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Obesity prevalence is increasing in many countries at alarming levels. A difficulty in the conception of
policies to reverse these trends is the identification of the drivers behind the obesity epidemics. Here, we
implement a spatial spreading analysis to investigate whether obesity shows spatial correlations, revealing
the effect of collective and global factors acting above individual choices. We find a regularity in the spatial
fluctuations of their prevalence revealed by a pattern of scale-free long-range correlations. The fluctuations
are anomalous, deviating in a fundamental way from the weaker correlations found in the underlying
population distribution indicating the presence of collective behavior, i.e., individual habits may have
negligible influence in shaping the patterns of spreading. Interestingly, we find the same scale-free
correlations in economic activities associated with food production. These results motivate future
interventions to investigate the causality of this relation providing guidance for the implementation of
preventive health policies.

he World Health Organization has recognized obesity as a global epidemic'. Obesity heads the list of non-

communicable diseases (NCD) like diabetes and cancer, for which no prevention strategy has managed to

control their spreading®”. Since the gain of excessive body weight is related to an increase in calories intake
and physical inactivity®'* a principal aspect of prevention has been directed to individual habits''. However, the
prevalence of NCDs shows strong spatial clustering'>'*. Furthermore, obesity spreading has shown high sus-
ceptibility to social pressure® and global economic drivers®>’. This suggests that the spread and growth of obesity
and other NCDs may be governed by collective behavior acting over and above individual factors such as genetics
and personal choices™”.

To study the emergence of collective dynamics in the spatial spreading of obesity and other NCDs, we implement a
statistical clustering analysis based on the physics of critical phenomena. We start by investigating regularities in
obesity spreading derived from correlation patterns of demographic variables. Obesity is determined through the
Body Mass Index (BMI) obtained via the formula weight(kg)/[height (m)]*. The obesity prevalence is defined as the
percentage of adults aged = 18 years with a BMI = 30. We investigate the spatial correlations of obesity prevalence in
the USA during a specific year using microdata defined at the county-level provided by the US Centers for Disease
Control (CDC)" through the Behavioral Risk Factor Surveillance System (BRFSS) from 2004 to 2008 (see Methods
section). The average percentage of obesity in USA was historically around 10%. In the early 80’s, an obesity
transition in the hitherto robust percentage, steeply increased the obesity prevalence (Fig. 1a).

Results

Spatial correlations. The spatial map of obesity prevalence in the USA shows that neighboring areas tend to
present similar percentages of obese population' forming spatial ‘obesity clusters’*>'*. The evolution of the spatial
map of obesity from 2004 to 2008 at the county level (Fig. 1b) highlights the mechanism of cluster growth.
Characterizing such geographical spreading presents a challenge to current theoretical physics frameworks of
cluster dynamics'**. The properties of such spatial arrangement are determined by the equal-time two-point
correlation function, C(r), measuring the influence of an observable x; in county i (e.g., in this study: population
density, prevalence of adult obesity and diabetes, cancer mortality rates and economic activity) on another county
j at distance r'*:

_ LZU (xi—%) (xj—%)5(ry —r)
clr)= o2 > 0(rj—r) '

(1)
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Figure 1| The obesity transition. (a) CDC' provides an estimate of the number of obese adults, based on self-reported weight and height, country-wide
since 1970 (blue line), at the state level from 1984 to 2009 (red symbols), and at the county level from 2004 to 2008 (green symbols). A transition is
observed around 1980. We base our analysis on the micro-data at the county level. (b) Map of the spatial spreading of obesity prevalence evidencing
clustering dynamics. (c) Map of the population density defined at the county level in 2003 showing correlated patterns albeit with less clustering than in
obesity. (d) Map of cancer mortality rates per county in 1970 and 2003 visualizing the transition from high correlations and clustering to weak correlation
and more uniformity in 2003. (e) Map of lung cancer mortality per county indicating large clustering properties similar to obesity.
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Here, X is the average over N = 3, 092 counties in the contiguous USA,
=Y, (x—%x)’ /N is the variance, and r;; is the euclidean distance
between the geometrical centers of counties i and j. The delta function
selects counties whose centers are at a distance r. Large positive values
of C(r) reveal strong correlations, while negative values imply anti-
correlations, i.e., two areas with opposed tendencies relative to the
mean in obesity prevalence (analogous to two domains with op-
posite spins in a ferromagnet').

