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Paris-Sud, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France, 5 CONICET-Universidad

Torcuato Di Tella. Laboratorio de Neurociencia, C1428BIJ. Buenos Aires, Argentina

* sgromano@dc.uba.ar

Abstract

Probabilistic proposals of Language of Thoughts (LoTs) can explain learning across differ-

ent domains as statistical inference over a compositionally structured hypothesis space.

While frameworks may differ on how a LoT may be implemented computationally, they all

share the property that they are built from a set of atomic symbols and rules by which these

symbols can be combined. In this work we propose an extra validation step for the set of

atomic productions defined by the experimenter. It starts by expanding the defined LoT

grammar for the cognitive domain with a broader set of arbitrary productions and then uses

Bayesian inference to prune the productions from the experimental data. The result allows

the researcher to validate that the resulting grammar still matches the intuitive grammar cho-

sen for the domain. We then test this method in the language of geometry, a specific LoT

model for geometrical sequence learning. Finally, despite the fact of the geometrical LoT not

being a universal (i.e. Turing-complete) language, we show an empirical relation between a

sequence’s probability and its complexity consistent with the theoretical relationship for uni-

versal languages described by Levin’s Coding Theorem.

Introduction

It was not only difficult for him to understand that the generic term dog embraced so many

unlike specimens of differing sizes and different forms; he was disturbed by the fact that a

dog at three-fourteen (seen in profile) should have the same name as the dog at three-fifteen

(seen from the front). (. . .)With no effort he had learned English, French, Portuguese and

Latin. I suspect, however, that he was not very capable of thought. To think is to forget dif-

ferences, generalize, make abstractions. In the teeming world of Funes, there were only

details, almost immediate in their presence. [1]
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In his fantasy story, the writer Jorge Luis Borges described a fictional character, Funes, capable

of remembering every detail of his life but not being able to generalize any of that data into

mental categories and hence –Borges stressed– not capable of thinking.

Researchers have modeled these mental categories or conceptual classes with two classical

approaches: in terms of similarity to a generic example or prototype [2–5] or based on a sym-

bolic/rule-like representation [6–8].

Symbolic approaches like the language of thought (LoT) hypothesis [7], claim that thinking

takes form in a sort of mental language, composed of a limited set of atomic symbols that can

be combined to form more complex structures following combinatorial rules.

Despite criticisms and objections [9–12], symbolic approaches —in general— and the LoT

hypothesis —in particular— have gained some renewed attention with recent results that

might explain learning across different domains as statistical inference over a compositionally

structured hypothesis space [13, 14].

The LoT is not necessarily unique. In fact, the form that it takes has been modeled in many

different ways depending on the problem domain: numerical concept learning [15], sequence

learning [16–18], visual concept learning [19], theory learning [20], etc.

While frameworks may differ on how a LoT may be implemented computationally, they all

share the property of being built from a set of atomic symbols and rules by which they can be

combined to form new and more complex expressions.

Most studies of LoTs have focused on the compositional aspect of the language, which has

either been modeled within a Bayesian [13] or a Minimum Description Length (MDL) frame-

work [16, 18, 21, 22].

The common method is to define a grammar with a set of productions based on operations

that are intuitive to researchers and then study how different inference processes match regu-

lar patterns in human learning. A recent study [23] puts the focus on the process of how to

empirically choose the set of productions and how different LoT definitions can create differ-

ent patterns of learning. Here, we move along that direction but use Bayesian inference to indi-

viduate the LoT instead of comparing several of them by hand.

Broadly, our aim is to propose a method to select the set of atomic symbols in an inferential

process by pruning and trimming from a broad repertoire. More precisely, we test whether

Bayesian inference can be used to decide the proper set of productions in a LoT defined by a

context free grammar. These productions are derived from the subjects’ experimental data. In

order to do this, a researcher builds a broader language with two sets of productions: 1) those

for which she has a strong prior conviction that they should be used in the cognitive task, and

2) other productions that could be used to structure the data and extract regularities even if

she believes are not part of the human reasoning repertoire for the task. With the new broader

language, she should then turn the context free grammar that defines it into a probabilistic

context free grammar (PCFG) and use Bayesian analysis to infer the probability of each pro-

duction in order to choose the set that best explains the data.

