
c

(
e−

∫ c
c
b1(ζ0(s),s)ds∂xb0(ζ0(c), c)ζ1(c)

)
dc.

And so,

0 = −
∫ c

c

(
e−

∫ c
c
b1(ζ0(s),s)ds∂xb0(ζ0(c), c)− ∂xb1(ζ0(c), c)(

∫ c

c

e−
∫ u
c
b1(ζ0(s),s)dsb0(ζ0(u), u)du)

)
ζ1(c)dc.

Since this holds for any ζ1 ∈ B with ζ1(c) = 0, we obtain that for any c ∈ [c, c)

0 = ∂xb0(ζ0(c), c)− ∂xb1(ζ0(c), c)
(∫ c

c
e−

∫ u
c
b1(ζ0(s),s)dsb0(ζ0(u), u)du

)
= ∂xb0(ζ0(c), c)− ∂xb1(ζ0(c), c)Aζ0(c).

Using Lemma 5.10, we get the implicit equation for ζ0. By definition Aζ0(c) = 0. Now take
c ∈ [c, c), and the constant step function ζ ∈ B defined as ζ ≡ x0 where x0 satisfies

c

q

(
1− eθ2(c)x0

)
<
c

q

(
1− eθ2(c)x0

)
.

Then

Aζ0(c) ≥ Aζ(c) =

c
q

(
1− eθ2(c)x0

)
− c

q

(
1− eθ2(c)x0

)
eθ1(c)x0 − eθ2(c)x

> 0.

�

From now on, we extend the definition of ζ0 to [c, c] as

ζ0(c) := lim
d→c−

ζ0(d).

Since Aζ0(c) = 0, we get from Proposition 5.11

∂xb0(ζ(c), c) = 0, (30)

and since Aζ0(c) > 0 for c ∈ [c, c), we obtain that

∂xb0(ζ0(c), c) > 0.

In the next proposition we show that, under some assumptions, the function ζ0 : [c, c]→ [0,∞)
is the unique solution of the first order differential equation

ζ ′(c) =

(
−b0 (∂xb1)2 + b1 ∂xb0 ∂xb1 − ∂xcb0 ∂xb1 + ∂xcb1 ∂xb0

∂xxb0 ∂xb1 − ∂xxb1 ∂xb0

)
(ζ(c), c) (31)

with boundary condition (30).
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Proposition 5.12 If ζ0(c) defined in (29) satisfies

(∂xxb0 ∂xb1 − ∂xxb1 ∂xb0) (ζ0(c), c) 6= 0, (32)

then ζ0 is infinitely differentiable and it is the unique solution of (31) with boundary condition
(30).

Proof. From (26), we have(
−∂xb0(ζ0(c), c)

∂xb1(ζ0(c), c)

)′
= b0(ζ0(c), c) + b1(ζ0(c), c)

(
∂xb0(ζ0(c), c)

−∂xb1(ζ0(c), c)

)
. (33)

By Assumption (32), the function

G(ζ, c) := −∂xb0(ζ, c)

∂xb1(ζ, c)

satisfies

∂ζG(ζ0(c), c) = −
(
∂xxb0(ζ0(c), c)∂xb1(ζ0(c), c)− ∂xxb1(ζ0(c), c)∂xb0(ζ0(c), c)

∂xb1(ζ0(c), c)2

)
6= 0.

Hence, from (33), we have that ζ0(c) is differentiable and we get the differential equation (31)
for ζ0. We obtain by a recursive argument that ζ0(c) is infinitely differentiable. �

In the next proposition, we state that the value function W ζ0 satisfies a smooth-pasting
property on the smooth free-boundary curve

R(ζ0) = {(ζ0(c), c) with c ∈ [c, c)}.

We also show that, under some conditions, ζ0 is the unique continuous function ζ ∈ B such that
the associated ζ-value function W ζ satisfies the smooth-pasting property at the curve R(ζ).

Proposition 5.13 If ζ0 defined in (29) satisfies (32), then W ζ0 satisfies the smooth-pasting
property

W ζ0
cx (ζ0(c), c) = W ζ0

cc (ζ0(c), c) = 0 for c ∈ [c, c].

Conversely, let h : [0,∞)× [c, c]→ [0,∞) with h(x, c) = V {c}(x, c) and h(0, c) = 0 for c ∈ [c, c).
Assume that for c ∈ [c, c),

ζ(c) := sup {y : Lc(h)(x, c) = 0 for 0 ≤ x ≤ y}

is a positive and continuous function in B satisfying

∂ch(ζ(c), c) = ∂cxh(ζ(c), c) = 0

and (∂xxb0 ∂xb1 − ∂xxb1 ∂xb0) (ζ(c), c) 6= 0 for c ∈ [c, c); then ζ coincides with ζ0 and h(x, c) =
W ζ0(x, c) for 0 ≤ x ≤ ζ(c) and c ∈ [c, c].

Proof. Let us define for x ≥ 0 and c ∈ [c, c] the function

H(x, c) :=
c

q

(
1− eθ2(c)x

)
+ a(c)(eθ1(c)x − eθ2(c)x), (34)

where a : [c, c]→ [0,∞) is a function with a(c) = 0. Note that H satisfies Lc(W (x, c)) = 0 for
all x ≥ 0, H(0, c) = 0 and H(x, c) = c

q

(
1− eθ2(c)x

)
. We have,

∂xH(x, c) = − c
q
θ2(c)eθ2(c)x + a(c)(θ1(c)eθ1(c)x − θ2(c)eθ2(c)x).

If a(c) is differentiable,
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∂cH(x, c) = (eθ1(c)x − eθ2(c)x) (−b0(x, c)− b1(x, c)a(c) + a′(c)) , (35)

and

∂cxH(x, c) = ∂xcH(x, c) = (θ1(c)eθ1(c)x − θ2(c)eθ2(c)x) (−b0(x, c)− b1(x, c)a(c) + a′(c))
+(eθ1(c)x − eθ2(c)x) (−∂xb0(x, c)− ∂xb1(x, c)a(c)) .

In the case that a(c) = Aζ0(c), take H = Hζ0 as defined in (24), by (26) and Proposition 5.11,
we obtain ∂cxH

ζ0(ζ0(c), c) = 0. Since W ζ0(x, c) = Hζ0(x, c) for x < ζ0(c) and W ζ0(x, c) =
Hζ0(x,C(x, c)) for x ≥ ζ0(c), we get ∂cW

ζ0(x, c) = 0 for x ≥ ζ0(c) and so ∂cxW
ζ0(ζ(c), c) = 0.

From (35), we get

∂cH
ζ0(x, c) = (eθ1(c)x − eθ2(c)x)

(
b0(ζ0(c), c)− b0(x, c) + (b1(ζ0(c), c)− b1(x, c))Aζ0(c)

)
.

Hence, from (32), we have that ∂ccH
ζ0 exists. Since ∂cH

ζ0(ζ0(c), c) = 0 for c ∈ [c, c],

0 = d
dc (∂cH

ζ0(ζ0(c), c))
= ∂ccH

ζ0(ζ0(c), c) + ∂cxH
ζ0(ζ0(c), c)ζ ′0(c)

= ∂ccH
ζ0(ζ0(c), c).