Spatial correlations in any indicator ought to be referred to the
natural correlations of population fluctuations (Fig. 1c). To this aim,
we first calculate C(r) for the population in USA counties, p;, by using
the density: x; = p/a; in Eq. (1), where g; is the county area.
Population density correlations show a slow fall-off with distance
(Fig. 2a) approximately described by a power-law up to a correlation
length ¢:

Clr)~r~, (2)
where 7 is the correlation exponent. Correlations become short-ranged
when y = d (d = 2 is the dimension of the map), and stronger as y
decreases'>'®. An Ordinary Least Squares (OLS) regression analysis™
on the population reveals the exponent y = 1.01 = 0.08 (a value that is
the average over the individual exponents for years 1969-2009, Fig. 2a,
error bars denote 95% confidence interval [CI]). For the fitting, we
adopt standard procedures for functional forms like Eq. (2)** where we
vary the minimum and maximum values of the fitting interval, mon-
itoring the value of R* that optimizes the fitting area (see details in the
Methods section and SI) in order to calculate the exponent y. The
same plot in linear axes, Fig. 2b reveals a distance where correlations
vanish, C(£) = 0 with £ = 1050 km, representing the average size of
the correlated domains™. As we increase r larger than &, we consider
correlations between areas in the East and West which are anti-corre-
lated since C(r) < 0 for r > £.

r<é,

In a typical analysis of empirical data, the possible extent of
correlations is restricted by the finite system size. Even when long-
range correlations are known to be present, a cut-off value will even-
tually emerge. We call this cut-off value the correlation length, &. It is
expected that the value of £ is related to the system size. A stringent
test for the existence of scale-free correlations, such as those appear-
ing in critical systems, is through finite-size scaling analysis, where
we test the behavior of ¢ as a function of the system size. If ¢ is fixed
and does not change when the system size increases, then any corre-
lations that exist cannot be scale-free. The idea of scale-free correla-
tions implies that, for finite systems, correlations are of the order of
the system size and the value of ¢ increases monotonically as we
move to larger systems.

The finite-size scaling analysis requires the study of independent
systems of different sizes. Here, we use high-resolution population
data for 50 countries and calculate the value of & in each case (see
results in Supplementary Table S1). To determine whether popu-
lation correlations are scale-free, we calculate C(r) for geographical
systems of different sizes using a high resolution grid of 2.5 arc-
seconds, available for several countries from Ref. [26] (see Me-
thods section). The resulting correlations (Fig. 2d) reveal the same
picture as for the USA at the county-level (Fig. 2a), i.e., a power-law
up to a correlation length. We then measure ¢ for every country, and
investigate whether, as expected with the laws of critical phenom-
ena”, it increases with the country size, L. Indeed, we obtain (Fig. 2e
and Supplementary Table S1),

P

<(L)~L7, (3)
where v = 0.9 £ 0.1 is the correlation length exponent. This result
implies that the fluctuations in human agglomerations are scale-free,
i.e,, the only length-scale in the system is set by its size and the

correlation length becomes infinite when L — 0'*2>%7,
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Figure 2 | Long-range correlations in spreading phenomena. (a) Correlation function, C(r), averaged over counties at distance r for population density
from 1969-2009 and obesity prevalence from 2004-2008. The lines are fittings based on OLS regression analysis****. (b) Correlation function, C(r), for
population density and obesity as in (a) above, but in linear axes. The plot shows the correlation length, &, at C(¢) = 0 and highlights the fact that ¢ is
approximately the same for the population, obesity and diabetes prevalence (data for 2004). The plot also highlights the anticorrelations for r > . The
inset zooms in the area around C(¢) = 0. (c) Correlation function, C(r), for population density and obesity as in (a) above, but in log-linear axes. The plot

is compatible with logarithmic decay for the obesity correlation function C(r)

~ In(ry/r), where ry = 1307 km (the continuous line indicates this fitting).

The population density decays faster than that and cannot be described by a similar function. (d) Population density correlation function, C(r) vs r, for
different countries in 2009 as indicated. (e) Correlation length & vs linear country size L for different countries. The symbols indicate the same countries as
in Fig. 2d. The remaining star symbols are for other countries as indicated in Supplementary Table S1. L is the square root of the total area of the country.
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We interpret any departure from y = 1 as a proxy of anomalous
dynamics beyond the simple dynamics related to the population
growth. When we calculate the spatial correlations of obesity preval-
ence (s; = 0,/p;, 0; is the number of obese adults in county i) in USA
from 2004 to 2008 we also find long-range correlations (Fig. 2a). The
crux of the matter is that the correlation exponent for obesity (y =
0.50 £ 0.04, averaged over the individual exponents for years 2004—
2008 with an average R*> = 0.96) is smaller than that of the popu-
lation, signaling anomalous growth. Since smaller exponents mean
stronger correlations, the increase in obesity prevalence in a given
place can eventually spread significantly further than expected from
the population dynamics.