In the next section we formalize this procedure and then apply it on the language of geome-
try presented by Amalric et al. in a recent study about geometrical sequence learning [16]. This

LoT defines a language with some basic geometric instructions as the grammar productions

and then models their composition within the MDL framework. Our method, however, can be

applied to any LoT model that defines a grammar, independently of whether its compositional

aspect is modeled using a Bayesian framework or a MDL approach.

Finally, even with the recent surge of popularity of Bayesian inference and MDL in cogni-

tive science, there are –to the best of our knowledge– no practical attempts to close the gap

between probabilistic and complexity approaches to LoT models.

Bayesian validation of grammar productions for the language of thought
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The theory of computation, through Levin’s Coding Theorem [24], exposes a remarkable

relationship between the Kolmogorov complexity of a sequence and its universal probability,

largely used in algorithmic information theory. Although both metrics are actually non-com-

putable and defined over a universal prefix Turing Machine, we can apply both ideas to other

non-universal Turing Machines in the same way that the concept of complexity used in MDL

can be computed for specific, non-universal languages.

In this work, we examine the extent to which this theoretical prediction for infinite

sequences holds empirically for a specific LoT, the language of geometry. Although the

inverse logarithmic relationship between both metrics is proved for universal languages in

the Coding Theorem, testing this same property for a particular non-universal language

shows that the language shares some interesting properties of general languages. This consti-

tutes a first step towards a formal link between probability and complexity modeling frame-

works for LoTs.

Bayesian inference for LoT’s productions

The project of Bayesian analysis of the LoT models concept learning using Bayesian infer-

ence in a grammatically structured hypothesis space [25]. Each LoT proposal is usually for-

malized by a context free grammar G that defines the valid functions or programs that can be

generated, like in any other programming language. A program is a derivation tree of G that

needs to be interpreted or executed according to a given semantics in order to get an actual

description of the concept in the cognitive task at hand. Therefore, each concept is then rep-

resented by any of the programs that describe it and a Bayesian inference process is defined

in order to infer from the observed data the distribution of valid programs in G that describes

the concepts.

As explained above, our aim is to derive the productions of G from the data, instead of just

conjecturing them using a priori knowledge about the task. Prior work on LoTs has fit proba-

bilities of productions in a context free grammar using Bayesian inference, however, the focus

has been put in integrating out the production probabilities to better predict the data without

changing the grammar definition [23]. Here, we want to study if the inference process could

let us decide which productions can be safely pruned from the grammar. We introduce a

generic method that can be used on any grammar to select and test the proper set of produc-

tions. Instead of using a fixed grammar and adjusting the probabilities of the productions to

predict the data, we use Bayesian inference to rule out productions with probability lower than

a certain threshold. This allows the researcher to validate the adequacy of the productions she

has chosen for the grammar or even define one that is broad enough to express different regu-

larities and let the method select the best set for the observed data.

To infer the probability for each production based on the observed data, we need to add a

vector of probabilities θ associated with each production in order to convert the context free

grammar G into a probabilistic context free grammar (PCFG) [26].

Let D = (d1, d2, . . ., dn) denote the list of concepts produced by the subjects in an experi-

ment. This means that each di is a concept produced by a subject in each trial. Then, P(θ j D),

the posterior probability of the weights of each production after the observed data, can be cal-

culated by marginalizing over the possible programs that compute D:

Pðy j DÞ ¼
X

Prog

PðProg; y j DÞ; ð1Þ

where each Prog = (p1, p2, � � �, pn) is a possible set of programs such that each pi computes the

corresponding concept di.