Finally, since W ζ0(x, c) = Hζ0(x,C(x, c)) if x ≥ ζ0(c), we get ∂ccW
ζ0(x, c) = 0 if x ≥ ζ0(c) and

so ∂ccW
ζ0(ζ0(c), c) = 0.

Conversely, note that there exists a(c) such that h(x, c) = H(x, c) defined in (34) for x < ζ(c);
the existence of ∂ch implies that a(c) is differentiable. Hence,

0 = ∂ch(ζ(c), c) = (eθ1(c)ζ(c) − eθ2(c)ζ(c)) (−b0(ζ(c), c)− b1(ζ(c), c)a(c) + a′(c))

which implies

a′(c) = b0(ζ(c), c) + b1(ζ(c), c)a(c).

Also,

0 = ∂cxh(ζ(c), c) = (eθ1(c)ζ(c) − eθ2(c)ζ(c)) (−∂xb0(ζ(c), c)− ∂xb1(ζ(c), c)a(c))
+(θ1(c)eθ1(c)ζ(c) − θ2(c)eθ2(c)ζ(c)) (−b0(ζ(c), c)− b1(ζ(c), c)a(c) + a′(c))

implies

∂xb0(ζ(c), c) = ∂xb1(ζ(c), c)a(c).

Since (∂xxb0 ∂xb1 − ∂xxb1 ∂xb0) (ζ(c), c) 6= 0, both ζ and ζ0 satisfy the same equation and so
they coincide. �

In the next proposition, we show more regularity for W ζ0 in the case that ζ0 is increasing.

Proposition 5.14 If ζ0 defined in (29), is increasing and satisfies (32), then W ζ0 is (2,1)-
differentiable. Also, since the inverse ζ−1

0 exists, C(x, c) can be written in a simpler way:

C(x, c) =

{
c if ζ0(c) ≤ x,
ζ−1
0 (x) if ζ0(c) ≤ x < ζ0(c).

Proof. It is enough to prove that ∂xxW
ζ0(x+, c) = ∂xxW

ζ0(x−, c) for ζ0(c) ≤ x < ζ0(c). We
have

∂xW
ζ0(x+, c) = ∂xH

ζ0(x, ζ−1
0 (x)) + ∂cH

ζ0(x, ζ−1
0 (x))

(
ζ−1
0

)′
(x)

= ∂xH
ζ0(x, ζ−1

0 (x))
= ∂xW

ζ0(x−, c).
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And so,

∂xxW
ζ0(x+, c) = ∂xxH

ζ0(x, ζ−1
0 (x)) + ∂cxH

ζ0(x, ζ−1
0 (x))

(
ζ−1
0

)′
(x)

= ∂xxH
ζ0(x, ζ−1

0 (x))
= ∂xxW

ζ0(x−, c).

�

5.3 Optimal strategies for the closed interval S = [c, c]

First in this section, we give a verification result in order to check if a ζ-value function W ζ

is the optimal value function V . Our conjecture is that the solution ζ of (31) with boundary

condition (30) exists and is non-decreasing in [c, c], and that W ζ coincides with V , so that there
exists an optimal curve strategy.

Using Proposition 5.1, we know that the conjecture holds for c ≤ qσ2/(2µ) taking ζ0 ≡ 0.

In the case that c > qσ2/(2µ), we will show that ζ exists and is increasing and W ζ = V for
[c− ε, c] for ε > 0 small enough. We were not able to prove the conjecture in the general case,
although it holds in our numerical explorations (see Section 6). However, we will prove that
the ζ-value functions W ζ are ε-optimal in the following sense: There exists a sequence ζn ∈ B
such that W ζn converges uniformly to the optimal value function V .

We state now a verification result for checking whether the ζ-value function W ζ with ζ
continuous is the optimal value function V . In this verification result it is not necessary to use
viscosity solutions because the proposed value function solves the HJB equation in a classical
way. We will check these verification conditions for the limit value function associated to the
unique solution of (31) with boundary condition (30) (if it exists).

Proposition 5.15 If there exists a smooth function ζ such that the ζ-value function W ζ is
(2,1)-differentiable and satisfies

∂xW
ζ(ζ(c), c) ≤ 1 for c ∈ [c, c] and ∂cW

ζ(x, c) ≤ 0 for x ∈ [0, ζ(c)) and c ∈ [c, c),

then W ζ = V .

Proof. We have that ∂xW
ζ(x, c) ≤ 1 for x ≥ ζ(c) becauseW ζ(·, c) is concave and ∂xW

ζ(ζ(c), c) ≤
1. Since LcW ζ(x, c) = 0 for x ∈ [0, ζ(c)), c ∈ [c, c); ∂cW

ζ(x, c) = 0 for x ≥ ζ(c)), c ∈ [c, c) and

W ζ(·, c) = V (·, c); by Theorem 3.3 it is sufficient to prove that LcW ζ(x, c) ≤ 0 for x ≥ ζ(c)),
c ∈ [c, c). In this case, we have that

C(x, c) = max{h ∈ [c, c] : ζ(d) ≤ x for d ∈ [c, h)}

satisfies C(x, c) ≥ c, and also either C(x, c) = c or ζ(C(x, c)) = x. So, we obtain LC(x,c)V (x,C(x, c)) =
0 and then

LcV (x, c) = LC(x,c)V (x, c) + (C(x, c)− c)(∂xV (x,C(x, c))− 1)
= (C(x, c)− c)(Vx(x,C(x, c))− 1) ≤ 0.

�

Next we see that there exists a unique solution ζ of (31) with boundary condition (30) at
least in [c − ε, c] for some ε > 0. First, let us study the boundary condition (30) in the case c
> qσ2/(2µ).

Lemma 5.16 If c > qσ2/(2µ), there exists a unique z > 0 such that ∂xb0(z, c) = 0; moreover
∂xb0(x, c) < 0 for x ∈ [0, z) and ∂xb0(x, c) > 0 for x ∈ (z,∞). Also ∂xxb0(z, c) > 0.
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Proof. For x > 0,

∂xb0(x, c) =
eθ1(c)xθ1(c)−eθ2(c)xθ2(c)−ce2θ2(c)xθ′2(c)+e(θ1(c)+θ2(c))x(−θ1(c)+θ2(c)+cθ′2(c)(1−xθ1(c)+xθ2(c))

q(eθ1(c)x−eθ2(c)x)
2 ,

(36a)
and so

lim
x→0+

∂xb0(x, c) = − 1

2q
( θ1(c)θ2(c)
θ1(c)−θ2(c) + cθ′2(c)) =

c2+qσ2−c(µ+
√

(c−µ)2+2qσ2)

2qσ2
√

(c−µ)2+2qσ2
.

Hence, limx→0+ ∂xb0(x, c) ≥ 0 for c ≤ qσ2/(2µ) and limx→0+ ∂xb0(x, c) < 0 for c > qσ2/(2µ).
Also

lim
x→∞

∂xb0(x, c)eθ1(c)x =
θ1(c)

q
> 0.