The small y exponent of obesity (in comparison with y = 2, the
uncorrelated value) indicates a very slow decay of obesity correla-
tions. In such cases the exact value of y may not be very accurate. This
is common behavior for systems with correlation exponent close to y
= 0; we notice that a similar scale-free correlation function with
exponent y = 0 was found in the velocity fluctuations in bird flocks™.
Furthermore, the limiting case of y — 0 is equivalent to a slow
logarithmic decay: both cases, small y and logarithmic decay imply
the existence of long-range correlations. Indeed, Fig. 2c suggests that
a slow logarithmic dependence can also describe the variation of
correlation with distance in obesity prevalence. In fact, a fitting to

da

1»2 T T T 1

b 12

a logarithmic function C(r) ~ In(ry/r) gives ro = 1307 km with R> =
0.99, similar to the R* value obtained by a power-law fitting. The
value of rq is another estimation of the obesity correlation length, ¢,
which is of the same order of magnitude as the population correlation
length. The natural noise in the empirical data and the small system
size do not allow to accurately distinguish between power-law with
small exponent and logarithmic fittings for obesity. In either case,
though, both a power-law exponent of y = 0.5 and a logarithmic
decay (which represents the limit of y = 0) indicate the presence of
strong and long-range scale-free correlations. These are in sharp
contrast to the exponent y = 1 of population density correlations,
as is evident from Fig. 2c where C(r) for population approaches zero
much faster than logarithmically. In what follows, we report the
correlations in terms of exponents rather than the equivalent log-
arithmic decay.

We also calculate fluctuations in variables which are known to be
strongly related to obesity®>'*>**: diabetes and physical inactivity pre-
valence (fraction of adults per county who report no physical activity
or exercise, see Methods section). The obtained y exponents are
anomalous with similar values as in obesity (Fig. 3a). The system size
dependence of ¢ for obesity and diabetes cannot be measured
directly, since there is no available micro-data for other countries,
analogous to the ones in the USA. However, we find that the value of
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Figure 3 | Correlation exponents. (a) Temporal evolution of y for population distribution, obesity, diabetes, physical inactivity, all cancer mortality, and
lung cancer mortality per county. The diagram displays the classes of strong correlations, y5 = 0.5, and weak correlations, yy = 1. Additionally, theory
predicts y.,q = 2 for uncorrelated systems. We did not observe any human activity or indicators whose correlations fall within this class, unless the data of
different counties is shuffled. (b) Evolution of y for different economic indicators describing the food industry and generic economic sectors as indicated.
We quantify economic activity by the total number of employees of a given sector per county population. Horizontal lines represent the fitted exponent
value of a global correlation curve, averaged over all years. (c) Correlation functions for the economic activities indicated in the figure. The plot shows the
segregation of the data into two classes. For clarity, the curves for food industry have been vertically shifted by a decade. The solid lines indicate y = 1
and y,; = 1/2. (d) Change in C(r) for cancer mortality rates in the period 1970-2003.
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£ for obesity and diabetes in USA is very close to & of the population
distribution, as shown above (inset of Fig. 2b). Assuming that the
equality of the correlation lengths holds also for other countries, then
obesity and diabetes should satistfy Eq. (3) as well. Thus, we expect
that the correlations in obesity and diabetes may become scale-free in
the infinite system size limit.

The form of the correlations in obesity are reminiscent of those in
physical systems at a critical point of second-order phase transi-
tions'>*>*’. Physical systems away from criticality are uncorrelated
and fluctuations in observables, e.g., magnetization in a ferromagnet
or density in a fluid, decay faster than a power-law, e.g., exponen-
tially'>*". Instead, long-range correlations appear at critical points of
phase transitions where fluctuations are not independent and, as a
consequence, fall-off more slowly. The existence of long-range cor-
relations with y = 0.5 — rather than the noncritical exponential
decay — may signal the emergence of strong critical fluctuations in
obesity and diabetes spreading. The notion of criticality, initially
developed for equilibrium systems'>”’, has been successfully ex-
tended to explain a wide variety of dynamics away from equilibrium
ranging from collective behavior of bird cohorts, biological and social
systems to city growth, just to name a few*>>”*>* (it is interesting to
note that the shape of the correlation function in obesity is similar to
the scale-free correlations found in the velocity fluctuations in star-
ling flocks, see Fig. 2 in Ref. [25]). Its most important consequence is
that it characterizes a system for which local details of interactions
have a negligible influence in the global dynamics'>”". Following this
framework, the clustering patterns of obesity are interpreted as the
result of collective behavior which may not merely be the con-
sequence of fluctuations of individual habits.