Bayesian validation of grammar productions for the language of thought
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We can use Bayesian inference to learn the corresponding programs Prog and the vector θ
for each production in the grammar, applying Bayes rule in the following way:

PðProg; y j DÞ / PðD j ProgÞ PðProg j yÞ PðyÞ; ð2Þ

Sampling the set of programs from P(Prog j θ) forces an inductive bias which is needed to

handle uncertainty under sparse data. Here we use a standard prior for programs that is com-

mon in the LoT literature to introduce a syntactic complexity bias that favors shorter programs

[25, 27]. Intuitively, the probability of sampling a certain program is proportional to the prod-

uct of the production rules that were used to generate such program, and therefore inversely

proportional to the size of the derivation tree. Formally, it is defined as:

PðProg j yÞ ¼
Yn

i¼1

Pðpi j yÞ; ð3Þ

where Pðpi j yÞ ¼
Y

r2G

y
frðpiÞ
r is the probability of the program pi in the grammar, and fr(pi) is the

number of occurrences of the production r in program pi.
In (2), P(θ) is a Dirichlet prior over the productions of the grammar. By using the term P(θ)

we are abusing notation for simplicity. The proper term would be P(θ j α) to express a Dirichlet

prior with a 2 R‘ its associated concentration vector hyper-parameter where ℓ is the number

of productions in the grammar. This hierarchical Dirichlet prior has sometimes been replaced

with a uniform prior on productions as it shows no significant differences in prediction results

[15, 17]. However, here we will use the Dirichlet prior to be able to infer the production proba-

bilities from this more flexible model.

The likelihood function is straightforward. It does not use any free parameter to account

for perception errors in the observation. This forces that only programs that compute the exact

concept are taken into account, and it can be easily calculated as follows:

PðD j ProgÞ ¼
Yn

i¼1

Pðdi j piÞ; ð4Þ

where P(di j pi) = 1 if the program pi computes di, and 0 otherwise.

Calculating P(θ j D) directly is, however, not tractable since it requires to sum over all possi-

ble combinations of programs Prog for each of the possible values of θ. To this aim, then, we

used a Gibbs Sampling [28] algorithm for PCFGs via Markov Chain Monte Carlo (MCMC)

similar to the one proposed at [29], which alternates in each step of the chain between the two

conditional distributions:

PðProg j y;DÞ ¼
Yn

i¼1

Pðpi j di; yÞ: ð5Þ

Pðy j Prog;DÞ ¼ PDðy j f ðProgÞ þ aÞ: ð6Þ

Here, PD is the Dirichlet distribution where the positions of the vector α were updated by

counting the occurrences of the corresponding productions for all programs pi 2 Prog.

In the next section, we apply this method to a specific LoT. We add a new set of ad-hoc pro-

ductions to the grammar that can explain regularities but are not related to the cognitive task.

Intuitively, these ad-hoc productions should not be part of the human LoT repertory, still all of

them can be used in many possible programs to express each concept.

Bayesian validation of grammar productions for the language of thought
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So far, Probabilistic LoT approaches have been successful to model concept learning from

few examples [13, 14]. However, this does not mean that Bayesian models would be able to

infer the syntax of the model’s grammar from sparse data. Here we test such hypothesis. If the

method is effective, it should assign a low probability to the ad-hoc productions and instead

favor the original set of productions selected by the researchers for the cognitive task. This

would not only provide additional empirical evidence about the adequacy of the choice of the

original productions for the selected LoT but, more importantly, about the usefulness of Bayes-

ian inference for validating the set of productions involved in different LoTs.

The language of geometry: Geo
The language of geometry, Geo [16], is a probabilistic generator of sequences of movements on

a regular octagon like the one in Fig 1. It has been used to model human sequence predictions

in adults, preschoolers, and adult members of an indigene group in the Amazon. As in other

LoT domains, different models have been proposed for similar spatial sequence domains like

the one in [17]. Although both successfully model the sequences in their experiments, they

propose different grammars for their models (in particular, [16] contains productions for

expressing symmetry reflections). This difference can be explained by the particularities of

each experiment. On the one hand, [16] categorized the sequences in 12 groups based on their

complexity, displayed them in an octagon and evaluate the performance of a diverse popula-

tion to extrapolate them. On the other hand, [17] categorized the sequences in 4 groups, dis-

played them in an heptagon and evaluate the performance of adults not just to predict how the

sequence continues, but to transfer the knowledge from the learned sequence across auditory

and visual domains. Despite the domains not being equal, the differences in the grammars

strengths the need for automatic methods to test and validate multiple grammars for the same

domain in the LoT community.

