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Abstract. We present a data-driven generative framework for synthe-
sizing blood vessel 3D geometry. This is a challenging task due to the
complexity of vascular systems, which are highly variating in shape, size,
and structure. Existing model-based methods provide some degree of
control and variation in the structures produced, but fail to capture the
diversity of actual anatomical data. We developed Vessel VAE, a recursive
variational Neural Network that fully exploits the hierarchical organiza-
tion of the vessel and learns a low-dimensional manifold encoding branch
connectivity along with geometry features describing the target surface.
After training, the Vessel VAE latent space can be sampled to generate
new vessel geometries. To the best of our knowledge, this work is the
first to utilize this technique for synthesizing blood vessels. We achieve
similarities of synthetic and real data for radius (.97), length (.95), and
tortuosity (.96). By leveraging the power of deep neural networks, we
generate 3D models of blood vessels that are both accurate and diverse,
which is crucial for medical and surgical training, hemodynamic simula-
tions, and many other purposes.

Keywords: Vascular 3D model - Generative modeling - Neural Net-
works.

1 Introduction

Accurate 3D models of blood vessels are increasingly required for several pur-
poses in Medicine and Science [25]. These meshes are typically generated using
either image segmentation or synthetic methods. Despite significant advances in
vessel segmentation [26], reconstructing thin features accurately from medical
images remains challenging [2]. Manual editing of vessel geometry is a tedious
and error prone task that requires expert medical knowledge, which explains the
scarcity of curated datasets. As a result, several methods have been developed
to adequately synthesize blood vessel geometry [29].

Within the existing literature on generating vascular 3D models, we identi-
fied two primary types of algorithms: fractal-based, and space-filling algorithms.
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Fractal-based algorithms use a set of fixed rules that include different branching
parameters, such as the ratio of asymmetry in arterial bifurcations and the re-
lationship between the diameter of the vessel and the flow [7I33]. On the other
hand, space-filling algorithms allow the blood vessels to grow into a specific per-
fusion volume while aligning with hemodynamic laws and constraints on the
formation of blood vessels [QI25122T721]. Although these model-based methods
provide some degree of control and variation in the structures produced, they
often fail to capture the diversity of real anatomical data.

In recent years, deep neural networks led to the development of powerful gen-
erative models [30], such as Generative Adversarial Networks [8/12] and Diffusion
Models [IT], which produced groundbreaking performance in many applications,
ranging from image and video synthesis to molecular design. These advances have
inspired the creation of novel network architectures to model 3D shapes using
voxel representations [28], point clouds [31], signed distance functions [19], and
polygonal meshes [18]. In particular, and close to our aim, Wolterink et al. [27]
propose a GAN model capable of generating coronary artery anatomies. How-
ever, this model is limited to generating single-channel blood vessels and thus
does not support the generation of more complex, tree-like vessel topologies.

In this work we propose a novel data-driven framework named VesselVAE
for synthesizing blood vessel geometry. Our generative framework is based on a
Recursive variational Neural Network (RvNN), that has been applied in various
contexts, including natural language [24123], shape semantics modeling [T4/T5],
and document layout generation [20]. In contrast to previous data-driven meth-
ods, our recursive network fully exploits the hierarchical organization of the ves-
sel and learns a low-dimensional manifold encoding branch connectivity along
with geometry features describing the target surface. Once trained, the Vessel-
VAE latent space is sampled to generate new vessel geometries. To the best of
our knowledge, this work is the first to synthesize multi-branch blood vessel trees
by learning from real data. Experiments show that synth and real blood vessel
geometries are highly similar: radius (.97), length (.95), and tortuosity (.96).

2 Methods

Input. The network input is a binary tree representation of the blood vessel
3D geometry. Formally, each tree is defined as a tuple (7, &), where T is the set
of nodes, and £ is the set of directed edges connecting a pair of nodes (n,m),
with n,m € T. In order to encode a 3D model into this representation, vessel
segments V' are parameterized by a central axis consisting of ordered points in
Euclidean space: V' = vy, vs,...,vny and a radius r, assuming a piece-wise tubu-
lar vessel for simplicity. We then construct the binary tree as a set of nodes
T = nq,ns,...,nN, where each node n; represents a vessel segment v and con-
tains an attribute vector x; = [z;,v:, zi,7i] € R* with the coordinates of the
corresponding point and its radius r;. See Section [3| for details.
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Fig. 1. Top: Overview of the Recursive variational Neural Network for synthesizing
blood vessel structures. The architecture follows an Encoder-Decoder framework which
can handle the hierarchical tree representation of the vessels. VesselVAE learns to
generate the topology and attributes for each node in the tree, which is then used to
synthesize 3D meshes. Bottom: Layers of the Encoder and Decoder networks comprising
branches of fully-connected layers followed by leaky ReLU activations. Notice that
right /left Enc-MLPs of the Encoder only execute when the incoming tree requires it.
Similarly, the Decoder only uses right /left Dec-MLPs when the Node Classifier predicts
bifurcations.