It should be noticed that criticality is not the only possible
dynamics leading to power-law correlations. A system at criticality
will necessary develop scale-free correlations which allow all system
subparts to feel the influence of far-away system areas. The existence
of a power-law correlation function, though, does not necessarily
imply the existence of criticality. For example, in the two-dimen-
sional XY model, power-law correlations exist below the critical
temperature with a temperature dependent exponent, i.e. in a non-
critical phase®. The idea of criticality can be tested more stringently
by showing the existence of a number of critical properties. The
critical length should diverge with increasing system size, which we
already showed to be true, or the susceptibility should diverge, i.e.
external perturbations should lead to a diverging response function
at the critical point. In the case of obesity such perturbations are very
difficult to observe, but it is still possible for a future study to monitor
changes in obesity spreading under particular perturbations. For
instance, the introduction of a new health policy or a food industry
regulation may allow the study of how these external factors influ-
ence obesity levels. Currently, we can only suggest that the present
analysis is compatible with the idea of criticality, and further studies
are needed to actually prove the existence of criticality in obesity
spreading.

This finding is in analogy with the behavior of bird flocks® or
brain dynamics**. In these studies, long-range correlations were
found in the velocity fluctuations of bird flocks and in the activity
of the brain obtained via fMRI, respectively. The correlations were
attributed to the presence of enough noise to drive the system to a
critical phase. For instance, the noise in bird flocks could be a result of
random errors or computational mistakes in the calculation of direc-
tionality by individual birds, with the resulting total error finely
tuned to bring the system at criticality. Criticality in the brain might
be related to an optimization of information transfer. In obesity
spreading, the order parameter of the system is the obesity preval-
ence, but there is no obvious method to control this parameter.
Similarly, in neuron networks*** an analogy was found with the
Ising model, where the main parameters of the model, such as the
exchange interaction, could be directly calculated experimentally.

The Ising model allowed the study of properties, such as the diver-
gence of the heat capacity, that provide strong evidence in favor of
criticality. In the case of obesity spreading, the indications that we
have for criticality are based on Eq. (3), where ¢ increases with L, i.e.
on the existence of scale-free correlations that diverge as the system
size increases. Further studies may be needed to explore analogies
with statistical models, similarly with the above referenced works.

The underlying hypothesis is that the correlations of fluctuations
observed in the obesity prevalence may be inherited by specific
demographic and economic variables which are thought to be related
to the rise of obesity*®. As a tentative way of addressing which ele-
ments of the economy may be related to the obesity spread, we
calculate y in economic indicators related to obesity*®. Except for
transient phenomena, all studied indicators yield exponents that fall
around y,x = 1 or y = 1/2, representing two universality classes of
weak and strong correlations, respectively (Figs. 3a and 3b).

We begin by studying the correlations in generic sectors of the
economy (measured through the number of employees in an eco-
nomic sector per county population, see Methods section). We find y
close to yyx = 1 (over the period 1998-2009, Fig. 3b and ¢) for sectors
which are not related to obesity, e.g., wholesalers, administration,
and manufacturing. This suggests that generic sectors of the eco-
nomy inherit the correlations in the population (Figs. 3b and c).

Interestingly, analysis of the spatial fluctuations in the economic
activity of sectors associated to food production and sales (super-
markets, food and beverages stores and food services such as restau-
rants and bars) gives rise to the same anomalous value as obesity and
diabetes (yy, = 1/2, 1998-2009, Fig. 3b and c). Although these results
cannot inform about the causality of these relations, they show that
the scaling properties of the obesity patterns display a spatial coup-
ling which is also expressed by the fluctuations of sectors of the
economy related to food production.

It is of interest to study other health indicators for which active
health policies have been devoted to control the rate of growth. We
apply the correlation analysis to lung cancer mortality defined at the
county level and compare with mortality due to all types of cancer
(see Methods section). The spatial correlations of cancer mortality
per county show an interesting transition in the late 70’s from ano-
malous strong correlations, s, = 1/2, to weak correlations, yy = 1,
(Fig. 3a and 3d). This transition is visualized in the different corre-
lated patterns of cancer mortality in 1970 and 2003 in Fig. 1d, i.e., the
clustering of the data is more profound in 1970, while in 2003 it
spreads more uniformly. This behavior raises the intriguing possibil-
ity that the anomalous strongly-correlated dynamics of the past have
been smoothed out with time. The current status of all-cancer mor-
tality fluctuations is close to the natural one, inflicted by population
correlation. Conversely, fluctuations in the mortality rate due to lung
cancer from 1970 to 2003 have remained highly correlated and close
to the obesity value, y; = 1/2 (Fig. 3a and 1e), while the other types of
cancer have become less correlated. This is an interesting finding
since lung cancer prevalence, similarly to obesity, is affected by a
global factor (smoking) and has been growing rapidly during the
studied period. A question for future research is whether the strong
scale-free correlations in indicators like obesity, diabetes and lung
cancer may explain the fast growth of the indicators in comparison
with the population. Studies of scale dependence of the growth rates
might shed light to this question®.