So, for c > qσ2/(2µ) there exists (at least one) z > 0 such that ∂xb0(z, c) = 0.
We are showing next that ∂xb0(x, c) = 0 for x > 0 implies that ∂xxb0(x, c) > 0. Consequently

the result follows.
From (36a), we can write

∂xb0(x, c)q
(
eθ1(c)x − eθ2(c)x

)2

= g11(x, c)θ′2(c) + g10(x, c)

and

∂xxb0(x, c)q
(
eθ1(c)x − eθ2(c)x

)3

= g21(x, c)θ′2(c) + g20(x, c),

where
g11(x, c) = −ce2θ2(c)x(1− e(θ1(c)−θ2(c))x(1− x(θ1(c)− θ2(c))),

g10(x, c) = −θ1(c)eθ1(c)x
(
eθ2(c)x − 1

)
+ θ2(c)eθ2(c)x

(
eθ1(c)x − 1

)
,

g21(x, c) = ce(θ1(c)+θ2(c))x(θ1(c)−θ2(c))
(
eθ1(c)x(−2 + xθ1(c)− xθ2(c)) + eθ2(c)x(2 + xθ1(c)− xθ2(c))

)
,

g20(x, c) = eθ1(c)xθ2
1(c)(eθ2(c)x − 1)(eθ1(c)x + eθ2(c)x)− 2e(θ1(c)+θ2(c))xθ1(c)θ2(c)(−2 + eθ1(c)x + eθ2(c)x)

+eθ2(c)xθ2
2(c)(eθ1(c)x − 1)(eθ1(c)x + eθ2(c)x).

If x > 0, take u = x(θ1(c)− θ2(c)) > 0, we can write

−g11(x, c)

ce2θ2(c)x
= 1− eu(1− u) > 0

which implies that g11(x, c) < 0.
Consider now

g(x, c) := ∂xxb0(x, c)q
(
eθ1(c)x − eθ2(c)x

)3
g11(x, c)− ∂xb0(x, c)q

(
eθ1(c)x − eθ2(c)x

)2
g21(x, c)

= g20(x, c)g11(x, c)− g10(x, c)g21(x, c).

We are going to prove that g(x, c) < 0 for x > 0. For that purpose, take

g0(x, c) := − g(x, c)

c
(
eθ1(c)x − eθ2(c)x

)2
e2θ2(c)xθ2

1(c)
.

Calling t = − θ2(c)
θ1(c) > 0 and s = θ1(c)x > 0, and we can write

g0(x, c) = −t2 + es(1 + t)2 + es+st(−1− 2t+ st+ st2).

Then g0(x, c) > 0 for x > 0, because g0 (s, 0) = ∂tg0 (s, 0) = 0, ∂2
t g0 (s, 0) = −2+(2−2s+s2)es >

0 and
∂3
t g0 (s, t) = s3es+st(2 + 4t+ st+ st2) > 0
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for s, t > 0. Finally, if ∂xb0(z, c) = 0 for z > 0, since

g(z, c) = ∂xxb0(z, c)q
(
eθ1(c)z − eθ2(c)z

)3
g11(z, c)− ∂xb0(z, c)q

(
eθ1(c)z − eθ2(c)z

)2
g21(z, c)

= ∂xxb0(z, c)q
(
eθ1(c)z − eθ2(c)z

)3
g11(z, c),

g(z, c) < 0 and g11(z, c) < 0, we get that ∂xxb0(z, c) > 0. �

Proposition 5.17 In the case c > qσ2/(2µ) there exists a unique increasing solution ζ of (31)
with boundary condition (30) in [c− ε, c] for some ε > 0.

Proof. From Lemma 5.16, ζ(c) = z. By (31) and since the functions b0 and b1 are infinitely
differentiable, it suffices to prove that

(∂xxb0 ∂xb1 − ∂xxb1 ∂xb0) (x, c) 6= 0

in a neighborhood of (z, c) . From Lemmas 5.10 and 5.16,

(∂xxb0 ∂xb1 − ∂xxb1 ∂xb0) (z, c) = (∂xxb0 ∂xb1) (z, c) < 0.

The existence of ζ follows by continuity.
In order to show that ζ is increasing in [c− ε, c] for some ε > 0, it is sufficient to prove(

−b0 (∂xb1)2 + b1 ∂xb0 ∂xb1 − ∂xcb0 ∂xb1 + ∂xcb1 ∂xb0
)

(x, c) < 0

in a neighborhood of (z, c) . Since ∂xb0(z, c) = 0, we get(
−b0 (∂xb1)2 + b1 ∂xb0 ∂xb1 − ∂xcb0 ∂xb1 + ∂xcb1 ∂xb0

)
(z, c)

= −∂xb1(z, c)(b0(z, c)∂xb1(z, c) + ∂xcb0(z, c) );

and since ∂xb1(z, c) < 0, it is enough to show that

b0(z, c)∂xb1(z, c) + ∂xcb0(z, c) < 0.

Taking t = − θ2(c)
θ1(c) > 0 and u =

−q
θ2(c)σ2

z > 0, we can write

b0(z, c)∂xb1(z, c) + ∂xcb0(z, c)

g0(z, c)
= g1(u, t) +

cz

σ2
g2(u, t)

and
∂xb0(z, c)

f0(z, c)
= f1(u, t) +

cz

σ2
f2(u, t) = 0;

where

g0(z, c) =
z
(
eθ1(c)z − eθ2(c)z

)3
q2(θ1(c)− θ2(c))3

2θ3
1(c)(−θ2(c))

> 0

and

f0(z, c) =
z
(
eθ1(c)z − eθ2(c)z

)2
q(θ1(c)− θ2(c))

2θ1(c))
> 0.

We are going to show that f2(u, t) < 0 and also

d0(u, t) := g1(u, t)f2(u, t)− f1(u, t)g2(u, t) > 0.

From these inequalities, we conclude that

b0(z, c)∂xb1(z, c) + ∂xcb0(z, c) = g0(z,c)
f2(u,t)

(
d0(u, t) + ∂xb0(z,c)

f0(z,c) g2(u, t)
)

= g0(z,c)
f2(u,t)d0(u, t)

< 0.
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Let us see first that

f2(u, t) = −te−4ut
(
1 + (2u+ 2ut− 1) e2u+2ut

)
< 0.

This holds immediately taking y = 2u + 2ut, because 1 + (y − 1) ey > 0 for y > 0. Let us see
now that d0(u, t) > 0, we obtain

d0(u, t) = h0(u, t)(P0(u, t) + P1(u, t)e2u + P2(u, t)e2u+2ut + P3(u, t)e4u+2ut + P4(u, t)e4u+4ut),

where
h0(u, t) = 2ut(1 + t)e−8ut(e2u+2ut − 1) > 0 for t, u > 0,

P0(u, t) = t2, P1(u, t) = (1 + t) (2− t+ 2u+ 2ut) ,

P2(u, t) = −2− 2u− t+ 4u2t− t2 + 4ut2 + 6u2t2 + 2ut3 − 2u2t4,

P3(u, t) = −2 + 2u− t+ 2ut+ 2u2t+ t2 − 2ut2 + 6u2t2 − 2ut3 + 6u2t3 + 2u2t4

and
P4(u, t) = 2− 2u+ t− 6ut+ 2u2t− 4ut2 + 4u2t2 + 2u2t3.