The production rules of grammar Geo were selected based on previous claims of the univer-

sality of certain human geometrical knowledge [30–32] such as spatial notions [33, 34] and

detection of symmetries [35, 36].

With these production rules, sequences are described by concatenating or repeating

sequence of movements in the octagon. The original set of productions is shown in Table 1

and –besides the concatenation and repetition operators– it includes the following family of

atomic geometrical transition productions: anticlockwise movements, staying at the same loca-

tion, clockwise movements and symmetry movements.

The language actually supports not just a simple n times repetition of a block of produc-

tions, but it also supports two more complex productions in the repetition family: repeating

with a change in the starting point after each cycle and repeating with a change to the resulting

sequence after each cycle. More details about the formal syntax and semantics can be found in

[16], though they are not needed here.

Each program p generated by the grammar describes a mapping S! S+, for S = {0, . . ., 7}.

Here, S+ represents the set of all (non empty) finite sequences over the alphabet S, which can

be understood as a finite sequence of points in the octagon. These programs must then be exe-

cuted or interpreted from a starting point in order to get the resulting sequence of points. Let

p = [+1, +1] be a program, then p(0) is the result of executing p starting from point 0 (that is,

sequence 1, 2) and p(4) is the result of executing the same program starting from point 4 in the

octagon (sequence 5, 6).

Each sequence can be described with many different programs: from a simple concatena-

tion of atomic productions to more compressed forms using repetitions. For example, to

move through all the octagon clockwise one point at a time starting from point 0, one can use

Bayesian validation of grammar productions for the language of thought
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Fig 1. Possible sequence positions and reflection axes. S points around a circle to map current position in the octagon, and the reflection axes.

https://doi.org/10.1371/journal.pone.0200420.g001
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[+1, +1, +1, +1, +1, +1, +1, +1](0) or [REP[+1]8](0) or [REP[+1]7, +1](0), etc. To alternate 8

times between points 6 and 7, one can use a reflection production like [REP[A]8](6), or [REP

[+1, -1]4](6).

Geo’s original experiment

To infer the productions from the observed data, we used the original data from the experi-

ment in [16]. In the experiment, volunteers were exposed to a series of spatial sequences

defined on an octagon and were asked to predict future locations. The sequences were selected

according to their MDL in the language of geometry so that each sequence could be easily

described with few productions.

Participants. The data used in this work comes, except otherwise stated, from Experiment

1 in which participants were 23 French adults (12 female, mean age = 26.6, age range = 20

− 46) with college-level education. Data from Experiment 2 is later used when comparing

adults and children results. In the later, participants where 24 preschoolers (minimal

age = 5.33, max = 6.29, mean = 5.83 ± 0.05).

Procedure. On each trial, the first two points from the sequence were flashed sequentially

in the octagon and the user had to click on the next location. If the subject selected the correct

location, she was asked to continue with the next point until the eight points of the sequences

were completed. If there was an error at any point, the mistake was corrected, the sequence

flashed again from the first point to the corrected point and the user asked to predict the next

location. Each di 2 S8 from our dataset D is thus the sequence of eight positions clicked in

each subject’s trial. The detailed procedure can be found in the cited work.

Table 1. Original grammar.