Evolution of obesity clusters near percolation. The most visible
characteristic of correlations is the formation of spatial clusters of
obesity prevalence. To quantitatively determine the geographical for-
mation of obesity clusters, we implement a percolation analysis'®
>3 The control parameter of the analysis is the obesity threshold,
s. An obesity cluster is a maximally connected set of counties for
which s; exceeds a given threshold s: s; = s. By decreasing s, we
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monitor the progressive formation, growth and merging of obesity
clusters.

In random uncorrelated percolation'®, small clusters would be
formed in a spatially uniform way until a critical value, s, is reached,
and an incipient cluster spans the entire system. Instead, when we
analyze the obesity clusters we observe a more complex pattern
exemplified in Fig. 4a and 4b for year 2008. At large s, the first cluster
appears in the lower Mississippi basin (red in Fig. 4a) with epicenter
in Greene county, AL. Upon decreasing s to 0.32, new clusters are
born including two spanning the South and North of the

Figure 4 | Percolation picture of obesity. (a) Size of the first (circles) and
second (squares) largest components as a function of the obesity
prevalence threshold s in 2008. As we lower s, the largest component
increases abruptly indicating absorption of whole clusters, as also
evidenced by the peaks in the second largest cluster'®. We observe two main
transitions at s, and s, in the real data (red) and a single second-order
transition in the randomized data (blue). The maps show the progression
of the obesity clusters with at least 5 counties for a given s. (b) Percolation
tree representing the hierarchical formation, growth and merging of
obesity clusters. Each dot represents a cluster at a given s with a size
proportional to the logarithm of the cluster’s area. Cluster colors follow
Fig. 4a and we indicate their geographic regions. As we lower s from right to
left, regions of high obesity prevalence appear first in the tree. The main
percolating cluster starts in the lower Mississippi basin (red) at high sand
absorbs clusters until percolating through all US. In particular, we note the
two main transitions at s, , where it absorbs the two Appalachian clusters,
and at s,,, where it absorbs the West US cluster. (c) Detail of the evolution
of obesity clusters near percolation as indicated. The map shows the shape
of the first (red), second (yellow), and third (violet) clusters around s, , and
the largest (green) cluster at s,, together with the location of the red bonds
responsible for the transitions. The epicenter is Greene county, AL with
43.7% obesity prevalence. (d) Box fractal dimension of percolating cluster
in the inset measured by the number of boxes of size ¢ needed to cover the
cluster: Ny(€) ~e~%, and fractal dimension of the boundary measured by
the number of boxes needed to cover the hull: Ny, (€) ~€~%. (e) Probability
distribution of the area of the obesity clusters, P(A) ~ A, at percolation
s¢, averaged from 2004-2008. This scaling law generalizes Zipf’s law* from
urban to obesity clusters.

Appalachian Mountains, which acts as a geographical barrier sepa-
rating the second and third largest clusters (yellow and violet in
Fig. 4a, respectively). Further lowering s, we observe a percolation
transition in which the Appalachian clusters merge with the
Mississippi cluster. This point is revealed by a jump in the size of
the largest component and a peak in the second largest component at
s¢, =0.314 (Fig. 4a) as features of a percolation transition'®. As a com-
parison, when we randomize the obesity data by shuffling the values
between counties, a single critical point at s, = 0.29 appears as a sig-
nature of an uncorrelated percolation process (blue symbols in Fig. 4a).

Obesity clusters in the West persist segregated from the main
Eastern cluster avoiding a full-country percolation due to low-pre-
valence areas around Colorado state. Finally, the East and West
clusters merge at s., =0.256 by a red bond (Rich county, Utah)
producing a second percolation transition; this time spanning the
whole country (see Fig. 4a and ¢, where the whole spanning cluster is
green). This cluster-merging process is a hierarchical percolation
progression represented in the tree model in Fig. 4b.