Defining iteratively

d1(u, t) :=
∂ud0(u, t)

2(1 + t)e2u
, d2(u, t) :=

∂2
ud1(u, t)

4e2ut
,

d3(u, t) :=
∂3
ud2(u, t)

8(1 + t)4e2u
, d4(u, t) :=

∂3
ud3(u, t)

e2ut
;

we obtain
d1(0, t) = ∂ud1(0, t) = 0, (37)

d2(0, t) = ∂ud2(0, t) = ∂2
ud2(0, t) = 0, (38)

d3(0, t) = 5t2, ∂ud3(0, t) = 2t2(7 + 22t), ∂2
ud3(0, t) = 8t2(1 + 18t+ 25t2), (39)

and

d4(u, t) = 16t3
(
10 + 4u+ 42t+ 29ut+ 2u2t+ 43t2 + 64ut2 + 10u2t2 + 44ut3 + 16u2t3 + 8u2t4

)
.

Since d4(u, t) > 0 and the expressions in (39) are positive, we have d3(u, t) > 0. Similarly, by
(38) and (37) we get that d2(u, t), d1(u, t) and finally d0(u, t) are all positive. �

In the following proposition, we show that the conjecture holds for S = [c− ε, c] with ε > 0
small enough.

Proposition 5.18 In the case c > qσ2/(2µ), there exists ε > 0 such that W ζ = V in [0,∞)×
[c− ε, c], where ζ is the unique solution of (31) with boundary condition (30).

Proof. Take ε > 0 small enough. By Proposition 5.17, ζ is increasing and so, by Proposition

5.14, W ζ is (2,1)-differentiable in [0,∞) × [c − ε, c]. Hence, by Proposition 5.15, we need to

prove that ∂xW
ζ(ζ(c), c) ≤ 1 for c ∈ [c − ε, c] and ∂cW

ζ(x, c) ≤ 0 for (x, c) with c ∈ [c − ε, c]
and 0 ≤ x ≤ ζ(c).

In order to show that ∂xW
ζ(ζ(c), c) ≤ 1 for c ∈ [c − ε, c], we will see that ∂xW

ζ(z, c) < 1
and the result will follow by continuity. For the unique point

x0 :=
1

θ2(c)
log(

−q
cθ2(c)

)

where ∂xW
ζ(x0, c) = 1, we have that x0 > 0 because c > qσ2/(2µ).
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From Lemma 5.16, the condition ∂xb0(x0, c) < 0 implies ∂xW
ζ(z, c) < 1. Taking t =

−q
θ2(c)c

> 0 and r = − θ1(c)

θ2(c)
> 0, we can write

∂xb0(x0, c) = f(x0, c)g(t, r),

where

f(x0, c) = q3c θ′2(c)θ2
2(c)

(
eθ1(c)x0 − eθ2(c)x0

)2

> 0,

and

g(t, r) = −1 +
1 + (r + 1) log(t)

tr+1
+
r + 1

r

(
1− 1 + (t+ 1)(r + 1)

tr+1

)
.

Since c > qσ2/(2µ), we have that t < 1. We also get g(t, r) < 0, because g(1, r) = 0 and

∂tg(t, r) =
(r + 1)2

tr
(t+ 1− log(t)) < 0.

So ∂xb0(x0, c) < 0.

Let us show now that ∂cW
ζ(x, c) ≤ 0 for c ∈ [c− ε, c] and 0 ≤ x ≤ ζ(c). Since

∂cW
ζ(x, c) = ∂cH

ζ(x, c) = (eθ1(c)x − eθ2(c)x)

(
−b0(x, c)− b1(x, c)Aζ(c) +

(
Aζ
)′

(c)

)
,

we should analyze the sign of

B(x, c) := −b0(x, c)− b1(x, c)Aζ(c) +
(
Aζ
)′

(c)

for c ∈ [c − ε, c] and 0 ≤ x ≤ ζ(c). We have that B(ζ(c), c) = ∂xB(ζ(c), c) = 0. Also, from
Lemma 5.16, ∂xxB(z, c) = −∂xxb0(z, c) > 0. So, ∂xxB(x, c) > 0 in some neighborhood

U = (z − ε1, z + ε1)× (c− ε1, c] ⊂ [0,∞)× [c− ε, c]

of (z, c); and this implies that for any c ∈ [c−ε, c], the function B(·, c) reaches a strict local maxi-

mum at x = ζ(c). In particular, by Lemma 5.16, B(·, c) = −b0(·, c)+
(
Aζ
)′

(c) reaches the strict

global maximum at x = z because ∂xB(·, c) = −∂xb0(·, c) changes from positive to negative at
this point. This implies that there exists a δ > 0 such that B(x, c) < −δ for 0 ≤ x ≤ z − ε1.
Therefore, by continuity arguments, we get B(x, c) < 0 for (x, c) ∈ [0, z−ε1]× [c−ε, c] for some
ε > 0 small enough and so we conclude the result. �

In the next proposition we show that the optimal value function V is a uniform limit of
ζ-value functions. Moreover, it is a limit of value functions of extended threshold strategies.
The proof uses the convergence result obtained in Section 4.

Proposition 5.19 Consider, as in Section 4, a sequence of sets Sn (with kn elements) of the
form

Sn =
{
cn1 = c < cn2 < · · · < cnkn = c

}
satisfying S0 = {c, c}, Sn ⊂ Sn+1 and mesh-size δ(Sn) := maxi=2,kn

(
cni − cni−1

)
↘ 0 as n goes

to infinity, and the optimal threshold functions z∗n : S̃n → [0,∞) defined in Section 5.1. Then,

taking ζn(c) :=
∑kn−1

i=1
z∗n(cni )I[cni ,cni+1), the ζn-value functions W ζn converge uniformly to the

optimal value function V.
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Proof. Take the functions V n : [0,∞) × [c, c] → R defined in (12). By Proposition 4.1 and
Theorem 4.2, V n converges uniformly to the optimal value function V . Since by Proposition
2.3 V is Lipschitz with constant K and by definition V n(·, cni ) = W ζn(·, cni ) for cni ∈ Sn, we get
for c ∈ [cni , c

n
i+1)

0 ≤ V (x, c)−W ζn(x, c)
≤ (V (x, c)− V (x, cni )) + (V (x, cni )− V n(x, cni )) +

∣∣W ζn(x, cni )−W ζn(x, c)
∣∣

≤ Kδ(Sn) + max |V − V n|+
∣∣W ζn(x, cni )−W ζn(x, c)

∣∣ .
Hence, in order to prove the result it suffices to show that there exists a K1 > 0 such that∣∣W ζn(x, cni )−W ζn(x, c)

∣∣ ≤ K1 |cni − c| ≤ K1δ(Sn). (40)

We have that W ζn(x, cni+1) = W ζn(x, c) for x ≥ ζn(cni ). So if ζn(cni ) > 0 it remains to prove
(40) for 0 < x < ζn(cni ). Let us define

h(x, c) :=
eθ1(c)x − eθ2(c)x

eθ1(c)ζn(ci) − eθ2(c)ζn(ci)

and

u(x, c) :=

(
Hζn(ζn(ci), ci+1)− c

q

(
1− eθ2(c)ζn(ci)

))
h(x, c).