Start production

START ! [INST] start symbol

Basic productions

INST ! ATOMIC atomic production

INST ! INST,INST concatenation

INST ! REP[INST]n repeat family with n 2 [2, 8]

REP ! REP0 simple repeat

REP ! REP1<ATOMIC> repeat with starting point variation using ATOMIC

REP ! REP2<ATOMIC> repeat with resulting sequence variation using ATOMIC

Atomic productions

ATOMIC ! -1 next element anticlockwise (ACW)

ATOMIC ! -2 second element ACW

ATOMIC ! -3 third element ACW

ATOMIC ! +0 stays at same location

ATOMIC ! +1 next element clockwise (CW)

ATOMIC ! +2 second element CW

ATOMIC ! +3 third element CW

ATOMIC ! A symmetry around one diagonal axis

ATOMIC ! B symmetry around the other diagonal axis

ATOMIC ! H horizontal symmetry

ATOMIC ! V vertical symmetry

ATOMIC ! P rotational symmetry

https://doi.org/10.1371/journal.pone.0200420.t001
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Extending Geo’s grammar

We will now expand the original set of productions in Geo with a new set of productions that

can also express regularities but are not related to any geometrical intuitions to test our Bayes-

ian inference model.

In Table 2 we show the new set of productions which includes instructions like moving to

the point whose label is the square of the current location’s label, or using the current point

location i to select the ithdigit of a well-known number like π or Chaitin’s number (calculated

for a particular universal Turing Machine and programs up to 84 bits long [37]). All digits are

returned in arithmetic module 8 to get a valid point for the next position. For example, PI(0)

returns the first digit of π, that is PI(0) = 3 mod (8) = 3; and PI(1) = 1.

Inference results for Geo
To let the MCMC converge faster (and to later compare the concept’s probability with

their corresponding MDL), we generated all the programs that explain each of the observed

sequences from the experiment. In this way, we are able to sample from the exact distribution

P(pi j di, θ) by sampling from a multinomial distribution of all the possible programs pi that

compute di, where each pi has probability of occurrence equal to P(pi j θ).

To get an idea of the expressiveness of the grammar to generate different programs for a

sequence and the cost of computing them, it is worth mentioning that there are more than 159

million programs that compute the 292 unique sequences generated by the subjects in the

experiment, and that for each sequence there is an average of 546,713 programs (min = 10,

749, max = 5, 500, 026, σ = 693, 618).

Fig 2 shows the inferred θ for the observed sequences from subjects, with a unit concentra-

tion parameter for the Dirichlet prior, α = (1, . . ., 1). Each bar shows the mean probability and

the standard error of each of the atomic productions after 50 steps of the MCMC, leaving the

first 10 steps out as burn-in.

Although 50 steps might seem low for a MCMC algorithm to converge, our method calcu-

lated P(pi j di, θ) exactly in order to speed up convergence and to be able to later compare the

probability with the complexity from the original MDL model. In Fig 3, we show an example

trace for four MCMC runs for θ+0, which corresponds to the atomic production +0, but is rep-

resentative of the behavior of all θi. (see S1 Fig for the full set of productions).

Fig 2 shows a remarkable difference between the probability of the productions that were

originally used based on geometrical intuitions and the ad-hoc productions. The plot also

Table 2. Ad-hoc productions.

ATOMIC ! DOUBLE (location � 2) mod 8

ATOMIC ! -DOUBLE (location � − 2) mod 8

ATOMIC ! SQUARE (location2) mod 8

ATOMIC ! GAMMA Γ(location+1) mod 8

ATOMIC ! PI location-th digit of π
ATOMIC ! EULER location-th digit of e
ATOMIC ! GOLD location-th digit of ϕ
ATOMIC ! PYTH location-th digit of

ffiffiffi
2
p

ATOMIC ! KHINCHIN location-th digit of Khinchin’s constant

ATOMIC ! GLAISHER location-th digit of Glaisher’s constant

ATOMIC ! CHAITIN location-th digit of Chaitin Omega’s constant

https://doi.org/10.1371/journal.pone.0200420.t002
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shows that each clockwise production has almost the same probability as its corresponding

anticlockwise production, and a similar relation appears between horizontal and vertical sym-

metry (H and V) and symmetries around diagonal axes (A and B). This is important because

the original experiment was designed to balance such behavior; the inferred grammar reflects

this.

Fig 4 shows the same inferred θ but grouped according to production family. Grouping

stresses the low probability of all the ad-hoc productions, but also shows an important differ-

ence between REP and the rest of the productions, particularly the simple concatenation of

productions (CONCAT). This indicates that the language of geometry is capable of reusing

simpler structures that capture geometrical meaning to explain the observed data, a key aspect

of a successful model of LoT.