The shape of the main obesity clusters and location of the red
bonds and obesity epicenter are depicted in Fig. 4c overlayed with
a US map showing the boundaries of states and counties. Figure 4c
shows the obesity clusters obtained at s = 0.318, s, =0.314, s =
0.310, and s, =0.256, depicting the process of percolation. At s =
0.318, we plot the largest red cluster which is seen in the lower
Mississippi basin. The highest obesity prevalence is in Greene
county, AL, which acts as the epicenter of the epidemic. At s, we
plot in yellow the second largest cluster in the Atlantic region south
of the Appalachian Mountains, and at s = 0.310 we plot the third
largest cluster (violet), which appears north of the Appalachian
Mountains. We mark with black the three red bonds that make the
Mississippi cluster to grow abruptly by absorbing the clusters in the
Appalachian range. The red bonds are DeKalb county, TN, McLean
county, KY, and Colquitt county, GA. This transition is reflected in
the jump in the size of the largest cluster in Fig. 4a. The same process
is observed in the second percolation transition at s.,, when the red
bond, Rich county, UT, joins the Eastern and Western clusters for a
whole-country percolation.
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Scaling exponents of percolation clusters. To further inquire whether
the spreading of obesity has the features of a physical system at the
critical point, we examine the geometry and distribution of obesity
clusters. For long-range correlated critical systems percolating through
nearest neighbors in two dimensional maps, the geometrical stru-
cture'®'** gives rise to three critical exponents: the fractal dimension
of the spanning cluster, df, the fractal dimension of the hull, d,, and the
cluster size distribution exponent, 7, analogous to Zipf’s law”. These
exponents can be calculated through the following methods:

(i) The scaling of the number of boxes Ny to cover the infinite
spanning cluster versus the size of the boxes e:

NB(6)~e’df, (4)
defines the fractal dimension of the spanning cluster, dy.

(ii) The number of boxes, Ny, of size € covering the perimeter of the
infinite cluster:

Ni(e) ~e %, (5)
defines the hull fractal dimension, d..
(iii) The probability distribution of the area of clusters at percolation:
P(A)~ATT, (6)

is characterized by the critical exponent t. Additionally, there is a
scaling relation between the fractal dimension and the cluster distri-
bution exponent'®: t = 1 + 2/dy. This scaling law (6) is a generaliza-
tion of Zipf’s law* for urban populations to obese populations.

For the percolating obesity cluster at s., displayed in the inset of
Fig. 4d, we confirm critical scaling with exponents: (ds d., 7) = (1.79
+0.08, 1.37 £ 0.06, 1.9 = 0.1) (Fig. 4d, e).

The exponents (ds d., 7) for percolation with long-range correla-
tions have been calculated numerically in Refs. [19-22] as a function
of the correlation exponent y using standard percolation analysis.
There exists also a theoretical prediction based on Renormalization
Group in Ref. [18] for the correlation length exponent. A direct
computer simulation of long-range percolation'~** for y = 0.5 finds
the values of the three geometric exponents to be (dg d, 1) = (1.9 =
0.1, 1.39 = 0.03, 2.05 * 0.08), consistent with those reported here.

We notice that the exponent 7 is expected to be larger than 2. This
is due to mass conservation, assuming that the power-law Eq. (6)
extends to infinity at percolation in an infinite system size. The fact
that we find a value slightly smaller than 2 for the obesity clusters,
might be due to a finite size effect. We also notice that the values of
the exponents obtained from correlated percolation at y = 0.5 are not
too far from those of uncorrelated percolation'. Therefore, the
values of the exponents may not be enough to precisely compare
the obesity clusters with long-range percolation clusters. However,
they serve as an indication that the obesity clusters have the geomet-
rical properties of clusters at a critical point, such as scaling behavior.
Furthermore, it could be possible that long-range correlated percola-
tion may capture only part of the dynamics of the clustering epi-
demic. It could be, for instance, that higher order correlations,
beyond the two-point correlation captured by C(r), are also relevant
in determining the value of the exponents. In this case, our analysis
should be supplemented by studies of n—point correlation functions,
beyond C(r).

Covariance. The present approach is based on critical phenomena
and attempts to classify dissimilar indicators (from health to eco-
nomy) with universal scaling exponents (), v, ds d., 7). Thus, our
approach supplements covariance analyses™ which are routinely
done in social sciences. Here, we have used physics concepts to shed
a different view on the spreading of obesity. Our analysis can be
extended to study the geographical spreading of any epidemic: from

diabetes and lung cancer, as shown here, to the spreading of viruses or
real estate bubbles, where the spatial spreading plays an important role.

Population correlations are naturally inherited by all demographic
observables. Even variables whose incidence varies randomly from
county to county would exhibit spatial correlations in their absolute
values, simply because its number increases in more populated
counties and population locations are correlated. Indeed, the abso-
lute number of obese adults per county is directly proportional to the
population of the county®. Our aim is to measure spatial fluctuations
on the frequency of incidence, independent of population agglom-
eration. Thus, spatial correlations of all indicators ought to be calcu-
lated on the density defined, in the case of obesity, as s; = o,/p;, rather
than on the absolute number of obese people, o;, itself. The spatial
correlations of the fluctuations of s; from the global average captures
the collective behavior expressed in the power-law described in Eq.
(2).