We can write∣∣W ζn(x, cni )−W ζn(x, c)
∣∣ =

∣∣Hζn(x, cni )−Hζn(x, c)
∣∣

≤
∣∣∣ cniq (1− eθ2(cni )x

)
− c

q

(
1− eθ2(c)x

)∣∣∣+ |u(x, c)− u(x, ci)| .

It is straightforward to see that there exists K1
1 such that∣∣∣∣cniq (1− eθ2(cni )x

)
− c

q

(
1− eθ2(c)x

)∣∣∣∣ ≤ K1
1 |c− cni | for some K1

1 > 0.

Since h(·, c) is increasing, we obtain h(c, 0) = 0 < h(x, c) ≤ h(ζn(ci), c) = 1. Also, we have that
0 ≤ Hζn(x, c) ≤ V (x, c) ≤ c/q for 0 < x < ζn(cni ); so using that θ2(c) < 0 it is easy to show
that there exist constants K2

1 ,K
3
1 > 0 such that

|∂cu(x, c)| ≤
∣∣∣− 1

q

(
1− eθ2(c)ζn(ci)

)
+ c

q θ2(c)ζn(ci)e
θ2(c)ζn(ci) θ

′
2(c)
θ2(c)

∣∣∣h(x, c)

+
∣∣∣Hζn(ζn(ci), ci+1)− c

q

(
1− eθ2(c)ζn(ci)

)∣∣∣ |∂ch(x, c)|
≤ K2

1 +K3
1 |∂ch(x, c)| .

Calling y = ζn(ci) > 0 and ρ = x
ζn(ci)

∈ (0, 1), we obtain

∂ch(x, c) = T (ρ, y, c)

=

(
θ′1(c)ρyeθ1(c)ρy − θ′2(c)ρyeθ2(c)ρy

) (
eθ1(c)y − eθ2(c)y

)(
eθ1(c)y − eθ2(c)y

)2
−
(
θ′1(c)yeθ1(c)y − θ′2(c)yeθ2(c)y

) (
eθ1(c)ρy − eθ2(c)ρy

)(
eθ1(c)y − eθ2(c)y

)2 .

Now, on the one hand,

T (0, y, c) = T (1, y, c) = 0, lim
y→0

T (ρ, y, c) = 0
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and on the other hand, taking ε > 0, and y ≥ ε, there exists K4
1 > 0 such that

T (ρ, y, c) = −y(1− ρ)θ1(c)e−y(1−ρ)θ1(c) θ′1(c)(
1− e(θ2(c)−θ1(c))y

)2
θ1(c)

+θ1(c)ye−θ1(c)y e
θ2(c)ρy − ρe((ρ−1)θ1(c)+θ2(c))y(

1− e(θ2(c)−θ1(c))y
)2 θ′1(c)

θ1(c)

+θ1(c)ye−θ1(c)y e
((ρ−1)θ1(c)+θ2(c))y + e((ρ+1)θ2(c)−θ1(c))y(ρ− 1)− ρeθ2(c)ρy(

1− e(θ2(c)−θ1(c))y
)2 θ′2(c)

θ1(c)

≤ K4
1 ,

because se−s is bounded for s ≥ 0. So we get (40) and finally the result. �

6 Numerical examples

Let us finally consider a numerical illustration for the case µ = 4, σ = 2 and q = 0.1 for
S = [0, c]. In order to obtain the corresponding optimal value function V S , we proceed as
follows:

1. We obtain ζ solving numerically the ordinary differential equation (31) with boundary
condition (30), using the Euler method.

2. We check that the ζ-value function W ζ defined in (27) satisfies the conditions of Propo-

sition 5.15. Hence W ζ is the optimal value function V S .

Let us first consider the case c = 4 (i.e. the maximal allowed dividend rate is the drift of the
surplus process Xt). Figure 1a depicts V S(x, 0) as a function of initial capital x together with
the value function VNR(x) of the classical dividend problem without ratcheting constraint, for
which the optimal strategy is a threshold strategy of not paying any dividends when the surplus
level is below b∗ and pay dividends at rate c above b∗. Recall from Asmussen and Taksar [7] or
also Gerber and Shiu [20] that in the notation of the present paper

VNR(x) =

{
c
q

eθ1(0)x−eθ2(0)x

θ1(0) eθ1(0)b∗−θ2(0) eθ2(0)b∗ , 0 ≤ x ≤ b∗,
c
q + eθ2(c)(x−b∗)/θ2(c), x ≥ b∗

with optimal threshold

b∗ =
1

θ1(0)− θ2(0)
log

θ2(0) (θ2(0)− θ2(c))

θ1(0) (θ1(0)− θ2(c))
.

One observes that for both small and large initial capital x the efficiency loss when introducing
the ratcheting constraint is very small, only for intermediate values of x the resulting expected
discounted dividends are significantly smaller, but even there the relative efficiency loss is not
big (see Figure 2a for a plot of this difference). We also compare V S(x, 0) in Figure 1a with the
optimal value function

V1(x) := V 0(x) for S = {0, c}

of the further constrained one-step ratcheting strategy, where only once during the lifetime of
the process the dividend rate can be increased from 0 to c. That latter case was studied in detail
in [3], where it was also shown that the optimal threshold level b∗R for that switch is exactly the
one for which the resulting expected discounted dividends match with the ones of a threshold
strategy underlying VNR, but at the (for the latter problem non-optimal) threshold b∗R. We
observe that the performance of this simple one-step ratcheting is already remarkably close to
the one of the overall optimal ratcheting strategy represented by V S(x, 0) (see also Figure 2b for
a plot of the difference). A similar effect had already been observed for the optimal ratcheting
in the Cramér-Lundberg model (cf. [1]).
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(a) V S(x, 0) (black) together with VNR(x)
(blue) and V1(x) (red)

(b) Optimal curve (ζ(c), c) (black) together
with b∗ (blue) and b∗R (red)

Figure 1: c = 4

(a) VNR(x) − V S(x, 0) as a function of x
(c = 4)

(b) V S(x, 0)−V1(x) as a function of x (c =
4)

Figure 2: c = 4

Figure 1b depicts the optimal ratcheting curve (ζ(c), c) underlying V S(x, 0) for this example
together with the optimal threshold b∗ of the unconstrained dividend problem and the optimal
switching barrier b∗R for the one-step ratcheting strategy. One sees that the irreversibility of
the dividend rate increase in the ratcheting case leads to a rather conservative behavior of not
starting any (even not small) dividend payments until the surplus level is above the optimal
threshold level b∗ underlying the non-constrained dividend problem. On the other hand, the
one-step ratcheting strategy with optimal switching barrier b∗R roughly in the middle of the
optimal curve already leads to a remarkably good approximation (lower bound) for the perfor-
mance of the overall optimal ratcheting strategy.