We then ran the same inference method using observed sequences from other experiments

but only with the original grammar productions (i.e. setting aside the ad-hoc productions).

We compared the result of inferring over our previously analyzed sequences generated by

adults with sequences generated by children (experiment 2 from [16]) and the actual expected

sequences for an ideal player.

Fig 2. Inferred θi. Inferred probability for each production in the grammar.

https://doi.org/10.1371/journal.pone.0200420.g002
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Fig 5 shows the probabilities for each atomic production that is inferred after each popula-

tion. The figure denotes that different populations can converge to different probabilities and

thus different LoTs. Specifically, it is worth mentioning that the ideal learner indeed uses more

repetition productions than simple concatenations when compared to adults. In the same way,

adults use more repetitions than children. This could mean that the ideal learner is capable of

reproducing the sequences by recursively embedding other smaller programs, whereas adults

and children more so have problems understanding or learning the smaller concept that can

explain all the sequences from the experiments, which is consistent with the results from the

MDL model in [16].

It is worth mentioning that in [16] the complete grammar for the language of geometry
could explain adults’ behavior but had problems to reproduce the children’s patterns for some

sequences. However, they also showed that penalizing the rotational symmetry (P) could ade-

quately explain children’s behavior. In Fig 5, we see that the mean value of (P) for children is

0.06 whereas in adults it’s 0.05 (a two-sample t-test reveals t = -12.6, p = 10−19). This might

not necessarily be contradictory, as the model for children in [16] was used to predict the next

symbol of a sequence after seeing its prefix by adding a penalization for extensions that use

the rotational symmetry in the minimal program of each sequence. On the other hand, the

Bayesian model in this work tries to explain the observed sequences produced by children

Fig 3. Inferred θ+0. Inferred probability for +0 production at each step in four MCMC chains.

https://doi.org/10.1371/journal.pone.0200420.g003
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considering the probability of a sequence summing over all the possible programs that can

generate it and not just the ones with minimal size. Thus, a production like (P) that might not

be part of the minimal program for a sequence might not necessarily be less probable when

considering the entire distribution of programs for that same sequence.

Coding Theorem

For each phenomenon there can always be an extremely large, possibly infinite, number of

explanations. In a LoT model, this space is constrained by the grammar G that defines the

valid hypotheses in the language. Still, one has to define how a hypothesis is chosen among all

possibilities. Following Occam’s razor, one should choose the simplest hypothesis amongst all

the possible ones that explain a phenomenon. In cognitive science, the MDL framework has

Fig 4. Inferred θi grouped by family. Inferred probability for each production in the grammar grouped by family.

https://doi.org/10.1371/journal.pone.0200420.g004
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been widely used to model such bias in human cognition, and in the language of geometry in

particular [16]. The MDL framework is based on the ideas of information theory [38], Kolmo-

gorov complexity [39] and Solomonoff induction [40].

Occam’s razor was formalized by Solomonoff [40] in his theory of universal inductive infer-

ence, which proposes a universal prediction method that successfully approximates any distri-

bution μ based on previous observations, with the only assumption of μ being computable. In

short, Solomonoff’s theory uses all programs (in the form of prefix Turing machines) that can

describe previous observations of a sequence to calculate the probability of the next symbols in

an optimal fashion, giving more weight to shorter programs. Intuitively, simpler theories with

Fig 5. Inferred θi for ideal learner, adults and children. Inferred probability for each production in the grammar for different population data.

https://doi.org/10.1371/journal.pone.0200420.g005
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low complexity have higher probability than theories with higher complexity. Formally, this

relationship is described by the Coding Theorem [24], which closes the gap between the con-

cepts of Kolmogorov complexity and probability theory. However, LoT models that define a

probabilistic distribution for their hypotheses do not attempt to compare it with a complexity

measure of the hypotheses like the ones used in MDL, nor the other way around.