While the understanding of covariance between obesity and other
factors is out of the scope of the present study, we can still tentatively
study the covariance of obesity and economic factors, such as
income. We calculated the covariance between the obesity fraction
at the county level with the per capita personal income in this county.
The result (shown in SI-Fig. S2) indicates that there is a generally
broad dependence of higher obesity in counties with lower income.
This is indicated by the running average curve, which decreases as a
function of the income. However, this covariance is not very strong as
can be seen by the wide spreading of the counties in this plot. For
instance, the county with the highest obesity prevalence (43.7%) in
2008 has an income of $31908, which is very close to the median
income value. Consequently, the personal income indicator may not
be reliably used to predict the obesity level at a given county.

In general, our approach attempts to go beyond this kind of cov-
ariance estimations by studying quantities such as the long-range
correlated exponent 7y, which may provide an alternative form of
classification of dissimilar factors into universality classes, as done
in Figs. 2a and 2b.

Discussion

Taken together, these results show that obesity spreading behaves as
a self-similar strongly-correlated scale-free system. In particular, a
note of caution has to be raised since, even if the highest prevalence of
obesity is localized to the South and Appalachia, the scaling analysis
indicates that the obesity problem is the same (self-similar) across all
USA, including the lower prevalence areas.

Interestingly, the indicators that undergo a significant growth in
short time intervals, such as lung cancer, diabetes, and obesity, fall in
the universality class with strong long-range correlations (ys; = 0.5),
although the inverse is not necessarily true. This finding leads us to
the surprising conjecture that the static properties expressed by the
exponent y may be related to the growth rates®, which is a dynamic
quantity.

In Ref. [33] a model has been proposed where the population
growth rate is characterized by a static exponent f that measures
the scaling of resources or social activities with the population of a
given city. The indicators related to the economic growth of the cities
were found to increase faster than linear (f > 1) while the resources
of the cities increase sub-linearly (f < 1). Thus, the population
growth eventually depends on the value of § and different population
estimates are predicted when switching from economies of scale (f <
1, population growth asymptotically stops) to innovation-driven
economies (f§ > 1, exponential population growth). This model is
an attempt to classify different social and economic indicators
according to human activity in cities, similar in scope with our study
here. The relation between our results and Ref. [33] remains an open
problem, since that study was a mean-field consideration and spatial
correlations in activity were not taken into account.
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Finally, we note that our results cannot establish a causal relation
between obesity prevalence and economic indicators: whether fluctua-
tions in the food economy may impact obesity or, instead, whether the
food industry reacts to obesity demands. However, the comparative
similarities of statistical properties of demographic and economical
variables serves to identify possible candidates which shape the epi-
demic. Specifically, the observation of a common universality class in
the correlations of obesity prevalence and economic activity of super-
markets, food stores and food services — which cluster in a different
universality class than simple population dynamics — is in line with
studies proposing that an important component of the rise of obesity
is linked to the obesogenic environment™ regulated by food market
economies*>*. This result is consistent with recent research that relates
obesity with residential proximity to fast-food stores and restau-
rants”*. The present analysis based on clustering and critical fluctua-
tions is a supplement to studies of association between people’s BMI
and food’s environment based on covariance””. In sum, we have
detected potential candidates in the economy which relate to the
spreading of obesity by showing the same universal fluctuation prop-
erties. Eventually, these tentative relations ought to be corroborated by
future intervention studies.

Methods

Datasets. Obesity is determined through the Body Mass Index (BMI) which
compares the weight and height of an individual via the formula weight(kg)/
height(m?). A BMI value of 30 is considered the obesity threshold. Overweight but not
obese is 25 <BMI< 30, and underweight is BMI<18.5. Our main measure in this
work is the adult obesity prevalence of a county, s; = 0,/p;, defined for a given year as
the number of obese adults o; (BMI> 30) in a county i over the total number of adults
in this county, p;. We use the data from the USA Center for Disease Control (CDC)
downloaded from Ref. [14]. CDC provides an estimate of the obesity country-wide
since 1970, at the state level from 1984 to 2009, and at the county level from 2004 to
2008. The study of the correlation function C(r) requires high resolution data.
Therefore, we use data defined at the county level and restrict our study of obesity and
diabetes to the available period 2004-2008. Other indicators are provided by different
agencies at the county level for longer periods.

The datasets analyzed in this paper were obtained from the websites as indicated
below. They can be downloaded from http://jamlab.org. The datasets consist of a list
of populations and other indicators at specific counties in the USA at a given year. A
graphical representation of the obesity data can be seen in Fig. 1b for USA from 2004
to 2008, where each point in the maps represents a data point of obesity prevalence
directly extracted from the dataset.

The datasets that we use in our study have been collected from the following sources:

(a) Population

- US Census Bureau. We downloaded a number of datasets at the county level from
http://www.census.gov/support/USACdataDownloads.html.