Network architecture. The proposed generative model is a Recursive vari-
ational Neural Network (RvINN) consisting of two main components: the Encoder
(Enc) and the Decoder (Dec) networks. The role of the Encoder is to transform
a tree structure into a hierarchical encoding situated on the learned manifold. On
the other hand, the Decoder network is capable of sampling from this encoded
space utilizing these samples to decode tree structures, as depicted in Fig. [}
The encoding and decoding processes are achieved through a depth-first traver-
sal of the tree, where each node is combined with its parent node in a recursive
manner. The model outputs a hierarchy of vessel branches, where each internal
node in the hierarchy is represented by a vector encoding its own attributes and
the information of all subsequent nodes in the tree.

Within the RvINN Decoder network there are two essential components: the
Node Classifier (Cls) and the Features Decoder Multi-Layer Perceptron (Fea-
tures Dec-MLP). The Node Classifier discerns the type an encoded node should
be decoded into, whether a leaf node or an internal node with one or two bifurca-
tions. This is implemented as a multi-layer perceptron trained to predict a three-
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category bifurcation probability with an encoded vector as input. Complement-
ing the Node Classifier, the Features Dec-MLP is responsible for reconstructing
the attributes of each node, specifically its position and radius. Furthermore, two
additional components, the Right and Left Dec-MLP, are in charge of recursively
decoding the next encoded vector in the tree hierarchy. These decoder branches
do not always execute, and depend on the decision made by the classifier. If the
Node Classifier predicts one bifurcation for a node, a right child is assumed by
default.

In addition to the core architecture, our model is further augmented with
three auxiliary, shallow, fully-connected neural networks: f,,, fs, and g.. Posi-
tioned before the RvNN bottleneck, the f, and f, networks shape the distri-
bution of the latent space where encoded tree structures lie. Conversely, the
g, network, situated after the bottleneck, facilitates the decoding of latent vari-
ables, aiding the Decoder network in the reconstruction of tree structures. Collec-
tively, these supplementary networks streamline the data transformation process
through the model. All activation functions used in the network are leaky Re-
LUs. See the Appendix for other implementation details.

Objective. Our generative model is trained to learn a probability distribu-
tion over the latent space that can be used to generate new blood vessel segments.
After encoding, the decoder takes samples from a multivariate Gaussian distri-
bution: zs(x) ~ N(u, o) with p = f,(Enc(z)) and o = f,(Enc(z)), where Enc
is the recursive encoder and f,, f, are two fully-connected neural networks. In
order to recover the feature vectors x for each node along with the tree topology,
we simultaneously train the regression network (Features Dec-MLP in Fig. (1)) on
a reconstruction objective Ly ccon, and the Node Classifier using Lypo. Addition-
ally, in line with the general framework proposed by 8-VAE [10], we incorporated
a Kullback-Leibler (KL) divergence term encouraging the distribution p(zs(x))
over all training samples x to move closer to the prior of the standard normal
distribution p(z). We therefore minimize the following equation:

L= Lrecon + aLtopo + PyLKL; (]-)

where the reconstruction loss is defined as Lyccon = || Dec(25(x)) — z||y, the
Kullback-Leibler divergence loss is Lkr, = Dk, (p (zs(x)) ||p(2)), and the topol-
ogy objective is a three-class cross entropy 10ss Liop, = X5_;x.log(Cls(Dec(x)).).
Notice that z. is a binary indicator (0 or 1) for the true class of the sample z.
Specifically, z. = 1 if the sample belongs to class ¢ and 0 otherwise. Cls(Dec(x)).
is the predicted probability of the sample x belonging to class ¢ (zero, one, or
two bifurcations), as output by the classifier. Here, Dec(x) denotes the encoded-
decoded node representation of the input sample x.