In Figures 3 and 4 we give the analogous plots for the case c = 8, so that the maximal
dividend rate is twice as large as the drift µ of the uncontrolled risk process. The global picture
is quite similar, also in this case the efficiency loss introduced by ratcheting is more pronounced
and present also for larger initial capital x. Also, the further efficiency loss by restricting to a
simple one-step ratcheting strategy is considerably larger for not too large x. Finally, in that
case the first increase of dividends already happens for surplus values (slightly) smaller than
the optimal threshold b∗ of the unconstrained case.

7 Conclusion

In this paper we studied and solved the problem of finding optimal dividend strategies in a
Brownian risk model, when the dividend rate can not be decreased over time. We showed that
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(a) V S(x, 0) (black) together with VNR(x)
(blue) and V1(x) (red)

(b) Optimal curve (ζ(c), c) (black) together
with b∗ (blue) and b∗R (red)

Figure 3: c = 8

(a) V S(x, 0) (black) together with VNR(x)
(blue) and V1(x) (red) (b) V S(x, 0)− V1(x) as a function of x

Figure 4: c = 8
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the value function is the unique viscosity solution of a two-dimensional Hamilton-Jacobi-Bellman
equation and it can be approximated arbitrarily closely by threshold strategies for finitely many
possible dividend rates, which are established to be optimal in their discrete setting. We used
calculus of variation techniques to identify the optimal curve that separates the state space
into a change and a non-change region and provided partial results for the overall optimality of
this strategy (which can be seen as a two-dimensional analogue of the optimality of dividend
threshold strategies in the one-dimensional diffusion setting without the ratcheting constraint).
In contrast to [2], the same analysis is applicable for all finite levels of maximal dividend rate c,
i.e. also if the latter exceeds the drift µ. We also gave some numerical examples determining the
optimal curve strategy. These results illustrate that the ratcheting constraint does not reduce
the efficiency of the optimal dividend strategy substantially and that, much as in the compound
Poisson setting, the simpler strategy of only stepping up the dividend rate once during the
lifetime of the process is surprisingly close to optimal in absolute terms. In terms of a possible
direction of future research, as mentioned in Section 5 we conjecture that a curve strategy
dividing the state space into a change and a non-change region is optimal in full generality for
the diffusion model, and it remains open to formally prove the latter. Furthermore, it could be
interesting to extend the results of the present paper to the case where the dividend rate may
be decreased by a certain percentage of its current value (see e.g. [5]) or to place the dividend
consumption pattern into a general habit formation framework (see e.g. [6] for an interesting
related paper in a deterministic setup).

8 Appendix

Proof of Proposition 2.3. By Proposition 2.2, we have

0 ≤ V S(x2, c1)− V S(x1, c2) (41)

for all 0 ≤ x1 ≤ x2 and c1, c2 ∈ S with c1 ≤ c2.
Let us show now, that there exists K1 > 0 such that

V S(x2, c)− V S(x1, c) ≤ K1 (x2 − x1) (42)

for all 0 ≤ x1 ≤ x2. Take ε > 0 and C ∈ ΠS
x2,c such that

J(x2;C) ≥ V S(x2, c)− ε, (43)

the associated control process is given by

XC
t = x2 +

∫ t

0

(µ− Cs)ds+Wt.

Let τ be the ruin time of the process XC
t . Define C̃ ∈ ΠS

x1,c as C̃t = Ct and the associated
control process

XC̃
t = x1 +

∫ t

0

(µ− Cs)ds+Wt.

Let τ̃ ≤ τ be the ruin time of the process XC̃
t ; it holds that XC

t − XC̃
t = x2 − x1 for t ≤ τ̃ .

Hence we have
V S(x2, c)− V S(x1, c) ≤ J(x2;C)− J(x1; C̃) + ε

≤ V S(x2 − x1, 0) + ε
≤ VNR(x2 − x1) + ε
≤ K1(x2 − x1) + ε.

(44)

So, by Remark 2.1, we have (42) with K1 = V ′NR(0).
Let us show now that, given c1, c2 ∈ S with c1 ≤ c2, there exists K2 > 0 such that

V S(x, c1)− V S(x, c2) ≤ K2 (c2 − c1) . (45)
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Take ε > 0 and C ∈ ΠS
x,c1 such that

J(x;C) ≥ V S(x, c1)− ε, (46)

define the stopping time
T̂ = min{t : Ct ≥ c2} (47)

and denote τ the ruin time of the process XC
t . Let us consider C̃ ∈ ΠS

x,c2 as C̃t = c2It<T̂ +

CtIt≥T̂ ; denote by XC̃
t the associated controlled surplus process and by τ ≤ τ the corresponding

ruin time. We have that C̃s −Cs ≤ c2 − c1 and so XC
τ = XC

τ −XC̃
τ ≤ (c2 − c1)τ , which implies∫ τ

τ

Cse
−q(s−τ)ds ≤ VNR((c2 − c1)τ).

Hence, we can write,

V S(x, c1)− V S(x, c2) ≤ J(x;C) + ε− J(x; C̃)

= E
[∫ τ

0

(
Cs − C̃s

)
e−qsds

]
+ E

[∫ τ
τ
Cse

−qsds
]

+ ε

≤ 0 + E
[∫ τ
τ
Cse

−qsds
]

+ ε
≤ E[e−qτ

∫ τ
τ
Cse

−q(s−τ)ds] + ε
≤ K1E[e−qττ(c2 − c1)] + ε
≤ K2(c2 − c1) + ε.

(48)

So, we deduce (45), taking K2 = K1 maxt≥0{e−qtt}. We conclude the result from (41), (42) and
(45). �

Proof of Proposition 3.1. Let us show first that V is a viscosity supersolution in (0,∞)×[c, c)
. By Proposition 2.2, ∂cV ≤ 0 in (0,∞)× [c, c) in the viscosity sense.

Consider now (x, c) ∈ (0,∞) × [c, c) and the admissible strategy C ∈ ΠS
x,c, which pays

dividends at constant rate c up to the ruin time τ . Let XC
t be the corresponding controlled

surplus process and suppose that there exists a test function ϕ for supersolution (8) at (x, c).
Using Lemma 2.1, we get for h > 0

ϕ(x, c) = V (x, c)

≥ E
[∫ τ∧h

0
e−q s cds

]
+ E

[
e−q(τ∧h)ϕ(XC

τ∧h, c))
]
.

Hence, using Itô’s formula

0 ≥ E
[∫ τ∧h

0
e−q s c ds

]
+ E

[
Iτ>h

(
e−q hϕ(XC

s , c)− ϕ(x, c)
)]
− ϕ(x, c)P(h > τ)

= E
[∫ τ∧h

0
e−q s c ds

]
+ E

[
Iτ>h

∫ h
0
e−q s(σ

2

2 ∂xxϕ(XC
s , c) + ∂xϕ(XC

s , c)(µ− c)− qϕ(XC
s , c))ds

]
− ϕ(x, c)P(h > τ).