In what follows we formalize the Coding Theorem (for more information, see [41]) and test

it experimentally. To the best our knowledge, this is the first attempt to validate these ideas for

a particular (non universal) language. The reader should note that we are not validating the

theorem itself as it has already been proved for universal Turing Machines. Here, we are testing

whether the inverse logarithmic relationship between the probability and complexity holds

true when defined for a specific non universal language.

The formal statement

Let M be a prefix Turing machine –by prefix we mean that if M(x) is defined, then M is unde-

fined for every proper extension of x. Let PM(x) be the probability that the machine M com-

putes output x when the input is filled-up with the results of fair coin tosses, and let KM(x) be

the Kolmogorov complexity of x relative to M, which is defined as the length of the shortest pro-

gram which outputs x, when executed on M. The Coding Theorem states that for every string

x we have

log
1

PUðxÞ
¼ KUðxÞ ð7Þ

up to an additive constant, whenever U is a universal prefix Turing machine –by universal we

mean a machine which is capable of simulating every other Turing machine; it can be under-

stood as the underlying (Turing-complete) chosen programming language. It is important to

remark that neither PU, nor KU are computable, which means that such mappings cannot be

obtained through effective means. However, for specific (non-universal) machines M, one can,

indeed, compute both PM and KM.

Testing the Coding Theorem for Geo
Despite the fact that PM and KM are defined over a Turing Machine M, the reader should note

that a LoT is not usually formalized with a Turing Machine, but instead as a programming lan-

guage with its own syntax of valid programs and semantics of execution, which stipulates how

to compute a concept from a program. However, one can understand programming languages

as defining an equivalent (not necessarily universal) Turing Machine model, and a LoT as

defining its equivalent (not necessarily universal) Turing Machine G. In short, machines and

languages are interchangeable in this context: they both specify the programs/terms, which are

symbolic objects that, in turn, describe semantic objects, namely, strings.

The Kolmogorov complexity relative to Geo. In [16], the Minimal Description Length

was used to model the combination of productions from the language of geometry into con-

cepts by defining a Kolmogorov complexity relative to the language of geometry, which we

denote KGeo. KGeoðxÞ is the minimal size of an expression in the grammar of Geo which

describes x. The formal definition of ‘size’ can be found in the cited work but in short: each of

the atomic productions adds a fixed cost of 2 units; using any of the repetition productions to

iterate n times a list of other productions adds the cost of the list, plus blog(n)c; and joining

two lists with a concatenation costs the same as the sum of the costs of both lists.
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The probability relative to Geo. On the other hand, with the Bayesian model specified in

this work, we can define Pðx j Geo; yÞ which is the probability of a string x relative to Geo and

its vector of probabilities for each of the productions.

For the sake of simplicity, we will use PGeoðxÞ to denote Pðx j Geo; yÞ when θ is the inferred

probability from the observed adult sequences from the experiment.

PGeoðxÞ ¼ Pðx j Geo; yÞ ð8Þ

¼
X

prog

Pðx j prog; yÞ ð9Þ

/
X

prog

Pðx j progÞPðprog j yÞ: ð10Þ

Here, we calculate both PGeoðxÞ and KGeoðxÞ in an exact way (note that Geo, seen as a program-

ming language, is not Turing-complete). In this section, we show an experimental equivalence

between such measures which is consistent with the Coding Theorem. We should stress, once

more, that the theorem does not predict that this relationship should hold for a specific non-

universal Turing Machine.

To calculate PGeoðxÞ we are not interested in the normalization factor of

Pðx j progÞPðprog j yÞ because we are just trying to measure the relationship between

PGeo and KGeo in terms of the Coding Theorem. Note, however, that calculating PGeoðxÞ
involves calculating all programs that compute each of the sequences as in our previous

experiment. To make this tractable we calculated PGeoðxÞ for 10,000 unique random

sequences for each of the possible sequence lengths from the experiment (i.e., up to eight).

When the length of the sequence did not allow 10,000 unique combinations, we used all the

possible sequences of that length.