3D mesh synthesis. Several algorithms have been proposed in the litera-
ture to generate a surface 3D mesh from a tree-structured centerline [29]. For
simplicity and efficiency, we chose the approach described in [6], which produces
good quality meshes from centerlines with a low sample rate. The implemented
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method iterates through the points in the curve generating a coarse quadrilateral
mesh along the segments and joints. The centerline sampling step is crucial for a
successful reconstruction outcome. Thus, our re-sampling is not equispaced but
rather changes with curvature and radius along the centerline, increasing the
frequency of sampling near high-curvature regions. This results in a better qual-
ity and more accurate mesh. Finally, Catmull-Clark subdivision algorithm [5] is
used to increase mesh resolution and smooth out the surface.

3 Experimental Setup

Materials. We trained our networks using a subset of the open-access IntrA
dataset El published by Yang et al. in 2020 [32]. This subset consisted of 1694
healthy vessel segments reconstructed from 2D MRA images of patients. We
converted 3D meshes into a binary tree representation and used the network ex-
traction script from the VMTK toolkit Elto extract the centerline coordinates of
each vessel model. The centerline points were determined based on the ratio be-
tween the sphere step and the local maximum radius, which was computed using
the advancement ratio specified by the user. The radius of the blood vessel con-
duit at each centerline sample was determined using the computed cross-sections
assuming a maximal circular shape (See Figure . To improve computational
efficiency during recursive tree traversal, we implemented an algorithm that bal-
ances each tree by identifying a new root. We additionally trimmed trees to a
depth of ten in our experiments. This decision reflects a balance between the
computational demands of depth-first tree traversal in each training step and

4 https://github.com/intra3d2019/IntrA
% http://www.vmtk.org/vmtkscripts/vmtknetworkextraction


https://github.com/intra3d2019/IntrA
http://www.vmtk.org/vmtkscripts/vmtknetworkextraction

6 Paula Feldman et al.

the complexity of the training meshes. Trees with higher depth and non-binary
bifurcations or loops were excluded from our study. However, non-binary trees
can be converted into binary trees and it is possible to train with deeper trees
at the expense of higher computational costs. Ultimately, we were able to obtain
700 binary trees from the original meshes using this approach.

Implementation details. For the centerline extraction, we set the advance-
ment ratio in the VMTK script to 1.05. The script can sometimes produce mul-
tiple cross-sections at centerline bifurcations. In those cases, we selected the
sample with the lowest radius, which ensures proper alignment with the center-
line principal direction. All attributes were normalized to a range of [0, 1]. For
the mesh reconstruction we used 4 iterations of Catmull-Clark subdivision algo-
rithm. The data pre-processing pipeline and network code were implemented in
Python and PyTorch Framework.

Training. In all stages, we set the batch size to 10 and used the ADAM
optimizer with 31 = 0.9, B2 = 0.999, and a learning rate of 1 x 10™%. We set
a = .3 and v = .001 for Equation [I]in our experiments. To enhance computation
speed, we implemented dynamic batching [I6], which groups together operations
involving input trees of dissimilar shapes and different nodes within a single in-
put graph. It takes approximately 12 hours to train our models on a workstation
equipped with an NVIDIA A100 GPU, 80GB VRAM, and 256GB RAM. How-
ever, the memory footprint during training is very small (<1GB) due to the use
of a lightweight tree representation. This means that the amount of memory re-
quired to store and manipulate our training data structures is minimal. During
training, we ensure that the reconstructed tree structure aligns with the origi-
nal tree’s structure, rather than relying solely on the classifier’s predictions. We
train the classifier using a cross-entropy loss that compares its predictions to the
actual values from the original tree. Since the number of nodes in each class is
unbalanced, we scale the weight given to each class in the cross-entropy loss us-
ing the inverse of each class count. During preliminary experiments, we observed
that accurately classifying nodes closer to the tree root is critical. This is because
a miss-classification of top nodes has a cascading effect on all subsequent nodes
in the tree (i.e. skip reconstructing a branch). To account for this, we introduce
a weighting scheme that assigns a weight to each node’s cross-entropy loss based
on the number of total child nodes. This weight is then normalized by the total
number of nodes in the tree.