So, dividing by h and taking h→ 0+, we get Lc(ϕ)(x, c) ≤ 0;, so that V is a viscosity superso-
lution at (x, c).

Let us prove now that V it is a viscosity subsolution in (0,∞) × [c, c). Assume first that
V is not a subsolution of (8) at (x, c) ∈ (0,∞) × [c, c). Then there exist ε > 0, 0 < h <
min {x/2, c− c} and a (2,1)-differentiable function ψ with ψ(x, c) = V (x, c) such that ψ ≥ V ,

max{Lc(ψ)(y, d), ∂cψ(y, d)} ≤ −qε < 0 (49)

for (y, d) ∈ [x− h, x+ h]× [c, c+ h] and

V (y, d) ≤ ψ(y, d)− ε (50)

for (y, d) /∈ [x− h, x+ h]× [c, c+ h]. Consider the controlled risk process Xt corresponding to
an admissible strategy C ∈ ΠS

x,c and define

τ∗ = inf{t > 0 : (Xt, Ct) /∈ [x− h, x+ h]× [c, c+ h]}.
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Since Ct is non-decreasing and right-continuous, it can be written as

Ct = c+

∫ t

0

dCcos +
∑

Cs 6=Cs−
0≤s≤t

(Cs − Cs−), (51)

where Ccos is a continuous and non-decreasing function.
Take a (2,1)-differentiable function ψ : (0,∞) × [c, c] → [0,∞). Using the expression (51)

and the change of variables formula (see for instance [24]), we can write

e−qτ
∗
ψ(XC

τ∗ , Cτ∗)− ψ(x, c)

=
∫ τ∗

0
e−qs∂xψ(XC

s , Cs−)(µ− Cs−)ds+
∫ τ∗

0
e−qs∂cψ(XC

s , Cs−)dCcos
+
∑
Cs 6=Cs−
0≤s≤τ∗

e−qs(Cs − Cs−)∂cψ(XC
s , Cs−)

+
∫ τ∗

0
e−qs(−qψ(XC

s , Cs−) + σ2

2 ∂xxψ(XC
s , Cs−))ds+

∫ τ∗
0
e−qs∂xψ(XC

s , Cs−)σdWs.
(52)

Hence, from (49), we can write

E
[
e−qτ

∗
ψ(XC

τ∗ , Cτ∗)
]
− ψ(x, c)

= E
[∫ τ∗

0
e−qsLCs− (ψ)(XC

s− , Cs−)ds−
∫ τ∗

0
e−qsCs−ds

]
+E

[∫ τ∗
0
e−qs∂cψ(XC

s− , Cs−)dCcs +
∑
Cs 6=Cs−
0≤s≤τ∗

e−qs(Cs − Cs−)∂cψ(XC
s− , Cs−)

]
≤ E

[
ε
(
e−qτ

∗ − 1
)
−
∫ τ∗

0
e−qsCs−ds− qε

(∫ τ∗
0
e−qsdCs

)]
.

So, from (50)

E
[
e−qτ

∗
V (XC

τ∗ , Cτ∗)
]

≤ E
[
ψ(x, c)− e−qτ∗ε

]
+ E

[
ψ(XC

τ∗ , Cτ∗)e
−qτ∗ − ψ(x, c)

]
≤ ψ(x, c)− ε− E(

∫ τ∗
0
e−qsCs−ds).

Hence, using Lemma 2.1, we have that

V (x, c) = sup
C∈ΠSx,c

E

(∫ τ∗

0

e−qsCs−ds+ e−cτ
∗
V (XC

τ∗ , Cτ∗)

)
≤ ψ(x, c)− ε.

but this is a contradiction because we have assumed that V (x, c) = ψ(x, c). So we have the
result. �

Proof of Lemma 3.2. A locally Lipschitz function u : [0,∞) × [c, c] → R is a viscosity
supersolution of (8) at (x, c) ∈ (0,∞) × (c, c), if any test function ϕ for supersolution at (x, c)
satisfies

max{Lc(ϕ)(x, c), ∂cϕ(x, c)} ≤ 0, (53)

and a locally Lipschitz function u : [0,∞) × [c, c] → R is a viscosity subsolution of (8) at
(x, c) ∈ (0,∞)× (c, c) if any test function ψ for subsolution at (x, c) satisfies

max{Lc(ψ)(x, c), ∂cψ(x, c)} ≥ 0. (54)

Suppose that there is a point (x0, c0) ∈ [0,∞) × (c, c) such that u(x0, c0) − u(x0, c0) > 0.
Let us define h(c) = 1 + e−c/c and

us(x, c) = s h(c)u(x, c)

for any s > 1. We have that ϕ is a test function for supersolution of u at (x, c) if and only if
ϕs = s h(c)ϕ is a test function for supersolution of us at (x, c). We have

Lc(ϕs)(x, c) = sh(c)Lc(ϕ)(x, c) + c(1− sh(c)) < 0, (55)
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and
∂cϕ

s(x, c) ≤ −s
c
ϕ(x, c)e−

c
c < 0 (56)

for ϕ(x, c) > 0. Take s0 > 1 such that u(x0, c0)− us0(x0, c0) > 0. We define

M = sup
x≥0,c≤c≤c

(u(x, c)− us0(x, c)) . (57)

Since limx→∞ u(x, c) ≤ c/q ≤ limx→∞ u(x, c), there exist b > x0 such that

sup
c≤c≤c

u(x, c)− us0(x, c) < 0 for x ≥ b. (58)

From (58), we obtain that

0 < u(x0, c0)− us0(x0, c0) ≤M := max
x∈[0,b],c≤c≤c

(u(x, c)− us0(x, c)) . (59)

Call (x∗, c∗) := arg max
x∈[0,b],c≤c≤c

(u(x, c)− us0(x, c)). Let us consider the set

A = {(x, y, c, d) : 0 ≤ x ≤ y ≤ b, c ≤ c ≤ c, c ≤ d ≤ c}

and, for all λ > 0, the functions

Φλ (x, y, c, d) =
λ

2
(x− y)

2
+
λ

2
(c− d)

2
+ 2m

λ2(y−x)+λ ,

Σλ (x, y, c, d) = u(x, c)− us0(y, d)− Φλ (x, y, c, d) .
(60)

CallingMλ = max
A

Σλ and (xλ, yλ, cλ, dλ) = arg max
A

Σλ, we obtain thatMλ ≥ Σλ(x∗, x∗, c∗, c∗) =

M − 2m
λ , and so

lim inf
λ→∞

Mλ ≥M. (61)

There exists λ0 large enough such that if λ ≥ λ0, then (xλ, yλ, cλ, dλ) /∈ ∂A, the proof is
similar to the one of Lemma 4.5 of [2].