- For the population estimates we used the table PIN030. For the years 1969-2000 we
use data supplied by BEA (Bureau of Economic Analysis) and for years 2000-
2009 we use the file CO-EST2009-ALLDATA.csv from http://www.census.gov/
popest/data/counties/totals/2009/files/ CO-EST2009-ALLDATA..csv.

(b) Health indicators

- Data downloaded from the Centers for Disease Control and Prevention (CDC).
http://apps.nccd.cde.gov/DDT_STRS2/
NationalDiabetesPrevalenceEstimates.aspx

The center provides county estimates between the years 2004-2008 for:

-Diagnosed diabetes in adults.
-Obesity prevalence in adults.
—Physical inactivity in adults.

The estimates for obesity and diabetes prevalence and leisure-time physical inac-
tivity were derived by the CDC using data from the census and the Behavioral Risk
Factor Surveillance System (BRFSS) for 2004, 2005, 2006, 2007 and 2008. BRESS is an
ongoing, state-based, random-digit-dialed telephone survey of the U.S. civilian, non-
institutionalized population aged 18 years and older. The analysis provided by the
BRESS is based on self-reported data, and estimates are age-adjusted on the basis of
the 2000 US standard population. Full information about the methodology can be
obtained at http://www.cdc.gov/diabetes/statistics.

(¢) Economic indicators

- We downloaded data for economic activity through http://www.census.gov/econ/.
The economic activity of each sector is measured as the total number of employ-

ees in this sector per county in a given year normalized by the population of the
county. The North American Industry Classification System (NAICS) (http:/
WWW.census.gov/eos/wwwy/naics) assigns hierarchically a number based on the
particular economy sector. The NAICS is the standard used by US statistical
agencies in classifying business establishments across the US business economy.

In this study we have used the following economic sectors with their corresponding
NAICS:

* 31. Manufacturing. Broad economic sector from textiles, to construction materials,
iron, machines, etc.

¢ 42. Wholesale trade. Very broad sector including merchants wholesalers, motors,
furniture, durable goods, etc.

 56. Administrative jobs and support services.

* 445. Food and beverage stores. Including all the food sectors, from supermarkets,
fish, vegetables meat markets, to restaurants and bars and other services to the
food industry.

¢ 44511. Supermarkets and other grocery (except convenience) stores. This is a
subsection of NAICS 445.

* 722. Food services and drinking places. A sub-sector of NAICS 72 which includes
restaurants, cafeterias, snacks and nonalcoholic beverage bars, caterers, bars and
drinking places (alcoholic beverages).

(d) Mortality rates

-We use data from the National Cancer Institute SEER, Surveillance Epidemiology
and End Results downloaded from http://seer.cancer.gov/data/.

The Institute provides mortality data from 1970 to 2003, aggregated every three
years. We analyze the mortality of a specific form of cancer per county normalized by
the population of the county. Here, we use mortality data for the following causes of
death:

—All cancer, independently of type.
-Lung cancer.

Gridded data of population from CIESIN
We take advantage of the available data of population distribution around the globe
defined in a square grid of 2.5 arc-seconds obtained from*®. These data allow to study
the correlation functions of the population distribution for many countries. By using
these data we are able to test the system size dependence of our results. We find that
the correlation length ¢ is proportional to the linear size of the country, L. The linear
size is calculated as Total Area = L>. We find that the correlation scales with the
system size as discussed in the text. For instance, for the USA population distribution
we find ¢ = 1050 km, while a smaller country like UK has & = 321 km.
Supplementary Table S1 shows a list of countries used in Figs. 2d and e to deter-
mine the correlation length & of the correlation function of population density.

Fitting Methods

The fact that the correlation length diverges with the system size is an indication of
critical behavior, and, thus, we search for power-law scaling, even though our system
is finite.

The geographical analysis imposes constraints to the maximum possible scale of
observing a power law, while there is a lot of noise in the datasets due to the com-
plexity of acquiring and filtering the empirical data in their source. To improve the
quality of the data we started by averaging the correlation functions over all years, for
the cases where the powerlaw exponent seemed stable with time. We then calculated
the running average with a window of 50 points along the x-axis. The resulting curve
was fitted with standard OLS methods® in the range [7,,,i» 'max], Where ,,,;,, was in the
range of 30-50 km, and r,,,, was in the range of 100-1000 km. We assessed the
goodness of fitting in each interval through the coefficient of determination R?, which
can take values between 0 and 1. Here, we generally accept fittings where R? 2 0.9.
The best fittings in almost all cases were in the range [40, 400]. The reported values of
7 in the manuscript are obtained in this interval. We then used this interval to fit the
individual correlation functions for each year.
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