Coding Theorem results

Fig 6 shows the mean probability PGeoðxÞ for all sequences x with the same value of KGeoðxÞ and

length between 4 and 8 (|x| 2 [4, 8]) for all generated sequences x. The data is plotted with a

logarithmic scale for the x-axis, illustrating the inverse logarithmic relationship between

KGeoðxÞ and PGeoðxÞ. The fit is very good, with R2 = .99, R2 = .94, R2 = .97, R2 = .99 and R2 = .98

for Fig 6A, 6B, 6C, 6D and 6E, respectively.

This relationship between the complexity KGeo and the probability PGeo defined for finite

sequences in the language of geometry, matches the theoretical prediction for infinite sequences

in universal languages described in the Coding Theorem. At the same time, it captures the

Occam’s razor intuition that the simpler sequences one can produce or explain with this lan-

guage are also the more probable.

Figs 7 and 8 show the histogram of PGeoðxÞ and KGeoðxÞ, respectively, for sequences with

length = 8 to get a better insight about both measures. The histogram of the rest of the

sequence’s lengths are included in S2 and S3 Figs for completeness, and they all show the same

behavior.

Discussion

We have presented a Bayesian inference method to select the set of productions for a LoT and

test its effectiveness in the domain of a geometrical cognition task. We have shown that this
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method is useful to distinguish between arbitrary ad-hoc productions and productions that

were intuitively selected to mimic human abilities in such domain.

The proposal to use Bayesian models tied to PCFG grammars in a LoT is not new. However,

previous work has not used the inferred probabilities to gain more insight about the grammar

definition in order to modify it. Instead, it had usually integrated out the production probabili-

ties to better predict the data, and even found that hierarchical priors for grammar productions

show no significant differences in prediction results over uniform priors [15, 17].

We believe that inferring production probabilities can help prove the adequacy of the gram-

mar, and can further lead to a formal mechanism for selecting the correct set of productions

when it is not clear what a proper set should be. Researchers could use a much broader set of

productions than what might seem intuitive or relevant for the domain and let the hierarchical

Bayesian inference framework select the best subset.

Selecting a broader set of productions still leaves some arbitrary decisions to be made. How-

ever, it can help to build a more robust methodology that –combined with other ideas like test-

ing grammars with different productions for the same task [23]– could provide more evidence

of the adequacy of the proposed LoT.

Fig 6. Mean probability PGeoðxÞ. Mean probability PGeoðxÞ for all sequences x with the same complexity. Subfigure A: Sequences with |x| = 4. Subfigure B: Sequences

with |x| = 5. Subfigure C: Sequences with |x| = 6. Subfigure D: Sequences with |x| = 7. Subfigure E: Sequences with |x| = 8.

https://doi.org/10.1371/journal.pone.0200420.g006
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Having a principled method for defining grammars in LoTs is a crucial aspect for their suc-

cess because slightly different grammars can lead to different results, as has been shown in

[23].

The experimental data used in this work was designed at [16] to understand how

humans encode visuo-spatial sequences as structured expressions. As future research, we

plan to perform a specific experiment to test these ideas in a broader range of domains.

Additionally, data from more domains is needed to demonstrate if this method could also

be used to effectively prove whether different people use different LoT productions as out-

lined in Fig 5.

Finally, we showed an empirical equivalence between the complexity of a sequence in a

minimal description length (MDL) model and the probability of the same sequence in a Bayes-

ian inference model which is consistent with the theoretical relationship described in the Cod-

ing Theorem. This opens an opportunity to bridge the gap between these two approaches that

had been described ad complementary by some authors [42].

Fig 7. Histogram of complexity KGeoðxÞ. Histogram of complexity for sequences x with |x| = 8.

https://doi.org/10.1371/journal.pone.0200420.g007
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Supporting information

S1 Fig. MCMC steps for Geo’s productions. MCMC steps for the rest of Geo’s grammar pro-

ductions.

(EPS)

S2 Fig. Histograms of complexity KGeoðxÞ. Histograms of complexity for sequences with

length between 4 and 8.

(EPS)

S3 Fig. Histograms of probability PGeoðxÞ. Histograms of probability for sequences with

length between 4 and 8.
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