Using the inequality

Σλ (xλ, xλ, cλ, cλ) + Σλ (yλ, yλ, dλ, dλ) ≤ 2Σλ (xλ, yλ, cλ, dλ) ,

we obtain that

λ ‖(xλ − yλ, cλ − dλ)‖22 ≤ u(xλ, cλ)− u(yλ, dλ) + us0(xλ, cλ)− us0(yλ, dλ) + 4m(yλ − xλ).

Consequently
λ ‖(xλ − yλ, cλ − dλ)‖22 ≤ 6m ‖(xλ − yλ, cλ − dλ)‖2 . (62)

We can find a sequence λn → ∞ such that (xλn , yλn , cλn , dλn) →
(
x̂, ŷ, ĉ, d̂

)
∈ A. From (62),

we get that
‖(xλn − yλn , cλn − dλn)‖2 ≤ 6m/λn, (63)

which gives x̂ = ŷ and ĉ = d̂.
Since Σλ (x, y, c, d) = u(x, c)−us0(y, d)−Φλ (x, y, c, d) reaches the maximum in (xλ, yλ, cλ, dλ) in

the interior of the set A, the function

ψ(x, c) = Φλ (x, yλ, c, dλ)− Φλ (xλ, yλ, cλ, dλ) + u (xλ, cλ)

is a test for subsolution for u of the HJB equation at the point (xλ, cλ). In addition, the function

ϕs0(y, d) = −Φλ (xλ, y, cλ, d) + Φλ (xλ, yλ, cλ, dλ) + us0 (yλ, dλ)
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is a test for supersolution for us0 at (yλ, dλ) and so

∂cϕ
s0(yλ, dλ) ≤ −s0

c2
ϕ(yλ, dλ)e−

c
c2 < 0

(because yλ > 0). Hence, ∂cψ(xλ, cλ) = ∂cϕ
s0(yλ, dλ) < 0, and we have Lcλ(ψ)(xλ, cλ) ≥ 0.

Assume first that the functions u(x, c) and us0(y, d) are (2,1)-differentiable at (xλ, cλ) and
(yλ, dλ) respectively. Since Σλ defined in (60) reaches a local maximum at (xλ, yλ, cλ, dλ) /∈ ∂A,
we have that

∂xΣλ (xλ, yλ, cλ, dλ) = ∂yΣλ (xλ, yλ, cλ, dλ) = 0

and so

∂xu(xλ, cλ) = ∂xΦλ(xλ, yλ, cλ, dλ)
= λ (xλ − yλ) + 2m

(λ(yλ−xλ)+1)2

= −∂yΦλ(xλ, yλ, cλ, dλ) = ∂xu
s0(yλ, dλ).

(64)

Defining A = ∂xxu(xλ, cλ) and B = ∂xxu
s0(yλ, dλ), we obtain(

∂xxΣλ (xλ, yλ, cλ, dλ) ∂xyΣλ (xλ, yλ, cλ, dλ)
∂xyΣλ (xλ, yλ, cλ, dλ) ∂yyΣλ (xλ, yλ, cλ, dλ)

)
=

(
A− ∂xxΦλ (xλ, yλ, cλ, dλ) −∂xyΦλ (xλ, yλ, cλ, dλ)
−∂xyΦλ (xλ, yλ, cλ, dλ) −B − ∂yyΦλ (xλ, yλ, cλ, dλ)

)
≤ 0.

It is hence a negative semi-definite matrix, and

(
A 0
0 −B

)
≤ ∂xyH

(
Φλ
)

(xλ, yλ, cλ, dλ) :=

(
∂xxΦλ (xλ, yλ, cλ, dλ) ∂xyΦλ (xλ, yλ, cλ, dλ)
∂xyΦλ (xλ, yλ, cλ, dλ) ∂yyΦλ (xλ, yλ, cλ, dλ)

)
.

In the case that u(x, c) and us0(y, d) are not (2,1)-differentiable at (xλ, cλ) and (yλ, dλ) respectively,
we can resort to a more general theorem to get a similar result. Using Theorem 3.2 of Crandall,
Ishii and Lions [14], it can be proved that for any δ > 0, there exist real numbers Aδ and Bδ
such that (

Aδ 0
0 −Bδ

)
≤ ∂xyH

(
Φλ
)

(xλ, yλ, cλ, dλ) + δ
(
∂xyH

(
Φλ
)

(xλ, yλ, cλ, dλ)
)2

(65)

and

σ2

2 Aδ + (µ− cλ)∂xψ(xλ, cλ)− qψ(xλ, cλ) + cλ ≥ 0,
σ2

2 Bδ + (µ− dλ)∂xϕ
s0(yλ, dλ)− qϕs0(yλ, dλ) + dλ ≤ 0.

(66)

The expression (65) implies that Aδ −Bδ ≤ 0 because

∂xyH
(
Φλ
)

(xλ, yλ, cλ, dλ) = ∂xxΦλ (xλ, yλ, cλ, dλ)

(
1 −1
−1 1

)
and (

∂xyH
(
Φλ
)

(xλ, yλ, cλ, dλ)
)2

= 2
(
∂xxΦλ (xλ, yλ, cλ, dλ)

)2( 1 −1
−1 1

)
.

Therefore,

Aδ −Bδ =
(
1 1

)( Aδ 0
0 −Bδ

)(
1
1

)
≤

(
1 1

) (
∂xyH

(
Φλ
)

(xλ, yλ, cλ, dλ) + δ
(
∂xyH

(
Φλ
)

(xλ, yλ, cλ, dλ)
)2)( 1

1

)
= 0.
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And so, since ϕs0 (yλ, dλ) = us0 (yλ, dλ), ψ(xλ, cλ) = u(xλ, cλ) and

∂xϕ
s0 (yλ, dλ) = −∂yΦλ (xλ, yλ, cλ, dλ) = ∂xΦλ (xλ, yλ, cλ, dλ) = ∂xψ(xλ, cλ),

we obtain

u(xλ, cλ)− us0 (yλ, dλ) = ψ(xλ, cλ)− ϕs0 (yλ, dλ)

≤ σ2

2q (Aδ −Bδ)
+
(
cλ
q −

dλ
q

)
(1− ∂xΦλ (xλ, yλ, cλ, dλ))

≤
(
cλ
q −

dλ
q

)
(1− λ (xλ − yλ)− 2m

(λ(yλ−xλ)+1)2
).

(67)

Hence, from (63) and (61), we get

0 < M ≤ lim inf
λ→∞

Mλ ≤ lim
n→∞

Mλn = lim
n→∞

Σλn(xλn , yλn , cλn , dλn) = u(x̂, ĉ)− us0(x̂, ĉ)

≤ lim
n−→∞

(
cλn
q
− dλn

q

)
(1− λn (xλn − yλn)− 2m

(λn (yλn − xλn) + 1)
2 )

≤ . lim
n−→∞

∣∣∣∣cλnq − dλn
q

∣∣∣∣ (1 + λn ‖(xλn − yλn , cλn − dλn)‖2 +
2m

(λn (yλn − xλn) + 1)
2 )

≤ lim
n−→∞

∣∣∣∣cλnq − dλn
q

∣∣∣∣ (1 + 8m) = 0.

This is a contradiction and so we get the result. �
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