Metrics. We defined a set of metrics to evaluate our trained network’s per-
formance. By using these metrics, we can determine how well the generated 3D
models of blood vessels match the original dataset distribution, as well as the
diversity of the generated output. The chosen metrics have been widely used in
the field of blood vessel 3D modeling, and have shown to provide reliable and
accurate quantification of blood vessels main characteristics [I3I3]. We analyzed
the tortuosity per branch, the vessel centerline total length, and the average ra-
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Fig. 3. (a) shows the histograms of total length, average radius and tortuosity per
branch for both, real and synthetic samples. (b) shows a visual comparison among our
method and two baselines [27/9].

dius of the tree. Tortuosity distance metric [4] is a widely used metric in the field
of blood vessel analysis (mainly because of its clinical importance). It measures
the amount of twistiness in each branch of the vessel. The vessel total length
and average radius were used in previous work to distinguish healthy vasculature
from cancerous malformations. Finally, in order to measure the distance across
distributions for each metric, we compute the cosine similarity.

4 Results

We conducted both quantitative and qualitative analyses to evaluate the model’s
performance. For the quantitative analyses, we implemented a set of metrics
commonly used for characterizing blood vessels. We computed histograms of the
radius, total length, and tortuosity for the real blood vessel set and the generated
set (700 samples) in Figure [3[ (a). The distributions are aligned and consistent.
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We measured the closeness of histograms with the cosine similarity by projecting
the distribution into a vector of n-dimensional space (n is the number of bins in
the histogram). Since our points are positive, the results range from 0 to 1. We
obtain a radius cosine similarity of .97, a total length cosine similarity of .95,
and a tortuosity cosine similarity of .96. Results show high similarities between
histograms demonstrating that generated blood vessels are realistic. Given the
differences with the baselines generated topologies, for a fair comparison, we
limited our evaluation to a visual inspection of the meshes.

The qualitative analyses consisted of a visual evaluation of the reconstructed
outputs provided by the decoder network. We visually compared them to state-
of-the-art methods in Figure [3| (b). The method described in Wolterink et al.
[2018] [27] is able to generate realistic blood vessels but without branches and the
method described in Hamarneh et al. [2010] [9] is capable of generating branches
with straight shapes, missing on realistic modeling. In contrast, our method is
capable of generating realistic blood vessels containing branches, with smooth
varying radius, lengths, and tortuosity.

5 Conclusions

We have presented a novel approach for synthesizing blood vessel models using
a variational recursive autoencoder. Our method enables efficient encoding and
decoding of binary tree structures and produces high-quality synthesized models.
In the future, we aim to explore combinations of our approach with representing
surfaces by the zero level set in a differentiable implicit neural representation
(INR) [I]. This could lead to more accurate and efficient modeling of blood ves-
sels and potentially other non-tree-like structures such as capillary networks.
Since the presented framework would require significant adaptations to accom-
modate such complex topologies, exploring this problem would certainly be an
interesting direction for future research. Additionally, the generated geometries
might show self-intersections. In the future, we would like to incorporate restric-
tions into the generative model to avoid such artifacts. Overall, we believe that
our proposed approach holds great promise for advancing 3D blood vessel ge-
ometry synthesis and contributing to the development of new clinical tools for
healthcare professionals.
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Table 1. Our proposed method consists of two primary components: a recursive En-
coder and a recursive Decoder. All layers in each component are fully connected with
leaky rectified linear unit (Leaky ReLU) activations. The Classifier is a sub-network
inside the Decoder that predicts a label for each node in the input graph.

Layer name|Input shape[Output shape|Layer name[Input shape[Output shape
Encoder Decoder
fcl 4 512 fcl 128 256
fc2 512 128 fc_leftl 256 256
right fcl |128 512 fc_left2 256 128
right fc2 [512 128 fc_rightl |256 256
left fcl 128 512 fc_right2 |256 128
left fc2 512 128 fc2 256 128
fe3 256 128 fc3 128 4
Sample Encoder (f) Sample Decoder (g)
fcl 128 512 fcl 128 256
fc2mu 512 128 fc2 256 128
fc2var 512 128 - - -
Classifier
- - - fcl 128 256
- - - fc2 256 256
- - - fc3 256 3
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Fig. 1. (a) Additional renders of blood vessels generated using VesselVAE. Our ap-

(@ (b)

proach is capable of generating diverse and intricate vessel structures, including varia-
tions in thickness, branching patterns, and curvatures. These outputs closely resemble
real anatomical structures and demonstrate the effectiveness of our neural network ar-
chitecture and training procedures. (b) Limitations of our method: While VesselVAE
is able to generate a wide variety of complex structures, it may occasionally struggle
to reproduce realistic data. For example, the sample at the top of the figure features
an extremely thin segment that may not occur in real blood vessels. Additionally, the
mesh reconstruction algorithm employed by our method can sometimes produce vessels
with self-intersections, which are not physically plausible in biological systems.
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